Advertisement

TGF-ß and Tyrosine Kinases: Context in Colorectal Cancer

  • Siva K. P. Konduru
  • Santoshi MuppalaEmail author
Chapter

Abstract

Tyrosine kinases and transforming growth factor-ß (TGF-ß) are known to be the hallmark molecules that drive many metastatic cancers, including colorectal cancer (CRC). There is an urgent need to understand the role of these molecules (and their underlying molecular mechanisms) that regulate CRC disease progression. This chapter highlights recent progress made in our knowledge of the molecular mechanisms that underlie the TGF-ß signaling pathway in CRC growth. The role of TGF-ß in promoting pro-angiogenic events such as epithelial to mesenchymal transition, invasion, and migration is revealed. We also discuss the importance of different tyrosine kinases as metastatic drivers of TGF-ß-regulated CRC pathogenesis, as well as noting different therapeutic products and genes that can inhibit the TGF-ß signaling pathway, which itself contributes to CRC progression. In short, this essential chapter discusses the overall role of tyrosine kinases in TGF-ß-implicated CRC progression.

Keywords

Colorectal cancer Tyrosine kinases Transforming growth factor-ß Metastasis 

Abbreviations

CD24

Cluster of differentiation 24

CRC

Colorectal cancer

EC

Endothelial cells

ECM

Extracellular matrix

EGFR

Epidermal growth factor receptor

EMT

Epithelial-mesenchymal transition

LEF

Lymphoid enhancer factor

PDGFRB

Platelet-derived growth factor receptor B

STYK1

Serine threonine tyrosine kinase 1

TGF-ß

Transforming growth factor-ß

TSP-4

Thrombospondin-4

VEGF

Vascular endothelial growth factor

WNT

Wingless-type MMTV integration site family member

References

  1. 1.
    Marmol I, Sanchez-de-Diego C, Pradilla Dieste A, Cerrada E, Rodriguez Yoldi MJ (2017) Colorectal carcinoma: a general overview and future perspectives in colorectal cancer. Int J Mol Sci 18(1):197CrossRefGoogle Scholar
  2. 2.
    Muppala S et al (2017) Adiponectin: its role in obesity-associated colon and prostate cancers. Crit Rev Oncol Hematol 116:125–133CrossRefGoogle Scholar
  3. 3.
    O’Keefe SJ (2016) Diet, microorganisms and their metabolites, and colon cancer. Nat Rev Gastroenterol Hepatol 13(12):691–706CrossRefGoogle Scholar
  4. 4.
    Kuipers EJ et al (2015) Colorectal cancer. Nat Rev Dis Prim 1:15065CrossRefGoogle Scholar
  5. 5.
    Chruscik A, Gopalan V, Lam AK (2018) The clinical and biological roles of transforming growth factor beta in colon cancer stem cells: a systematic review. Eur J Cell Biol 97(1):15–22CrossRefGoogle Scholar
  6. 6.
    Ai X et al (2013) Targeting the ERK pathway reduces liver metastasis of Smad4-inactivated colorectal cancer. Cancer Biol Ther 14(11):1059–1067CrossRefGoogle Scholar
  7. 7.
    Zhang B et al (2010) Antimetastatic role of Smad4 signaling in colorectal cancer. Gastroenterology 138(3):969–980 e961–963CrossRefGoogle Scholar
  8. 8.
    Massague J (2008) TGFbeta in cancer. Cell 134(2):215–230CrossRefGoogle Scholar
  9. 9.
    Padua D et al (2008) TGFbeta primes breast tumors for lung metastasis seeding through angiopoietin-like 4. Cell 133(1):66–77CrossRefGoogle Scholar
  10. 10.
    Nieto MA (2011) The ins and outs of the epithelial to mesenchymal transition in health and disease. Annu Rev Cell Dev Biol 27:347–376CrossRefGoogle Scholar
  11. 11.
    Thiery JP, Acloque H, Huang RY, Nieto MA (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139(5):871–890CrossRefGoogle Scholar
  12. 12.
    Bruna A et al (2007) High TGFbeta-Smad activity confers poor prognosis in glioma patients and promotes cell proliferation depending on the methylation of the PDGF-B gene. Cancer Cell 11(2):147–160CrossRefGoogle Scholar
  13. 13.
    Ikushima H et al (2009) Autocrine TGF-beta signaling maintains tumorigenicity of glioma-initiating cells through Sry-related HMG-box factors. Cell Stem Cell 5(5):504–514CrossRefGoogle Scholar
  14. 14.
    Penuelas S et al (2009) TGF-beta increases glioma-initiating cell self-renewal through the induction of LIF in human glioblastoma. Cancer Cell 15(4):315–327CrossRefGoogle Scholar
  15. 15.
    Chun HK et al (2014) Low expression of transforming growth factor beta-1 in cancer tissue predicts a poor prognosis for patients with stage III rectal cancers. Oncology 86(3):159–169CrossRefGoogle Scholar
  16. 16.
    Schafer H et al (2013) TGF-beta1-dependent L1CAM expression has an essential role in macrophage-induced apoptosis resistance and cell migration of human intestinal epithelial cells. Oncogene 32(2):180–189CrossRefGoogle Scholar
  17. 17.
    Slattery ML, Herrick JS, Lundgreen A, Wolff RK (2011) Genetic variation in the TGF-beta signaling pathway and colon and rectal cancer risk. Cancer Epidemiol Biomark Prev 20(1):57–69CrossRefGoogle Scholar
  18. 18.
    Garg M (2013) Epithelial-mesenchymal transition – activating transcription factors – multifunctional regulators in cancer. World J Stem Cells 5(4):188–195CrossRefGoogle Scholar
  19. 19.
    Ikenouchi J, Matsuda M, Furuse M, Tsukita S (2003) Regulation of tight junctions during the epithelium-mesenchyme transition: direct repression of the gene expression of claudins/occludin by Snail. J Cell Sci 116(Pt 10):1959–1967CrossRefGoogle Scholar
  20. 20.
    Vincent T et al (2009) A SNAIL1-SMAD3/4 transcriptional repressor complex promotes TGF-beta mediated epithelial-mesenchymal transition. Nat Cell Biol 11(8):943–950CrossRefGoogle Scholar
  21. 21.
    Scheel C et al (2011) Paracrine and autocrine signals induce and maintain mesenchymal and stem cell states in the breast. Cell 145(6):926–940CrossRefGoogle Scholar
  22. 22.
    Nawshad A, Medici D, Liu CC, Hay ED (2007) TGFbeta3 inhibits E-cadherin gene expression in palate medial-edge epithelial cells through a Smad2-Smad4-LEF1 transcription complex. J Cell Sci 120(Pt 9):1646–1653CrossRefGoogle Scholar
  23. 23.
    Grandclement C et al (2011) Neuropilin-2 expression promotes TGF-beta1-mediated epithelial to mesenchymal transition in colorectal cancer cells. PLoS One 6(7):e20444CrossRefGoogle Scholar
  24. 24.
    Roy N et al (2013) DDB2 suppresses epithelial-to-mesenchymal transition in colon cancer. Cancer Res 73(12):3771–3782CrossRefGoogle Scholar
  25. 25.
    Zubeldia IG et al (2013) Epithelial to mesenchymal transition and cancer stem cell phenotypes leading to liver metastasis are abrogated by the novel TGFbeta1-targeting peptides P17 and P144. Exp Cell Res 319(3):12–22CrossRefGoogle Scholar
  26. 26.
    Liu LY et al (2014) N-Hydroxycinnamide derivatives of osthole inhibit cell migration and invasion by suppressing Smad2 and Akt pathways in human colorectal adenocarcinoma cells. Chem Biol Interact 217:1–8CrossRefGoogle Scholar
  27. 27.
    Markowitz S et al (1995) Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability. Science 268(5215):1336–1338CrossRefGoogle Scholar
  28. 28.
    Markowitz SD, Bertagnolli MM (2009) Molecular origins of cancer: molecular basis of colorectal cancer. N Engl J Med 361(25):2449–2460CrossRefGoogle Scholar
  29. 29.
    Grady WM, Markowitz SD (2002) Genetic and epigenetic alterations in colon cancer. Annu Rev Genomics Hum Genet 3:101–128CrossRefGoogle Scholar
  30. 30.
    Takayama T, Miyanishi K, Hayashi T, Sato Y, Niitsu Y (2006) Colorectal cancer: genetics of development and metastasis. J Gastroenterol 41(3):185–192CrossRefGoogle Scholar
  31. 31.
    Chen S et al (2015) 1,25(OH)2D3 attenuates TGF-beta1/beta2-induced increased migration and invasion via inhibiting epithelial-mesenchymal transition in colon cancer cells. Biochem Biophys Res Commun 468(1–2):130–135CrossRefGoogle Scholar
  32. 32.
    Sun N, Xue Y, Dai T, Li X, Zheng N (2017) Tripartite motif containing 25 promotes proliferation and invasion of colorectal cancer cells through TGF-beta signaling. Biosci Rep 37(4):BSR20170805CrossRefGoogle Scholar
  33. 33.
    Yi R et al (2016) Transforming growth factor (TGF) beta1 acted through miR-130b to increase integrin alpha5 to promote migration of colorectal cancer cells. Tumour Biol 37(8):10763–10773CrossRefGoogle Scholar
  34. 34.
    Shen L et al (2014) Tumor suppressor NDRG2 tips the balance of oncogenic TGF-beta via EMT inhibition in colorectal cancer. Oncogene 3:e86CrossRefGoogle Scholar
  35. 35.
    Jin Q, Liu G, Domeier PP, Ding W, Mulder KM (2013) Decreased tumor progression and invasion by a novel anti-cell motility target for human colorectal carcinoma cells. PLoS One 8(6):e66439CrossRefGoogle Scholar
  36. 36.
    Wang X et al (2017) Oxymatrine inhibits the migration of human colorectal carcinoma RKO cells via inhibition of PAI-1 and the TGF-beta1/Smad signaling pathway. Oncol Rep 37(2):747–753CrossRefGoogle Scholar
  37. 37.
    Miettinen PJ, Ebner R, Lopez AR, Derynck R (1994) TGF-beta induced transdifferentiation of mammary epithelial cells to mesenchymal cells: involvement of type I receptors. J Cell Biol 127(6 Pt 2):2021–2036CrossRefGoogle Scholar
  38. 38.
    Giannelli G et al (2002) Transforming growth factor-beta1 triggers hepatocellular carcinoma invasiveness via alpha3beta1 integrin. Am J Pathol 161(1):183–193CrossRefGoogle Scholar
  39. 39.
    Oft M, Heider KH, Beug H (1998) TGFbeta signaling is necessary for carcinoma cell invasiveness and metastasis. Curr Biol 8(23):1243–1252CrossRefGoogle Scholar
  40. 40.
    McEarchern JA et al (2001) Invasion and metastasis of a mammary tumor involves TGF-beta signaling. Int J Cancer 91(1):76–82CrossRefGoogle Scholar
  41. 41.
    Villalba M, Evans SR, Vidal-Vanaclocha F, Calvo A (2017) Role of TGF-beta in metastatic colon cancer: it is finally time for targeted therapy. Cell Tissue Res 370(1):29–39CrossRefGoogle Scholar
  42. 42.
    Sarshekeh MA, Advani S, Overman MJ, Manyam G, Kee BK, Fogelman DR, Dasari A, Raghav K, Vilar E, Manuel S, Shureiqi I, Wolff RA, Patel KP, Luthra R, Shaw K, Eng C, Maru DM, Routbort MJ, Meric-Bernstam F, Kopetz S (2017) Correction: association of SMAD4 mutation with patient demographics, tumor characteristics, and clinical outcomes in colorectal cancer. PLoS One 12(5):e0178275CrossRefGoogle Scholar
  43. 43.
    Zhang L et al (2015) Overexpressed GRP78 affects EMT and cell-matrix adhesion via autocrine TGF-beta/Smad2/3 signaling. Int J Biochem Cell Biol 64:202–211CrossRefGoogle Scholar
  44. 44.
    Xu Q et al (2017) miR-27a induced by colon cancer cells in HLECs promotes lymphangiogenesis by targeting SMAD4. PLoS One 12(10):e0186718CrossRefGoogle Scholar
  45. 45.
    Gonzalez-Zubeldia I et al (2015) Co-migration of colon cancer cells and CAFs induced by TGFbeta(1) enhances liver metastasis. Cell Tissue Res 359(3):829–839CrossRefGoogle Scholar
  46. 46.
    Staudacher JJ et al (2017) Activin signaling is an essential component of the TGF-beta induced pro-metastatic phenotype in colorectal cancer. Sci Rep 7(1):5569CrossRefGoogle Scholar
  47. 47.
    Muppala S et al (2015) Proangiogenic properties of thrombospondin-4. Arterioscler Thromb Vasc Biol 35(9):1975–1986CrossRefGoogle Scholar
  48. 48.
    Muppala S et al (2017) Thrombospondin-4 mediates TGF-beta-induced angiogenesis. Oncogene 36(36):5189–5198CrossRefGoogle Scholar
  49. 49.
    Muppala S et al (2013) CD24 induces expression of the oncomir miR-21 via Src, and CD24 and Src are both post-transcriptionally downregulated by the tumor suppressor miR-34a. PLoS One 8(3):e59563CrossRefGoogle Scholar
  50. 50.
    Mudduluru G et al (2011) Curcumin regulates miR-21 expression and inhibits invasion and metastasis in colorectal cancer. Biosci Rep 31(3):185–197CrossRefGoogle Scholar
  51. 51.
    Ramamoorthi G, Sivalingam N (2014) Molecular mechanism of TGF-beta signaling pathway in colon carcinogenesis and status of curcumin as chemopreventive strategy. Tumour Biol 35(8):7295–7305CrossRefGoogle Scholar
  52. 52.
    Buhrmann C et al (2014) Curcumin suppresses crosstalk between colon cancer stem cells and stromal fibroblasts in the tumor microenvironment: potential role of EMT. PLoS One 9(9):e107514CrossRefGoogle Scholar
  53. 53.
    Schlessinger J (2000) Cell signaling by receptor tyrosine kinases. Cell 103(2):211–225CrossRefGoogle Scholar
  54. 54.
    Steller EJ et al (2013) PDGFRB promotes liver metastasis formation of mesenchymal-like colorectal tumor cells. Neoplasia 15(2):204–217CrossRefGoogle Scholar
  55. 55.
    Perkins G, Laurent-Puig P (2015) Colorectal cancer biology. Rev Prat 65(6):802–806PubMedGoogle Scholar
  56. 56.
    Josso N, di Clemente N (1997) Serine/threonine kinase receptors and ligands. Curr Opin Genet Dev 7(3):371–377CrossRefGoogle Scholar
  57. 57.
    ten Dijke P et al (1994) Serine/threonine kinase receptors. Prog Growth Factor Res 5(1):55–72CrossRefGoogle Scholar
  58. 58.
    Dong SM et al (1998) Frequent somatic mutations in serine/threonine kinase 11/Peutz-Jeghers syndrome gene in left-sided colon cancer. Cancer Res 58(17):3787–3790PubMedGoogle Scholar
  59. 59.
    Hu L et al (2015) Serine threonine tyrosine kinase 1 is a potential prognostic marker in colorectal cancer. BMC Cancer 15:246CrossRefGoogle Scholar
  60. 60.
    Chung S et al (2009) Overexpression of the potential kinase serine/threonine/tyrosine kinase 1 (STYK 1) in castration-resistant prostate cancer. Cancer Sci 100(11):2109–2114CrossRefGoogle Scholar
  61. 61.
    Kondoh T, Kobayashi D, Tsuji N, Kuribayashi K, Watanabe N (2009) Overexpression of serine threonine tyrosine kinase 1/novel oncogene with kinase domain mRNA in patients with acute leukemia. Exp Hematol 37(7):824–830CrossRefGoogle Scholar
  62. 62.
    Liu L et al (2004) A novel protein tyrosine kinase NOK that shares homology with platelet- derived growth factor/fibroblast growth factor receptors induces tumorigenesis and metastasis in nude mice. Cancer Res 64(10):3491–3499CrossRefGoogle Scholar
  63. 63.
    Orang AV, Safaralizadeh R, Hosseinpour Feizi MA, Somi MH (2014) Diagnostic relevance of overexpressed serine threonine tyrosine kinase/novel oncogene with kinase domain (STYK1/NOK) mRNA in colorectal cancer. Asian Pac J Cancer Prev 15(16):6685–6689CrossRefGoogle Scholar
  64. 64.
    Kopetz S (2007) Targeting SRC and epidermal growth factor receptor in colorectal cancer: rationale and progress into the clinic. Gastrointest Cancer Res 1(4 Suppl 2):S37–S41PubMedPubMedCentralGoogle Scholar
  65. 65.
    Osherov N, Levitzki A (1994) Epidermal-growth-factor-dependent activation of the src-family kinases. Eur J Biochem 225(3):1047–1053CrossRefGoogle Scholar
  66. 66.
    Martin* GS (2003) Cell signaling and cancer. Cancer cell 4(3):167–174CrossRefGoogle Scholar
  67. 67.
    Ishizawar R, Parsons SJ* (2004) c-Src and cooperating partners in human cancer. Cancer Cell 6(3):209–214CrossRefGoogle Scholar
  68. 68.
    Herbertz S et al (2015) Clinical development of galunisertib (LY2157299 monohydrate), a small molecule inhibitor of transforming growth factor-beta signaling pathway. Drug Des Dev Ther 9:4479–4499Google Scholar
  69. 69.
    Tanaka H et al (2010) Transforming growth factor beta signaling inhibitor, SB-431542, induces maturation of dendritic cells and enhances anti-tumor activity. Oncol Rep 24(6):1637–1643CrossRefGoogle Scholar
  70. 70.
    Xie F, Ling L, van Dam H, Zhou F, Zhang L (2018) TGF-beta signaling in cancer metastasis. Acta Biochim Biophys Sin Shanghai 50(1):121–132Google Scholar
  71. 71.
    Ono Y et al (2012) Direct inhibition of the transforming growth factor-beta pathway by protein-bound polysaccharide through inactivation of Smad2 signaling. Cancer Sci 103(2):317–324CrossRefGoogle Scholar
  72. 72.
    Wang P (2015) Suppression of DACH1 promotes migration and invasion of colorectal cancer via activating TGF-beta-mediated epithelial-mesenchymal transition. Biochem Biophys Res Commun 460(2):314–319CrossRefGoogle Scholar
  73. 73.
    Zhu J, Chen X, Liao Z, He C, Hu X (2015) TGFBI protein high expression predicts poor prognosis in colorectal cancer patients. Int J Clin Exp Pathol 8(1):702–710PubMedPubMedCentralGoogle Scholar
  74. 74.
    Wang H et al (2014) LIM and SH3 protein 1 induces TGFbeta-mediated epithelial-mesenchymal transition in human colorectal cancer by regulating S100A4 expression. Clin Cancer Res 20(22):5835–5847CrossRefGoogle Scholar
  75. 75.
    Calon A et al (2012) Dependency of colorectal cancer on a TGF-beta-driven program in stromal cells for metastasis initiation. Cancer Cell 22(5):571–584CrossRefGoogle Scholar
  76. 76.
    Ji Q et al (2015) Resveratrol suppresses epithelial-to-mesenchymal transition in colorectal cancer through TGF-beta1/Smads signaling pathway mediated Snail/E-cadherin expression. BMC Cancer 15:97CrossRefGoogle Scholar
  77. 77.
    Zhang B, Halder SK, Zhang S, Datta PK (2009) Targeting transforming growth factor-beta signaling in liver metastasis of colon cancer. Cancer Lett 277(1):114–120CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Medical ImagingSangre GrandeTrinidad and Tobago
  2. 2.Department of Molecular CardiologyLerner Research Institute, Cleveland ClinicClevelandUSA

Personalised recommendations