Treatment and Recycling of Wastewater from Textile Industry

  • Rajat Pratap Singh
  • Pradeep Kumar Singh
  • Rasna Gupta
  • Ram Lakhan Singh
Part of the Applied Environmental Science and Engineering for a Sustainable Future book series (AESE)


Textile industries are one of the largest generator of wastewater as large amount of water is used in coloring and finishing processes. The effluents released from textile industries contain biodegradable and non-biodegradable chemicals such as dyes, dispersants, leveling agents etc. These effluents are released into water bodies which can modify the physical, chemical and biological nature of the receiving water bodies. Azo dyes are largely utilized in textile industry as coloring agent. During the processing of textile, a lot of dyestuff specifically lost to the wastewater due to inefficiency in dyeing processes which may causes serious health and environmental problems. Therefore, removal of dyes from textile wastewater is necessary prior to their disposal. Several physico-chemical techniques have been utilized for the treatment of wastewater containing dyes, but execution of these strategies have the distinctive limitations of being expensive, unable to the complete removal of dyes from wastewater, and producing noteworthy amounts of sludge that may cause auxiliary pollution issues. The application of microorganisms (bacteria, fungi and algae) and plants for the removal of azo dyes from textile wastewater is an attractive option over the physico-chemical methods. Biological methods are environment friendly, produce less sludge, and inexpensive. Water recycling is the reuse of treated wastewater for valuable purposes such as agricultural irrigation and industrial processes etc. Recycling of textile wastewater is important for restricting the amount of wastewater and expenses of production, and recommended for the protection of environment.


Textile wastewater Azo dyes Microorganisms Decolorization Recycling 


  1. Agarry SE, Ayobami OA (2011) Evaluation of microbial systems for biotreatment of textile waste effluents in Nigeria: biodecolorization and biodegradation of textile dye. J Appl Sci Environ Manag 15:79–86Google Scholar
  2. Aksu Z (2005) Application of biosorption for the removal of organic pollutants: a review. Process Biochem 40:997–1026CrossRefGoogle Scholar
  3. Al-Fawwaz AT, Abdullah M (2016) Decolorization of Methylene Blue and Malachite Green by immobilized Desmodesmus sp. isolated from North Jordan. Int J Environ Sci Dev 7:95–99CrossRefGoogle Scholar
  4. AL-Rajhia S, Raut N, AL-Qasmi F et al (2012) Treatments of industrials wastewater by using microalgae. 2012 International Conference on Environmental, Biomedical and Biotechnology IPCBEE 41, IACSIT Press, SingaporeGoogle Scholar
  5. Amaral PFF, Fernandes DLA, Tavares APM et al (2004) Decolorization of dyes from textile wastewater by Trametes versicolor. Environ Technol 25:1313–1320CrossRefGoogle Scholar
  6. Anastasi A, Parato B, Spina F et al (2011) Decolorization and detoxification in the fungal treatment of textile wastewaters from dyeing processes. New Biotechnol 29:38–45CrossRefGoogle Scholar
  7. Anjaneya O, Souche SY, Santoshkumar M et al (2011) Decolorization of sulfonated azo dye Metanil Yellow by newly isolated bacterial strains: Bacillus sp. strain AK1 and Lysinibacillus sp. strain AK2. J Hazard Mater 190:351–358CrossRefGoogle Scholar
  8. APHA (2005) Standard methods for the examination of water and wastewater, 21st edn. APHA, AWWA and WEF, Washington, DCGoogle Scholar
  9. Arulazhagan P (2016) A study on microbial decolorization of reactive red M88 by Bacillus subtilis isolated from dye contaminated soil samples. Int J Curr Res Biol Med 1:1–13Google Scholar
  10. Asgher M, Jamil F, Iqbal HMN (2012) Bioremediation potential of mixed white rot culture of Pleurotus ostreatus IBL-02 and Coriolus versicolor IBL-04 for textile industry wastewater. J Bioremediation Biodegrad S1:007Google Scholar
  11. Ashfaq A, Khatoon A (2014) Waste management of textiles: a solution to the environmental pollution. Int J Curr Microbiol App Sci 3(7):780–787Google Scholar
  12. Ayed L, Mahdhi A, Cheref A et al (2011) Decolorization and degradation of azo dye Methyl Red by an isolated Sphingomonas paucimobilis: biotoxicity and metabolites characterization. Desalination 274:272–277CrossRefGoogle Scholar
  13. Azarpira H, Behdarv P, Dhumal K et al (2014) Potential use of cyanobacteria species in phycoremediation of municipal wastewater. Int J Biosci 4:105–111Google Scholar
  14. Babu BR, Parande AK, Raghu S et al (2007) Cotton textile processing: waste generation and effluent treatment. J Cotton Sci 11:141–153Google Scholar
  15. Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements: a review of their distribution. Ecol Phytochem Biorecovery 1:81–126Google Scholar
  16. Baker AJ, Walker PI (1990) Ecophysiology of metal uptake by tolerant plants. In: Shaw AJ (ed) Heavy metal tolerance in plants evolutionary aspects. CRC Press, Boca Raton, pp 155–178Google Scholar
  17. Banasova V, Horak O (2008) Heavy metal content in Thalspi caerulescens J. et C. Presl growing on metalliferous and non-metalliferous soils in Central Slovakia. Int J Environ Pollut 33:133–145CrossRefGoogle Scholar
  18. Banat IM, Nigam P, Singh D, Marchant R (1996) Microbial decolorization of textile dye-containing effluents: a review. Bioresour Technol 58(3):217–227CrossRefGoogle Scholar
  19. Barry SAS, Clark SC (1978) Problems of interpreting the relationship between the amounts of lead and zinc in plants and soil on metalliferous wastes. New Phytol 81:773–783CrossRefGoogle Scholar
  20. Barzanti R, Colzi I, Arnetoli M et al (2011) Cadmium phytoextraction potential of different Alyssum species. J Hazard Mater 196:66–72CrossRefGoogle Scholar
  21. Baumann A (1885) Das Verhalten von Zinksatzen gegen Pflanzen und im Boden. Landwirtsch Vers Statn 31:1–53Google Scholar
  22. Blaylock MJ, Salt DE, Dushenkov S et al (1997) Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ Sci Technol 31:860–865CrossRefGoogle Scholar
  23. Boyd RS, Jaffré T, Odom JW (1999) Variation in nickel content in the nickel-hyperaccumulating shrub Psychofria douarrei (Rubiaceae) from New Caledonia. Blotroplca 31:403–410Google Scholar
  24. Brahmbhatt NH, Jasrai RT (2015) Biodegradation of reactive dyes by two microalgal species. Int J Sci Res 4:1697–1702Google Scholar
  25. Brahmbhatt NH, Jasrai RT (2016) The role of algae in bioremediation of textile effluent. Int J Eng Res Gen Sci 4:443–453Google Scholar
  26. Bromley-Challenor KCA, Knapp JS, Zhang Z et al (2000) Decolorization of an azo dye by unacclimated activated sludge under anaerobic conditions. Water Res 34:4410–4418CrossRefGoogle Scholar
  27. Brooks V (1998) Phytochemistry of hyperaccumulators plants that hyperaccumulate heavy metals. CAB International, Wallingford, pp 15–54Google Scholar
  28. Burnell JN (1981) Selenium metabolism in Neptunia amplexicaulis. Plant Physiol 67:316–324CrossRefGoogle Scholar
  29. Chagas EP, Durrant LR (2001) Decolorization of azo dyes by Phanerochaete chrysosporium and Pleurotus sajor-caju. Enzym Microb Technol 29:473–477CrossRefGoogle Scholar
  30. Chan GF, Rashid NAA, Koay LL et al (2011) Identification and optimization of novel NAR-1 bacterial consortium for the biodegradation of orange II. Insight Biotechnol 1:7–16CrossRefGoogle Scholar
  31. Chan GF, Rashid NAA, Chua LS et al (2012) Communal microaerophilic-aerobic biodegradation of Amaranth by novel NAR-2 bacterial consortium. Bioresour Technol 105:48–59CrossRefGoogle Scholar
  32. Chang JS, Kuo TS (2000) Kinetics of bacterial decolorization of azo dye with Escherichia coli NO3. Bioresour Technol 75:107–111CrossRefGoogle Scholar
  33. Cheriaa J, Khaireddine M, Rouabhia M et al (2012) Removal of triphenylmethane dyes by bacterial consortium. Sci World J 2012:512454CrossRefGoogle Scholar
  34. Chitra MJ, Das A, Goel M et al (2013) Microalgae application for treatment of textile effluents. Res J Pharm Biol Chem Sci 4:1602–1606Google Scholar
  35. Cosio C, Martinoia E, Keller C (2004) Hyperaccumulation of cadmium and zinc in Thlaspi caerulescens and Arabidopsis halleri at the leaf cellular level. Plant Physiol 134:716–725CrossRefGoogle Scholar
  36. Couto SR, Rivela I, Munoz MR et al (2000) Stimulation of lignolytic enzyme production and the ability to decolorize Poly R-448 in semisolid-state cultures of Phanerochaete chrysosporium. Bioresour Technol 74:159–164CrossRefGoogle Scholar
  37. Das A, Mishra S, Verma VK (2015) Enhanced biodecolorization of textile dye remazol navy blue using an isolated bacterial strain Bacillus pumilus HKG212 under improved culture conditions. J Biochem Technol 6:962–969Google Scholar
  38. de-Bashan LE, Hernandez JP, Nelson KN et al (2010) Growth of quailbush in acidic, metalliferous desert mine tailings: effect of Azospirillum brasilense Sp6 on biomass production and rhizosphere community structure. Microb Ecol 60:915–927CrossRefGoogle Scholar
  39. Deng D, Guo J, Zeng G et al (2008) Decolorization of anthraquinone, triphenylmethane and azo dyes by a new isolated Bacillus cereus strain DC11. Int Biodeterior Biodegrad 62(3):263–269CrossRefGoogle Scholar
  40. Deram A, Patit D, Robinson B et al (2000) Natural and induced heavy metal accumulation by Arrhenatherum elatius: implications for phytoremediation. Commun Soil Sci Plant Anal 31:413–421CrossRefGoogle Scholar
  41. Dos Santos AB, Bisschops IAE, Cervantes FJ (2006) Closing process water cycles and product recovery in textile industry: perspective for biological treatment. In: Cervantes FJ, Van Haandel AC, Pavlostathis SG (eds) Advanced biological treatment processes for industrial wastewaters, vol 1. International Water Association, London, pp 298–320Google Scholar
  42. El-Kassas HY, Mohamed LA (2014) Bioremediation of the textile waste effluent by Chlorella vulgaris. Egypt J Aquat Res 40:301–308CrossRefGoogle Scholar
  43. Enayatizamir N, Tabandeh F, Rodriguez-Couto (2011) Biodegradation pathway and detoxification of the diazo dye Reactive Black 5 by Phanerochaete chrysosporium. Bioresour Technol 102(22):10359–10362CrossRefGoogle Scholar
  44. EPA (1997) Profile of the Textile Industry Environmental Protection Agency. EPA, Washington DCGoogle Scholar
  45. Evangelista-Barreto NS, Albuquerque CD, Vieira RHSF et al (2009) Co-metabolic decolorization of the reactive azo dye Orange II by Geobacillus stearothermophilus UCP 986. Text Res J 79:1266–1273CrossRefGoogle Scholar
  46. Feng Y1, Li C, Zhang D (2011) Lipid production of Chlorella vulgaris cultured in artificial wastewater medium. Bioresour Technol 102:101–105CrossRefGoogle Scholar
  47. Fernando ES, Quimado MO, Doronila AI (2014) Rinorea niccolifera (Violaceae), a new, nickel-hyperaccumulating species from Luzon Island. Philipp PhytoKeys 37:1–13CrossRefGoogle Scholar
  48. Ferrell J, Sarisky-Reed V (2008) A technology roadmap resulting from the National Algal Biofuels Workshop, College Park, Maryland. National Algal Biofuels Technology Roadmap, 9–10 December 2008Google Scholar
  49. Forss J, Welander U (2011) Biodegradation of azo and anthraquinone dyes in continuous systems. Int Biodeterior Biodegrad 65:227–237CrossRefGoogle Scholar
  50. Francesconia K, Visoottiviseth P, Sridokchan W et al (2002) Arsenic species in an arsenic hyperaccumulating fern, Pityrogramma calomelanos: a potential phytoremediator of arsenic-contaminated soils. Sci Total Environ 284:27–35CrossRefGoogle Scholar
  51. Franciscon E, Zille A, Fantinatti-Garboggini F et al (2009) Microaerophilic aerobic sequential decolorization/biodegradation of textile azo dyes by a facultative Klebsiella sp. strain VN-31. Process Biochem 44:446–452CrossRefGoogle Scholar
  52. Freeman JL, Marcus MA, Fakra SC, Devonshire J, McGrath SP et al (2012) Selenium hyperaccumulator plants Stanleya pinnata and Astragalus bisulcatus are colonized by se-resistant, se-excluding wasp and beetle seed herbivores. PLoS One 7:e50516. CrossRefGoogle Scholar
  53. Garcia-Leston M, Kidd PS, Becerra-Castro C et al (2007) Changes in metal fractionation in the rhizosphere of the Ni hyperaccumulator. Alyssum serpyllifolium subsp. lusitanicum. In: Zhu Y, Lepp N, Naidu R (eds) Biogeochemistry of trace elements: environmental protection, remediation and human health. Tsinghua University Press, Beijing, pp 192–193Google Scholar
  54. Gardea-Torresday JL, De la Rosa G, Peralta-Videa JR et al (2005) Differential uptake and transport of trivalent and hexavalent chromium by tumble weed (Salsola kali). Arch Environ Contam Toxicol 48:225–232CrossRefGoogle Scholar
  55. Gasperi J, Mathieu C, Vincent R et al (2008) Combined sewer overflow quality and EU Water Framework Directive. Sci Total Environ 2008:124–128Google Scholar
  56. Gingell R, Walker R (1971) Mechanisms of azo reduction by Streptococcus faecalis II. The role of soluble flavins. Xenobiotica 1(3):231–239CrossRefGoogle Scholar
  57. Giwa A, Giwa FJ, Ifu BJ (2012) Microbial decolorization of an anthraquinone dye C.I. Reactive Blue 19 using Bacillus cereus. Am Chem Sci J 2(2):60–68CrossRefGoogle Scholar
  58. Grassi E, Scodeller P, Filiel N et al (2011) Potential of Trametes trogii culture fluids and its purified laccase for the decolorization of different types of recalcitrant dyes without the addition of redox mediators. Int Biodeterior Biodegrad 65:635–643CrossRefGoogle Scholar
  59. Green FB, Lundquist TJ, Oswald WJ (1995) Energetics of advanced integrated wastewater pond systems. Water Sci Technol 31:9–20CrossRefGoogle Scholar
  60. Gupta VK, Khamparia S, Tyagi I et al (2015) Decolorization of mixture of dyes: a critical review. Glob J Environ Sci Manag 1(1):71–94Google Scholar
  61. Gurav AA, Ghosh JS, Kulkarni GS (2011) Decolorization of anthroquinone based dye Vat Red 10 by Pseudomonas desmolyticum NCIM 2112 and Galactomyces geotrichum MTCC 1360. Int J Biotech Mol Biol Res 2(6):93–97Google Scholar
  62. Hadiyanto, Pradana AB, Buchori L et al (2014) Biosorption of heavy metal Cu2+ and Cr2+ in textile wastewater by using immobilized algae. Res J Appl Sci Eng Technol 7:3539–3543Google Scholar
  63. Hammel C, Kyriakopoulos A, Behne D et al (1996) Protein-bound selenium in the seeds of coco de mono (Lecythis ollaria). J Trace Elem Med Biol 10:96–102CrossRefGoogle Scholar
  64. Hill AR (1996) Nitrate removal in stream riparian zones. J Environ Qual 25:743–755CrossRefGoogle Scholar
  65. Hu TL (1994) Decolorization of reactive azo dyes by transformation with Pseudomonas luteola. Bioresour Technol 49:47–51CrossRefGoogle Scholar
  66. Huang JW, Chen J, Berti WR et al (1997) Phytoremediation of lead-contaminated soils: role of synthetic chelates in lead phytoextraction. Environ Sci Technol 31:800–805CrossRefGoogle Scholar
  67. Irshad M, Ahmad S, Pervez A et al (2015) Phytoaccumulation of heavy metals in natural plants thriving on wastewater effluent at Hattar industrial estate, Pakistan. Int J Phytoremediation 17:154–158CrossRefGoogle Scholar
  68. Jadhav JP, Kalyani DC, Telke AA et al (2010) Evaluation of the efficacy of a bacterial consortium for the removal of color, reduction of heavy metals and toxicity from textile dye effluent. Bioresour Technol 101:165–173CrossRefGoogle Scholar
  69. Jaffre T, Brooks RR, Trow JM (1979) Hyperaccumulation of nickel by Geissois species. Plant Soil 51:157–161CrossRefGoogle Scholar
  70. James AC, Xin G, Doty SL et al (2009) A mass balance study of the phytoremediation of perchloroethylene-contaminated groundwater. Environ Pollut 157:2564–2569CrossRefGoogle Scholar
  71. Jefferson B, Laine A, Parsons S et al (1999) Technologies for domestic wastewater recycling. Urban Water 1:285–292CrossRefGoogle Scholar
  72. Joshi T, Iyengar L, Singh K et al (2008) Isolation, identification and application of novel bacterial consortium TJ-1 for the decolorization of structurally different azo dyes. Bioresour Technol 99:7115–7121CrossRefGoogle Scholar
  73. Kachenko AG, Bhatia NP, Siegele R et al (2009) Nickel, Zn and Cd localization in seeds of metal hyperaccumulators using l-PIXE spectroscopy. Nucl Inst Meth Phys Res B 267:2176–2180CrossRefGoogle Scholar
  74. Kaushik P, Malik A (2010) Effect of nutritional conditions on dye removal from textile effluent by Aspergillus lentulus. World J Microbiol Biotechnol 26:1957–1964CrossRefGoogle Scholar
  75. Keharia H, Madamvar D (2003) Bioremediation concept for treatment of dye containing waste water: a review. Indian J Exp Biol 41:1068–1075Google Scholar
  76. Khalid A, Arshad M, Crowley DE (2008) Decolorization of azo dyes by Shewanella sp. under saline conditions. Appl Microbiol Biotechnol 79:1053–1059CrossRefGoogle Scholar
  77. Khan S, Malik A (2016) Degradation of Reactive Black 5 dye by a newly isolated bacterium Pseudomonas entomophila BS1. Can J Microbiol 62:220–232CrossRefGoogle Scholar
  78. Khehra MS, Saini HS, Sharma DK et al (2005) Decolorization of various azo dyes by bacterial consortium. Dyes Pigments 67:55–61CrossRefGoogle Scholar
  79. Kuberan T, Anburaj J, Sundaravadivelan C et al (2011) Biodegradation of azo dye by Listeria sp. Int J Environ Sci 1:1760–1770Google Scholar
  80. Kulkarni MG, Stirk WA, Southway C et al (2013) Plant growth regulators enhance gold uptake in Brassica juncea. Int J Phytoremediation 15:117–126CrossRefGoogle Scholar
  81. Kulla HG, Klausener F, Meyer U et al (1983) Interference of aromatic sulfo groups in the microbial degradation of the azo dyes Orange I and Orange II. Arch Microbiol 135:1–7CrossRefGoogle Scholar
  82. Kumar MNVR, Sridhari TR, Bhavani KD et al (1998) Trends in color removal from textile mill effluents. Colorage 40:25–34Google Scholar
  83. Lange B, van der Ent A, Baker AJM et al (2016) Copper and cobalt accumulation in plants: a critical assessment of the current state of knowledge. New Phytol 213:537–551CrossRefGoogle Scholar
  84. Lin J, Zhang X, Li Z (2010) Biodegradation of Reactive Blue 13 in a two-stage anaerobic/aerobic fluidized beds system with a Pseudomonas sp. isolate. Bioresour Technol 101(1):34–40CrossRefGoogle Scholar
  85. Malaisse F, Grégoire J (1978) Contributionà laphytogéochimiede laMinede l’Étoile (Shaba, Zaïre). Bull Soc R Bot Belg 111:252–260Google Scholar
  86. Malaisse F, Grégoire J, Morrison RS et al (1979) Copper and cobalt in vegetation of Fungurume. Shaba Province, Zaïre. Oikos 33:472–478CrossRefGoogle Scholar
  87. Mata TM, Martins AA, Sikdar S et al (2011) Sustainability considerations of biodiesel based on supply chain analysis. Clean Techn Environ Policy 13:655–671CrossRefGoogle Scholar
  88. Miranda RDCMD, Gomes EDB, Pereira N et al (2013) Biotreatment of textile effluent in static bioreactor by Curvularia lunata URM 6179 and Phanerochaete chrysosporium URM 6181. Bioresour Technol 142:361–367CrossRefGoogle Scholar
  89. Modi HA, Rajput G, Ambasana C (2010) Decolorization of water soluble azo dyes by bacterial cultures, isolated from dye house effluent. Bioresour Technol 101:6580–6583CrossRefGoogle Scholar
  90. Mohamed WSED (2016) Isolation and screening of reactive dye decolorizing bacterial isolates from textile industry effluent. Int J Microbiol Res 7:1–8Google Scholar
  91. Mohammad IA, Loganathan M, Gastian Theodar PA (2012) Effect of bio adsorbents in removal of color and toxicity of textile and leather dyes. J Ecol Biotechnol 4:1–10Google Scholar
  92. Mohan SV, Rao CN, Prasad KK, Karthikeyan J (2002) Treatment of simulated Reactive Yellow 22 (Azo) dye effluents using Spirogyra species. Waste Manag 22:575–582CrossRefGoogle Scholar
  93. Moradi AB, Swoboda S, Robinson B et al (2010) Mapping of nickel in root cross-sections of the hyperaccumulator plant Berkheya coddii using laser ablation ICP-MS. Environ Exp Bot 69:24–31CrossRefGoogle Scholar
  94. Mounicou S, Shah M, Meija J et al (2006) Localization and speciation of selenium and mercury in Brassica juncea: implications for Se-Hg antagonism. J Anal At Spectrom 21:404–412CrossRefGoogle Scholar
  95. Myers CR, Myers JM (1992) Localization of cytochromes to the outer membrane of anaerobically grown shewanella putrefaciens MR-1. J Bacteriol 174(11):3429–3438CrossRefGoogle Scholar
  96. Nandhini L, Bhagat BR, Malliga P (2014) Efficacy of marine cyanobacterium Lyngbya SP. 90901 with ground nut shell in textile dye industry effluent. Int Res Appl 2:121–132Google Scholar
  97. Nevine KA (2008) Removal of reactive dye from aqueous solutions by adsorption onto activated carbons prepared from sugarcane bagasse pith. Desalination 223:152–161CrossRefGoogle Scholar
  98. Nigam P, Armour G, Banat IM et al (2000) Physical removal of textile dyes from effluents and solid-state fermentation of dye-adsorbed agricultural residues. Bioresour Technol 72:219–226CrossRefGoogle Scholar
  99. Ola IO, Akintokun AK, Akpan I et al (2010) Aerobic decolorization of two reactive azo dyes under varying carbon and nitrogen source by Bacillus cereus. Afr J Biotechnol 9:672–677CrossRefGoogle Scholar
  100. Olukanni OD, Osuntoki AA, Gbenle GO (2006) Textile effluent biodegradation potentials of textile effluent-adapted and non-adapted bacteria. Afr J Biotechnol 5(20):1980–1984Google Scholar
  101. Olukanni OD, Osuntoki A, Gbenle GO (2009) Decolorization of azo dyes by strain of Micrococcus isolated from a reuse dump soil. J Biotechnol 8:442–448CrossRefGoogle Scholar
  102. Olukanni OD, Adenopo A, Awotula AO et al (2013) Biodegradation of Malachite Green by extracellular laccase producing Bacillus thuringiensis RUN1. J Basic Appl Sci 9:543–549Google Scholar
  103. Padmavathy S, Sandhyan S, Swaminathan K et al (2003) Aerobic decolorization of reactive azo dyes in presence of cosubstrates. Chem Biochem Eng 17:147–151Google Scholar
  104. Pan H, Feng J, Cerniglia CE (2011) Effects of Orange II and Sudan III azo dyes and their metabolites on Staphylococcus aureus. J Ind Microbiol Biotechnol 38:1729–1738CrossRefGoogle Scholar
  105. Pandey A, Singh P, Iyengar L (2007) Bacterial decolorization and degradation of azo dyes. Int Biodeterior Biodegrad 59:73–84CrossRefGoogle Scholar
  106. Park JB, Craggs RJ, Shilton AN (2011) Wastewater treatment high rate algal ponds for biofuel production. Bioresour Technol 102:35–42CrossRefGoogle Scholar
  107. Parshetti G, Kalme S, Saratale G et al (2006) Biodegradation of Malachite Green by Kocuria rosea MTCC 1532. Acta Chim Slov 53:492–498Google Scholar
  108. Phugare SS, Kalyani DC, Patil AV et al (2011) Textile dye degradation by bacterial consortium and subsequent toxicological analysis of dye and dye metabolites using cytotoxicity, genotoxicity and oxidative stress studies. J Hazard Mater 186:713–723CrossRefGoogle Scholar
  109. Puschenreiter M, Wieczorek S, Horak O et al (2003) Chemical changes in the rhizosphere of metal hyperaccumulator and excluder Thlaspi species. J Plant Nutr Soil Sci 166:579–584CrossRefGoogle Scholar
  110. Qiu R, Fang X, Tang Y et al (2006) Zinc hyperaccumulation and uptake by Potentilla Griffithii Hook. Int J Phytoremediation 8:299–310CrossRefGoogle Scholar
  111. Rahman MM, Azirun SM, Boyce AN (2013) Enhanced accumulation of copper and lead in amaranth (Amaranthus paniculatus), Indian mustard (Brassica juncea) and sunflower (Helianthus annuus). PLoS One 8(5):e62941. CrossRefGoogle Scholar
  112. Rajee O, Patterson J (2011) Decolorization of azo dye (Orange MR) by an autochthonous bacterium Micrococcus sp. DBS 2. Indian J Microbiol 51:159–163CrossRefGoogle Scholar
  113. Rana S, Sharma R, Chandra S (2013) Microbial degradation of synthetic textile dyes: a cost effective and eco-friendly approach. Afr J Microbiol Res 7(24):2983–2989CrossRefGoogle Scholar
  114. Reeves RD (1979) Hyperaccumulation of trace elements by plants. In: Phytoremediation of metal-contaminated soils. pp 25–52Google Scholar
  115. Reeves RD, Baker AJM (2000) Metal-accumulating plants. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals. Wiley, New York, pp 193–221Google Scholar
  116. Reeves RD, Macfarlane RM, Brooks RR (1983) Accumulation of nickel and zinc by western North American genera containing serpentine-tolerant species. Am J Bot 70:1297–1303CrossRefGoogle Scholar
  117. Reeves RD, Adiguzel N, Baker AJM (2009) Nickel hyperaccumulation in Bornmuellera kiyakii and associated plants of the Brassicaceae from Kızıldaäÿ Derebucak (Konya), Turkey. Turk J Bot 33:33–40Google Scholar
  118. Robinson T, McMullan G, Marchant R et al (2001) Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour Technol 77:247–255CrossRefGoogle Scholar
  119. Roy R, Fakhruddin ANM, Khatun R et al (2010) Reduction of cod and ph of textile industrial effluents by aquatic macrophytes and algae. J Bangladesh Acad Sci 34:9–14Google Scholar
  120. Ruiz J, Alvarez P, Arbib Z et al (2011) Effect of nitrogen and phosphorus concentration on their removal kinetic in treated urban wastewater by Chlorella vulgaris. Int J Phytoremediation 13:884–896CrossRefGoogle Scholar
  121. Ruiz-Arias A, Juarez-Ramirez C, de los Cobos-Vasconcelos D et al (2010) Aerobic biodegradation of a sulfonated phenylazonaphthol dye by a bacterial community immobilized in a multi stage packed-bed BAC reactor. Appl Biochem Biotechnol 162:1689–1707CrossRefGoogle Scholar
  122. Russ R, Rau J, Stolz A (2000) The function of cytoplasmic flavin reductases in the reduction of azo dyes by bacteria. Appl Environ Microbiol 66(4):1429–1434CrossRefGoogle Scholar
  123. Salt DE, Blaylock M, Kumar NPBA et al (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnology 13:468–474Google Scholar
  124. Saratale RG, Saratale GD, Chang JS et al (2010) Decolorization and biodegradation of reactive dyes and dye wastewater by a developed bacterial consortium. Biodegradation 21:999–1015CrossRefGoogle Scholar
  125. Saratale RG, Saratale GD, Chang JS et al (2011) Bacterial decolorization and degradation of azo dyes: a review. J Taiwan Inst Chem Eng 42:138–157CrossRefGoogle Scholar
  126. Saratale RG, Gandhi SS, Purakar MV et al (2013) Decolorization and detoxification of sulfonated azo dye C.I. Remazol Red and textile effluent by isolated Lysinibacillus sp. RGS. J Biosci Bioeng 115:658–667CrossRefGoogle Scholar
  127. Sarayu K, Sandhya S (2010) Aerobic biodegradation pathway for Remazol Orange by Pseudomonas aeruginosa. Appl Biochem Biotechnol 160(4):1241–1253CrossRefGoogle Scholar
  128. Schmid A, Dordick JS, Hauer B, Kiener A, Wubbolts M, Witholt B (2001) Industrial biocatalysis today and tomorrow. Nature 409:258–268CrossRefGoogle Scholar
  129. Schnoor JL (1997) Phytoremediation, TE-97-01. Ground-Water Remediation Technologies Analysis Center, PittsburghGoogle Scholar
  130. Sedighi M, Karimi A, Vahabzadeh F (2009) Involvement of ligninolytic enzymes of Phanerochaete chrysosporium in treating the textile effluent containing Astrazon Red FBL in a packed-bed bioreactor. J Hazard Mater 169:88–93CrossRefGoogle Scholar
  131. Shedbalkar U, Jadhav JP (2011) Detoxification of malachite green and textile industrial effluent by Penicillium ochrochloron. Biotechnol Bioprocess Eng 16:196–204CrossRefGoogle Scholar
  132. Singh PK, Singh RL (2017) Bio-removal of azo dyes: a review. Int J Appl Sci Biotechnol 5(2):108–126CrossRefGoogle Scholar
  133. Singh RP, Singh PK, Singh RL (2014) Bacterial decolorization of textile azo dye Acid Orange by Staphylococcus hominis RMLRT03. Toxicol Int 21(2):160–166CrossRefGoogle Scholar
  134. Singh RL, Gupta R, Singh RP (2015a) Microbial degradation of textile dyes for environmental safety. In: Chandra R (ed) Advances in biodegradation and bioremediation of industrial waste. CRC Press, Boca Raton, pp 249–285CrossRefGoogle Scholar
  135. Singh RL, Singh PK, Singh RP (2015b) Enzymatic decolorization and degradation of azo dyes – a review. Int Biodeterior Biodegrad 104:21–31CrossRefGoogle Scholar
  136. Singh RP, Singh PK, Singh RL (2017a) Present status of biodegradation of textile dyes. Curr Trends Biomed Eng Biosci 3(4):555618CrossRefGoogle Scholar
  137. Singh RP, Singh PK, Singh RL (2017b) Role of azoreductases in bacterial decolorization of azo dyes. Curr Trends Biomed Eng Biosci 9(3):555764CrossRefGoogle Scholar
  138. Slokar YM, Le Marechal AM (1997) Methods of decoloration of textile wastewaters. Dyes Pigments 37:335–356CrossRefGoogle Scholar
  139. Sponza DT, Isik M (2004) Decolorization and inhibition kinetic of Direct Black 38 azo dye with granulated anaerobic sludge. Enzym Microb Technol 34:147–158CrossRefGoogle Scholar
  140. Stolz A (2001) Basic and applied aspects in the microbial degradation of azo dyes. Appl Microbiol Biotechnol 56:69–80CrossRefGoogle Scholar
  141. Sudhakar P, Palaniappan R, Gowrie, Shankar R (2002) Degradation of azodye (Black-E) by an indigenous bacterium Pseudomonas sp., BSP-4. Asian J Microbiol Biotechnol Environ 2:203–208Google Scholar
  142. Vineta S (2014) Methods for waste waters treatment in textile industry. International Scientific Conference, Gabrovo, 21–22 NovemberGoogle Scholar
  143. Wang J, Zhao FJ, Meharg AA et al (2002) Mechanisms of arsenic hyperaccumulation in Pteris vittata. Uptake kinetics, interactions with phosphate and arsenic speciation1. Plant Physiol 130:1552–1561CrossRefGoogle Scholar
  144. Wei L, Luo CL, Li XD et al (2008) Copper accumulation and tolerance in Chrysanthemum coronarium L and Sorghum sudanense L. Arch Environ Contam Toxicol 55:238–246CrossRefGoogle Scholar
  145. Wenzel WW, Bunkowski M, Puschenreiter M et al (2003) Rhizosphere characteristics of indigenously growing nickel hyperaccumulator and excluder plants on serpentine soil. Environ Pollut 123:131–138CrossRefGoogle Scholar
  146. Wesenberg D, Buchon F, Agathos SN (2002) Degradation of dyecontaining textile effluent by the agaric white-rot fungus Clitocybula dusenii. Biotechnol Lett 24:989–993CrossRefGoogle Scholar
  147. Yesiladali SK, Pekin G, Bermek H et al (2006) Bioremediation of textile azo dyes by Trichophyton rubrum LSK-27. World J Microbiol Biotechnol 22:1027–1031CrossRefGoogle Scholar
  148. Yu L, Li WW, Lam MH et al (2012) Isolation and characterization of a Klebsiella oxytoca strain for simultaneous azo-dye anaerobic reduction and bio-hydrogen production. Appl Microbiol Biotechnol 95:255–262CrossRefGoogle Scholar
  149. Zhao X, Hardin IR (2007) HPLC and Spectrophotometric analysis of biodegradation of azo dyes by Pleurotus ostreatus. Dyes Pigments 73:322–325CrossRefGoogle Scholar
  150. Zhiqiang C, Wenjie Z, Jiangtao M (2015) Biodegradation of azo dye Disperse Orange S-RL by a newly isolated strain Acinetobacter sp. SRL8. Water Environ Res 87:516–523CrossRefGoogle Scholar
  151. Zhuo R, Ma L, Fan F et al (2011) Decolorization of different dyes by a newly isolated white-rot fungi strain Ganoderma sp. En3 and cloning and functional analysis of its laccase gene. J Hazard Mater 192:855–873CrossRefGoogle Scholar
  152. Zollinger H (1987) Color chemistry-synthesis, properties and application of organic dyes and pigment. VCH Publishers, New York, pp 92–102Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Rajat Pratap Singh
    • 1
  • Pradeep Kumar Singh
    • 2
  • Rasna Gupta
    • 2
  • Ram Lakhan Singh
    • 2
  1. 1.Department of BiotechnologyDr. Rammanohar Lohia Avadh UniversityFaizabadIndia
  2. 2.Department of BiochemistryDr. Rammanohar Lohia Avadh UniversityFaizabadIndia

Personalised recommendations