Inflammation, Oxidative Stress, and Cerebral Stroke: Basic Principles

  • Shashi Kant TiwariEmail author
  • Priyanka Mishra
  • Tripathi Rajavashisth


Cerebral stroke has assorted causes, disrupting the cerebral blood flow and subsequently damaging the brain tissues in affected areas. Stroke is the third primary cause of death and disability in adults around the globe. In approximately 25–40% of cerebral stroke patients, the neurological signs are initiated during the early hours. The mechanism involved in the pathophysiology of cerebral stroke are oxidative stress and inflammation. Oxidative stress takes place when there is an impairment to the balance of antioxidant generation with reactive oxygen species (ROS) and other free radicals/oxidants. The brain is extremely vulnerable to oxidative stress owing to the high consumption of body oxygen to produce energy and free radicals, which may cause damage to the main cellular components, such as lipids, proteins, and DNA, and contributing to late-stage apoptosis and inflammation. Inflammation plays significant role in the pathogenesis of cerebral stroke and associated brain damage. Experimentally and clinically, ischemic brain injury takes place because of the initiation of severe and extended inflammatory progression. These processes include activation of brain microglial cells, production of pro-inflammatory mediators (cytokines and chemokines), and infiltration of numerous inflammatory cells such as neutrophils, T-cells, monocyte/macrophages, and natural killer cells into the ischemic brain regions, which initiates neuronal injuries and cell death mechanisms. In this chapter, we focus on the cellular and molecular evidence for oxidative stress and inflammation in cerebral stroke. In addition, we highlight certain current findings and knowledge of the neuroprotective strategies that target oxidative stress/inflammation and their implications in the pathogenesis of cerebral stroke.


Antioxidants Inflammation Reactive oxygen species Ischemic stroke Cerebral stroke Reactive nitrogen species Oxidative stress 



Blood–brain barrier


Nitric oxide


Reactive nitrogen species


Reactive oxygen species


Superoxide dismutase


Tumor necrosis factor


  1. 1.
    Donnan, G. A., Fisher, M., Macleod, M., & Davis, S. M. (2008). Stroke. Lancet, 371(9624), 1612–1623.CrossRefGoogle Scholar
  2. 2.
    Lo, E. H., Dalkara, T., & Moskowitz, M. A. (2003). Mechanisms, challenges and opportunities in stroke. Nature Reviews. Neuroscience, 4(5), 399–415.CrossRefGoogle Scholar
  3. 3.
    Kriz, J., & Lalancette-Hebert, M. (2009). Inflammation, plasticity and real-time imaging after cerebral ischemia. Acta Neuropathologica, 117(5), 497–509.CrossRefGoogle Scholar
  4. 4.
    Lakhan, S. E., Kirchgessner, A., & Hofer, M. (2009). Inflammatory mechanisms in ischemic stroke: Therapeutic approaches. Journal of Translational Medicine, 7, 97.CrossRefGoogle Scholar
  5. 5.
    Dirnagl, U., Iadecola, C., & Moskowitz, M. A. (1999). Pathobiology of ischaemic stroke: An integrated view. Trends in Neurosciences, 22(9), 391–397.CrossRefGoogle Scholar
  6. 6.
    Kim, Y., Davidson, J. O., Green, C. R., Nicholson, L. F., O’’Carroll, S. J., & Zhang, J. (2017). Connexins and pannexins in cerebral ischemia. Biochimica et Biophysica Acta, 1860(1), 224–236.Google Scholar
  7. 7.
    Muir, K. W., Tyrrell, P., Sattar, N., & Warburton, E. (2007). Inflammation and ischaemic stroke. Current Opinion in Neurology, 20(3), 334–342.CrossRefGoogle Scholar
  8. 8.
    Yilmaz, G., & Granger, D. N. (2008). Cell adhesion molecules and ischemic stroke. Neurological Research, 30(8), 783–793.CrossRefGoogle Scholar
  9. 9.
    Emsley, H. C., & Hopkins, S. J. (2008). Acute ischaemic stroke and infection: Recent and emerging concepts. Lancet Neurology, 7(4), 341–353.CrossRefGoogle Scholar
  10. 10.
    McColl, B. W., Allan, S. M., & Rothwell, N. J. (2009). Systemic infection, inflammation and acute ischemic stroke. Neuroscience, 158(3), 1049–1061.CrossRefGoogle Scholar
  11. 11.
    Baird, T. A., Parsons, M. W., Barber, P. A., Butcher, K. S., Desmond, P. M., Tress, B. M., Colman, P. G., Jerums, G., Chambers, B. R., & Davis, S. M. (2002). The influence of diabetes mellitus and hyperglycaemia on stroke incidence and outcome. Journal of Clinical Neuroscience, 9(6), 618–626.CrossRefGoogle Scholar
  12. 12.
    Elkind, M. S., Cheng, J., Rundek, T., Boden-Albala, B., & Sacco, R. L. (2004). Leukocyte count predicts outcome after ischemic stroke: The Northern Manhattan Stroke Study. Journal of Stroke and Cerebrovascular Diseases, 13(5), 220–227.CrossRefGoogle Scholar
  13. 13.
    McColl, B. W., Rothwell, N. J., & Allan, S. M. (2007). Systemic inflammatory stimulus potentiates the acute phase and CXC chemokine responses to experimental stroke and exacerbates brain damage via interleukin-1- and neutrophil-dependent mechanisms. The Journal of Neuroscience, 27(16), 4403–4412.CrossRefGoogle Scholar
  14. 14.
    Amantea, D., Nappi, G., Bernardi, G., Bagetta, G., & Corasaniti, M. T. (2009). Post-ischemic brain damage: Pathophysiology and role of inflammatory mediators. The FEBS Journal, 276(1), 13–26.CrossRefGoogle Scholar
  15. 15.
    Kriz, J. (2006). Inflammation in ischemic brain injury: Timing is important. Critical Reviews in Neurobiology, 18(1–2), 145–157.CrossRefGoogle Scholar
  16. 16.
    Schilling, M., Besselmann, M., Leonhard, C., Mueller, M., Ringelstein, E. B., & Kiefer, R. (2003). Microglial activation precedes and predominates over macrophage infiltration in transient focal cerebral ischemia: A study in green fluorescent protein transgenic bone marrow chimeric mice. Experimental Neurology, 183(1), 25–33.CrossRefGoogle Scholar
  17. 17.
    Tanaka, R., Komine-Kobayashi, M., Mochizuki, H., Yamada, M., Furuya, T., Migita, M., Shimada, T., Mizuno, Y., & Urabe, T. (2003). Migration of enhanced green fluorescent protein expressing bone marrow-derived microglia/macrophage into the mouse brain following permanent focal ischemia. Neuroscience, 117(3), 531–539.CrossRefGoogle Scholar
  18. 18.
    Buck, B. H., Liebeskind, D. S., Saver, J. L., Bang, O. Y., Yun, S. W., Starkman, S., Ali, L. K., Kim, D., Villablanca, J. P., Salamon, N., Razinia, T., & Ovbiagele, B. (2008). Early neutrophilia is associated with volume of ischemic tissue in acute stroke. Stroke, 39(2), 355–360.CrossRefGoogle Scholar
  19. 19.
    Gerhard, A., Neumaier, B., Elitok, E., Glatting, G., Ries, V., Tomczak, R., Ludolph, A. C., & Reske, S. N. (2000). In vivo imaging of activated microglia using [11C]PK11195 and positron emission tomography in patients after ischemic stroke. Neuroreport, 11(13), 2957–2960.CrossRefGoogle Scholar
  20. 20.
    Lindsberg, P. J., Carpen, O., Paetau, A., Karjalainen-Lindsberg, M. L., & Kaste, M. (1996). Endothelial ICAM-1 expression associated with inflammatory cell response in human ischemic stroke. Circulation, 94(5), 939–945.CrossRefGoogle Scholar
  21. 21.
    Price, C. J., Menon, D. K., Peters, A. M., Ballinger, J. R., Barber, R. W., Balan, K. K., Lynch, A., Xuereb, J. H., Fryer, T., Guadagno, J. V., & Warburton, E. A. (2004). Cerebral neutrophil recruitment, histology, and outcome in acute ischemic stroke: An imaging-based study. Stroke, 35(7), 1659–1664.CrossRefGoogle Scholar
  22. 22.
    Vidale, S., Consoli, A., Arnaboldi, M., & Consoli, D. (2017). Postischemic inflammation in acute stroke. Journal of Clinical Neurology, 13(1), 1–9.CrossRefGoogle Scholar
  23. 23.
    Zhu, Y., Yang, G. Y., Ahlemeyer, B., Pang, L., Che, X. M., Culmsee, C., Klumpp, S., & Krieglstein, J. (2002). Transforming growth factor-beta 1 increases bad phosphorylation and protects neurons against damage. The Journal of Neuroscience, 22(10), 3898–3909.CrossRefGoogle Scholar
  24. 24.
    Bonaventura, A., Liberale, L., Vecchie, A., Casula, M., Carbone, F., Dallegri, F., & Montecucco, F. (2016). Update on inflammatory biomarkers and treatments in ischemic stroke. International Journal of Molecular Sciences, 17(12).Google Scholar
  25. 25.
    Barone, F. C., & Feuerstein, G. Z. (1999). Inflammatory mediators and stroke: New opportunities for novel therapeutics. Journal of Cerebral Blood Flow and Metabolism, 19(8), 819–834.CrossRefGoogle Scholar
  26. 26.
    Ferrarese, C., Mascarucci, P., Zoia, C., Cavarretta, R., Frigo, M., Begni, B., Sarinella, F., Frattola, L., & De Simoni, M. G. (1999). Increased cytokine release from peripheral blood cells after acute stroke. Journal of Cerebral Blood Flow and Metabolism, 19(9), 1004–1009.CrossRefGoogle Scholar
  27. 27.
    Lucas, S. M., Rothwell, N. J., & Gibson, R. M. (2006). The role of inflammation in CNS injury and disease. British Journal of Pharmacology, 147(Suppl 1), S232–S240.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Spera, P. A., Ellison, J. A., Feuerstein, G. Z., & Barone, F. C. (1998). IL-10 reduces rat brain injury following focal stroke. Neuroscience Letters, 251(3), 189–192.CrossRefGoogle Scholar
  29. 29.
    Swanson, R. A., Ying, W., & Kauppinen, T. M. (2004). Astrocyte influences on ischemic neuronal death. Current Molecular Medicine, 4(2), 193–205.CrossRefGoogle Scholar
  30. 30.
    Kim, J. S., Gautam, S. C., Chopp, M., Zaloga, C., Jones, M. L., Ward, P. A., & Welch, K. M. (1995). Expression of monocyte chemoattractant protein-1 and macrophage inflammatory protein-1 after focal cerebral ischemia in the rat. Journal of Neuroimmunology, 56(2), 127–134.CrossRefGoogle Scholar
  31. 31.
    Dimitrijevic, O. B., Stamatovic, S. M., Keep, R. F., & Andjelkovic, A. V. (2007). Absence of the chemokine receptor CCR2 protects against cerebral ischemia/reperfusion injury in mice. Stroke, 38(4), 1345–1353.CrossRefGoogle Scholar
  32. 32.
    Hughes, P. M., Allegrini, P. R., Rudin, M., Perry, V. H., Mir, A. K., & Wiessner, C. (2002). Monocyte chemoattractant protein-1 deficiency is protective in a murine stroke model. Journal of Cerebral Blood Flow and Metabolism, 22(3), 308–317.CrossRefGoogle Scholar
  33. 33.
    Soriano, S. G., Amaravadi, L. S., Wang, Y. F., Zhou, H., Yu, G. X., Tonra, J. R., Fairchild-Huntress, V., Fang, Q., Dunmore, J. H., Huszar, D., & Pan, Y. (2002). Mice deficient in fractalkine are less susceptible to cerebral ischemia-reperfusion injury. Journal of Neuroimmunology, 125(1–2), 59–65.CrossRefGoogle Scholar
  34. 34.
    Coyle, J. T., & Puttfarcken, P. (1993). Oxidative stress, glutamate, and neurodegenerative disorders. Science, 262(5134), 689–695.CrossRefGoogle Scholar
  35. 35.
    Cuzzocrea, S., Riley, D. P., Caputi, A. P., & Salvemini, D. (2001). Antioxidant therapy: A new pharmacological approach in shock, inflammation, and ischemia/reperfusion injury. Pharmacological Reviews, 53(1), 135–159.PubMedGoogle Scholar
  36. 36.
    Allen, C. L., & Bayraktutan, U. (2009). Oxidative stress and its role in the pathogenesis of ischaemic stroke. International Journal of Stroke, 4(6), 461–470.CrossRefGoogle Scholar
  37. 37.
    Davis, S. M., & Pennypacker, K. R. (2017). Targeting antioxidant enzyme expression as a therapeutic strategy for ischemic stroke. Neurochemistry International, 107, 23–32.CrossRefGoogle Scholar
  38. 38.
    Yamagata, K., Ichinose, S., Miyashita, A., & Tagami, M. (2008). Protective effects of ebselen, a seleno-organic antioxidant on neurodegeneration induced by hypoxia and reperfusion in stroke-prone spontaneously hypertensive rat. Neuroscience, 153(2), 428–435.CrossRefGoogle Scholar
  39. 39.
    Ozkan, O. V., Yuzbasioglu, M. F., Ciralik, H., Kurutas, E. B., Yonden, Z., Aydin, M., Bulbuloglu, E., Semerci, E., Goksu, M., Atli, Y., Bakan, V., & Duran, N. (2009). Resveratrol, a natural antioxidant, attenuates intestinal ischemia/reperfusion injury in rats. The Tohoku Journal of Experimental Medicine, 218(3), 251–258.CrossRefGoogle Scholar
  40. 40.
    Duan, X., Wen, Z., Shen, H., Shen, M., & Chen, G. (2016). Intracerebral hemorrhage, oxidative stress, and antioxidant therapy. Oxidative Medicine and Cellular Longevity, 2016, 1203285.CrossRefGoogle Scholar
  41. 41.
    Zhao, H., Han, Z., Ji, X., & Luo, Y. (2016). Epigenetic regulation of oxidative stress in ischemic stroke. Aging and Disease, 7(3), 295–306.CrossRefGoogle Scholar
  42. 42.
    Zhao, S. C., Ma, L. S., Chu, Z. H., Xu, H., Wu, W. Q., & Liu, F. (2017). Regulation of microglial activation in stroke. Acta Pharmacologica Sinica, 38(4), 445–458.CrossRefGoogle Scholar
  43. 43.
    Duris, K., Lipkova, J., & Jurajda, M. (2017). Cholinergic anti-inflammatory pathway and stroke. Current Drug Delivery, 14(4), 449–457.CrossRefGoogle Scholar
  44. 44.
    Chen, C., Chu, S. F., Liu, D. D., Zhang, Z., Kong, L. L., Zhou, X., & Chen, N. H. (2018). Chemokines play complex roles in cerebral ischemia. Neurochemistry International, 112, 146–158.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Shashi Kant Tiwari
    • 1
    Email author
  • Priyanka Mishra
    • 2
  • Tripathi Rajavashisth
    • 3
  1. 1.Department of PediatricsUniversity of CaliforniaSan DiegoUSA
  2. 2.Department of NeurosciencesUniversity of CaliforniaSan DiegoUSA
  3. 3.Molecular Biology Unit, Institute of Medical SciencesBanaras Hindu UniversityVaranasiIndia

Personalised recommendations