Advertisement

Muscle Atrophy pp 605-624 | Cite as

Muscle Atrophy: Present and Future

  • Richard Y. Cao
  • Jin Li
  • Qiying Dai
  • Qing Li
  • Jian Yang
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1088)

Abstract

Muscle atrophy is the loss of muscle mass and strength, and it occurs in many diseases, such as cancer, AIDS (acquired immunodeficiency syndrome), congestive heart failure, COPD (chronic obstructive pulmonary disease), renal failure, and severe burns. Muscle atrophy accompanied by cachexia worsens patient’s life quality and increases morbidity and mortality. To date there is no effective treatment on that. Here we summarize the diagnosis methods and cellular mechanisms of muscle atrophy. We also discuss the current strategies in muscle atrophy treatment and highlight the potential treatment strategies to resist muscle atrophy.

Keywords

Muscle atrophy Present Future 

Notes

Competing Financial Interests

The authors declare no competing financial interests.

References

  1. 1.
    Andres-Mateos E, Brinkmeier H, Burks TN, Mejias R, Files DC, Steinberger M, Soleimani A, Marx R, Simmers JL, Lin B, Finanger Hedderick E, Marr TG, Lin BM, Hourde C, Leinwand LA, Kuhl D, Foller M, Vogelsang S, Hernandez-Diaz I, Vaughan DK, Alvarez de la Rosa D, Lang F, Cohn RD (2013) Activation of serum/glucocorticoid-induced kinase 1 (SGK1) is important to maintain skeletal muscle homeostasis and prevent atrophy. EMBO Mol Med 5(1):80–91.  https://doi.org/10.1002/emmm.201201443 CrossRefPubMedGoogle Scholar
  2. 2.
    Bodine SC, Latres E, Baumhueter S, Lai VK, Nunez L, Clarke BA, Poueymirou WT, Panaro FJ, Na E, Dharmarajan K, Pan ZQ, Valenzuela DM, DeChiara TM, Stitt TN, Yancopoulos GD, Glass DJ (2001) Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 294(5547):1704–1708.  https://doi.org/10.1126/science.1065874 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Dupont-Versteegden EE (2005) Apoptosis in muscle atrophy: relevance to sarcopenia. Exp Gerontol 40(6):473–481.  https://doi.org/10.1016/j.exger.2005.04.003 CrossRefPubMedGoogle Scholar
  4. 4.
    Dutt V, Gupta S, Dabur R, Injeti E, Mittal A (2015) Skeletal muscle atrophy: potential therapeutic agents and their mechanisms of action. Pharmacol Res 99:86–100.  https://doi.org/10.1016/j.phrs.2015.05.010 CrossRefPubMedGoogle Scholar
  5. 5.
    Dodson S, Baracos VE, Jatoi A, Evans WJ, Cella D, Dalton JT, Steiner MS (2011) Muscle wasting in cancer cachexia: clinical implications, diagnosis, and emerging treatment strategies. Annu Rev Med 62:265–279.  https://doi.org/10.1146/annurev-med-061509-131248 CrossRefPubMedGoogle Scholar
  6. 6.
    Kim TN, Choi KM (2013) Sarcopenia: definition, epidemiology, and pathophysiology. J Bone Metab 20(1):1–10.  https://doi.org/10.11005/jbm.2013.20.1.1 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Belli T, de Macedo DV, Scariot PPM, de Araujo GG, Dos Reis IGM, Lazarim FL, Nunes LAS, Brenzikofer R, Gobatto CA (2017) Glycemic control and muscle damage in 3 athletes with type 1 diabetes during a successful performance in a relay ultramarathon: a case report. Wilderness Environ Med 28(3):239–245.  https://doi.org/10.1016/j.wem.2017.04.005 CrossRefPubMedGoogle Scholar
  8. 8.
    Oopik V, Paasuke M, Timpmann S, Medijainen L, Ereline J, Smirnova T (1998) Effect of creatine supplementation during rapid body mass reduction on metabolism and isokinetic muscle performance capacity. Eur J Appl Physiol Occup Physiol 78(1):83–92.  https://doi.org/10.1007/s004210050391 CrossRefPubMedGoogle Scholar
  9. 9.
    Wang F, Wang J, He J, Li W, Li J, Chen S, Zhang P, Liu H, Chen X (2017) Serum miRNAs miR-23a, 206, and 499 as potential biomarkers for skeletal muscle atrophy. Biomed Res Int 2017:8361237.  https://doi.org/10.1155/2017/8361237 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Drummond MJ, McCarthy JJ, Sinha M, Spratt HM, Volpi E, Esser KA, Rasmussen BB (2011) Aging and microRNA expression in human skeletal muscle: a microarray and bioinformatics analysis. Physiol Genomics 43(10):595–603.  https://doi.org/10.1152/physiolgenomics.00148.2010 CrossRefPubMedGoogle Scholar
  11. 11.
    Lee KP, Shin YJ, Panda AC, Abdelmohsen K, Kim JY, Lee SM, Bahn YJ, Choi JY, Kwon ES, Baek SJ, Kim SY, Gorospe M, Kwon KS (2015) miR-431 promotes differentiation and regeneration of old skeletal muscle by targeting Smad4. Genes Dev 29(15):1605–1617.  https://doi.org/10.1101/gad.263574.115 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Soares RJ, Cagnin S, Chemello F, Silvestrin M, Musaro A, De Pitta C, Lanfranchi G, Sandri M (2014) Involvement of microRNAs in the regulation of muscle wasting during catabolic conditions. J Biol Chem 289(32):21909–21925.  https://doi.org/10.1074/jbc.M114.561845 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Kukreti H, Amuthavalli K, Harikumar A, Sathiyamoorthy S, Feng PZ, Anantharaj R, Tan SL, Lokireddy S, Bonala S, Sriram S, McFarlane C, Kambadur R, Sharma M (2013) Muscle-specific microRNA1 (miR1) targets heat shock protein 70 (HSP70) during dexamethasone-mediated atrophy. J Biol Chem 288(9):6663–6678.  https://doi.org/10.1074/jbc.M112.390369 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Rau CS, Jeng JC, Jeng SF, Lu TH, Chen YC, Liliang PC, Wu CJ, Lin CJ, Hsieh CH (2010) Entrapment neuropathy results in different microRNA expression patterns from denervation injury in rats. BMC Musculoskelet Disord 11:181.  https://doi.org/10.1186/1471-2474-11-181 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Russell AP, Wallace MA, Kalanon M, Zacharewicz E, Della Gatta PA, Garnham A, Lamon S (2017) Striated muscle activator of Rho signalling (STARS) is reduced in ageing human skeletal muscle and targeted by miR-628-5p. Acta Physiol (Oxf) 220(2):263–274.  https://doi.org/10.1111/apha.12819 CrossRefGoogle Scholar
  16. 16.
    Zhang SZ, Cai L, Li B (2017) MEG3 long non-coding RNA prevents cell growth and metastasis of osteosarcoma. Bratisl Lek Listy 118(10):632–636.  https://doi.org/10.4149/BLL_2017_121 CrossRefPubMedGoogle Scholar
  17. 17.
    He C, Zheng S, Luo Y, Wang B (2018) Exosome theranostics: biology and translational medicine. Theranostics 8(1):237–255.  https://doi.org/10.7150/thno.21945 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Hudson MB, Woodworth-Hobbs ME, Zheng B, Rahnert JA, Blount MA, Gooch JL, Searles CD, Price SR (2014) miR-23a is decreased during muscle atrophy by a mechanism that includes calcineurin signaling and exosome-mediated export. Am J Physiol Cell Physiol 306(6):C551–C558.  https://doi.org/10.1152/ajpcell.00266.2013 CrossRefPubMedGoogle Scholar
  19. 19.
    Marinho R, Alcantara PSM, Ottoch JP, Seelaender M (2017) Role of exosomal MicroRNAs and myomiRs in the development of cancer cachexia-associated muscle wasting. Front Nutr 4:69.  https://doi.org/10.3389/fnut.2017.00069 CrossRefPubMedGoogle Scholar
  20. 20.
    Koutsoulidou A, Photiades M, Kyriakides TC, Georgiou K, Prokopi M, Kapnisis K, Lusakowska A, Nearchou M, Christou Y, Papadimas GK, Anayiotos A, Kyriakou K, Kararizou E, Zamba Papanicolaou E, Phylactou LA (2017) Identification of exosomal muscle-specific miRNAs in serum of myotonic dystrophy patients relating to muscle disease progress. Hum Mol Genet 26(17):3285–3302.  https://doi.org/10.1093/hmg/ddx212 CrossRefPubMedGoogle Scholar
  21. 21.
    Colombo M, Raposo G, Thery C (2014) Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 30:255–289.  https://doi.org/10.1146/annurev-cellbio-101512-122326 CrossRefPubMedGoogle Scholar
  22. 22.
    Popovic D, Vucic D, Dikic I (2014) Ubiquitination in disease pathogenesis and treatment. Nat Med 20(11):1242–1253.  https://doi.org/10.1038/nm.3739 CrossRefPubMedGoogle Scholar
  23. 23.
    Bodine SC, Baehr LM (2014) Skeletal muscle atrophy and the E3 ubiquitin ligases MuRF1 and MAFbx/atrogin-1. Am J Physiol Endocrinol Metab 307(6):E469–E484.  https://doi.org/10.1152/ajpendo.00204.2014 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Cohen S, Zhai B, Gygi SP, Goldberg AL (2012) Ubiquitylation by Trim32 causes coupled loss of desmin, Z-bands, and thin filaments in muscle atrophy. J Cell Biol 198(4):575–589.  https://doi.org/10.1083/jcb.201110067 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Bilodeau PA, Coyne ES, Wing SS (2016) The ubiquitin proteasome system in atrophying skeletal muscle: roles and regulation. Am J Physiol Cell Physiol 311(3):C392–C403.  https://doi.org/10.1152/ajpcell.00125.2016 CrossRefPubMedGoogle Scholar
  26. 26.
    Cohen S, Nathan JA, Goldberg AL (2015) Muscle wasting in disease: molecular mechanisms and promising therapies. Nat Rev Drug Discov 14(1):58–74.  https://doi.org/10.1038/nrd4467 CrossRefPubMedGoogle Scholar
  27. 27.
    Rommel C, Bodine SC, Clarke BA, Rossman R, Nunez L, Stitt TN, Yancopoulos GD, Glass DJ (2001) Mediation of IGF-1-induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways. Nat Cell Biol 3(11):1009–1013.  https://doi.org/10.1038/ncb1101-1009 CrossRefPubMedGoogle Scholar
  28. 28.
    Palus S, von Haehling S, Springer J (2014) Muscle wasting: an overview of recent developments in basic research. Int J Cardiol 176(3):640–644.  https://doi.org/10.1016/j.ijcard.2014.08.086 CrossRefPubMedGoogle Scholar
  29. 29.
    Ruegg MA, Glass DJ (2011) Molecular mechanisms and treatment options for muscle wasting diseases. Annu Rev Pharmacol Toxicol 51:373–395.  https://doi.org/10.1146/annurev-pharmtox-010510-100537 CrossRefPubMedGoogle Scholar
  30. 30.
    Haddad F, Zaldivar F, Cooper DM (1985) Adams GR (2005) IL-6-induced skeletal muscle atrophy. J Appl Physiol 98(3):911–917.  https://doi.org/10.1152/japplphysiol.01026.2004 CrossRefGoogle Scholar
  31. 31.
    Washington TA, White JP, Davis JM, Wilson LB, Lowe LL, Sato S, Carson JA (2011) Skeletal muscle mass recovery from atrophy in IL-6 knockout mice. Acta Physiol (Oxf) 202(4):657–669.  https://doi.org/10.1111/j.1748-1716.2011.02281.x CrossRefPubMedCentralGoogle Scholar
  32. 32.
    Toth KG, McKay BR, De Lisio M, Little JP, Tarnopolsky MA, Parise G (2011) IL-6 induced STAT3 signalling is associated with the proliferation of human muscle satellite cells following acute muscle damage. PLoS One 6(3):e17392.  https://doi.org/10.1371/journal.pone.0017392 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Cai D, Frantz JD, Tawa NE Jr, Melendez PA, Oh BC, Lidov HG, Hasselgren PO, Frontera WR, Lee J, Glass DJ, Shoelson SE (2004) IKKbeta/NF-kappaB activation causes severe muscle wasting in mice. Cell 119(2):285–298.  https://doi.org/10.1016/j.cell.2004.09.027 CrossRefGoogle Scholar
  34. 34.
    McCroskery S, Thomas M, Maxwell L, Sharma M, Kambadur R (2003) Myostatin negatively regulates satellite cell activation and self-renewal. J Cell Biol 162(6):1135–1147.  https://doi.org/10.1083/jcb.200207056 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Wagner KR, Liu X, Chang X, Allen RE (2005) Muscle regeneration in the prolonged absence of myostatin. Proc Natl Acad Sci U S A 102(7):2519–2524.  https://doi.org/10.1073/pnas.0408729102 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Hittel DS, Axelson M, Sarna N, Shearer J, Huffman KM, Kraus WE (2010) Myostatin decreases with aerobic exercise and associates with insulin resistance. Med Sci Sports Exerc 42(11):2023–2029.  https://doi.org/10.1249/MSS.0b013e3181e0b9a8 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Watts R, McAinch AJ, Dixon JB, O’Brien PE, Cameron-Smith D (2013) Increased Smad signaling and reduced MRF expression in skeletal muscle from obese subjects. Obesity (Silver Spring) 21(3):525–528.  https://doi.org/10.1002/oby.20070 CrossRefGoogle Scholar
  38. 38.
    Sigmund M, Jakob H, Becker H, Hanrath P, Schumacher C, Eschenhagen T, Schmitz W, Scholz H, Steinfath M (1996) Effects of metoprolol on myocardial beta-adrenoceptors and Gi alpha-proteins in patients with congestive heart failure. Eur J Clin Pharmacol 51(2):127–132CrossRefGoogle Scholar
  39. 39.
    Ponicke K, Heinroth-Hoffmann I, Brodde OE (2003) Role of beta 1- and beta 2-adrenoceptors in hypertrophic and apoptotic effects of noradrenaline and adrenaline in adult rat ventricular cardiomyocytes. Naunyn Schmiedeberg's Arch Pharmacol 367(6):592–599.  https://doi.org/10.1007/s00210-003-0754-z CrossRefGoogle Scholar
  40. 40.
    Voltarelli VA, Bechara LR, Bacurau AV, Mattos KC, Dourado PM, Bueno CR Jr, Casarini DE, Negrao CE, Brum PC (2014) Lack of beta2 -adrenoceptors aggravates heart failure-induced skeletal muscle myopathy in mice. J Cell Mol Med 18(6):1087–1097.  https://doi.org/10.1111/jcmm.12253 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Shimamoto S, Ijiri D, Kawaguchi M, Nakashima K, Tada O, Inoue H, Ohtsuka A (2017) beta1- and beta2-adrenergic receptor stimulation differ in their effects on PGC-1alpha and atrogin-1/MAFbx gene expression in chick skeletal muscle. Comp Biochem Physiol A Mol Integr Physiol 211:1–6.  https://doi.org/10.1016/j.cbpa.2017.05.013 CrossRefPubMedGoogle Scholar
  42. 42.
    Simionescu-Bankston A, Kumar A (2016) Noncoding RNAs in the regulation of skeletal muscle biology in health and disease. J Mol Med (Berl) 94(8):853–866.  https://doi.org/10.1007/s00109-016-1443-y CrossRefGoogle Scholar
  43. 43.
    Jung HJ, Lee KP, Milholland B, Shin YJ, Kang JS, Kwon KS, Suh Y (2017) Comprehensive miRNA profiling of skeletal muscle and serum in induced and normal mouse muscle atrophy during aging. J Gerontol A Biol Sci Med Sci 72(11):1483–1491.  https://doi.org/10.1093/gerona/glx025 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Kovanda A, Rezen T, Rogelj B (2014) MicroRNA in skeletal muscle development, growth, atrophy, and disease. Wiley Interdiscip Rev RNA 5(4):509–525.  https://doi.org/10.1002/wrna.1227 CrossRefPubMedGoogle Scholar
  45. 45.
    Swaminathan V, Reddy BA, Ruthrotha Selvi B, Sukanya MS, Kundu TK (2007) Small molecule modulators in epigenetics: implications in gene expression and therapeutics. Subcell Biochem 41:397–428PubMedGoogle Scholar
  46. 46.
    Fan J, Kou X, Jia S, Yang X, Yang Y, Chen N (2016) Autophagy as a potential target for sarcopenia. J Cell Physiol 231(7):1450–1459.  https://doi.org/10.1002/jcp.25260 CrossRefPubMedGoogle Scholar
  47. 47.
    Martinez-Lopez N, Tarabra E, Toledo M, Garcia-Macia M, Sahu S, Coletto L, Batista-Gonzalez A, Barzilai N, Pessin JE, Schwartz GJ, Kersten S, Singh R (2017) System-wide benefits of intermeal fasting by autophagy. Cell Metab 26(6):856–871 e855.  https://doi.org/10.1016/j.cmet.2017.09.020 CrossRefPubMedGoogle Scholar
  48. 48.
    Baracos VE (2001) Management of muscle wasting in cancer-associated cachexia: understanding gained from experimental studies. Cancer 92(6 Suppl):1669–1677CrossRefGoogle Scholar
  49. 49.
    Klein S, Kinney J, Jeejeebhoy K, Alpers D, Hellerstein M, Murray M, Twomey P (1997) Nutrition support in clinical practice: review of published data and recommendations for future research directions. Summary of a conference sponsored by the National Institutes of Health, American Society for Parenteral and Enteral Nutrition, and American Society for Clinical Nutrition. Am J Clin Nutr 66(3):683–706CrossRefGoogle Scholar
  50. 50.
    von Haehling S, Ebner N, Dos Santos MR, Springer J, Anker SD (2017) Muscle wasting and cachexia in heart failure: mechanisms and therapies. Nat Rev Cardiol 14(6):323–341.  https://doi.org/10.1038/nrcardio.2017.51 CrossRefGoogle Scholar
  51. 51.
    Valenzuela RE, Ponce JA, Morales-Figueroa GG, Muro KA, Carreon VR, Aleman-Mateo H (2013) Insufficient amounts and inadequate distribution of dietary protein intake in apparently healthy older adults in a developing country: implications for dietary strategies to prevent sarcopenia. Clin Interv Aging 8:1143–1148.  https://doi.org/10.2147/CIA.S49810 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Aquilani R, Opasich C, Gualco A, Verri M, Testa A, Pasini E, Viglio S, Iadarola P, Pastoris O, Dossena M, Boschi F (2008) Adequate energy-protein intake is not enough to improve nutritional and metabolic status in muscle-depleted patients with chronic heart failure. Eur J Heart Fail 10(11):1127–1135.  https://doi.org/10.1016/j.ejheart.2008.09.002 CrossRefPubMedGoogle Scholar
  53. 53.
    Nakamura A, Osonoi T, Terauchi Y (2010) Relationship between urinary sodium excretion and pioglitazone-induced edema. J Diabetes Investig 1(5):208–211.  https://doi.org/10.1111/j.2040-1124.2010.00046.x CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    May PE, Barber A, D’Olimpio JT, Hourihane A, Abumrad NN (2002) Reversal of cancer-related wasting using oral supplementation with a combination of beta-hydroxy-beta-methylbutyrate, arginine, and glutamine. Am J Surg 183(4):471–479CrossRefGoogle Scholar
  55. 55.
    Clark RH, Feleke G, Din M, Yasmin T, Singh G, Khan FA, Rathmacher JA (2000) Nutritional treatment for acquired immunodeficiency virus-associated wasting using beta-hydroxy beta-methylbutyrate, glutamine, and arginine: a randomized, double-blind, placebo-controlled study. JPEN J Parenter Enteral Nutr 24(3):133–139.  https://doi.org/10.1177/0148607100024003133 CrossRefPubMedGoogle Scholar
  56. 56.
    Hsieh LC, Chien SL, Huang MS, Tseng HF, Chang CK (2006) Anti-inflammatory and anticatabolic effects of short-term beta-hydroxy-beta-methylbutyrate supplementation on chronic obstructive pulmonary disease patients in intensive care unit. Asia Pac J Clin Nutr 15(4):544–550PubMedGoogle Scholar
  57. 57.
    Baier S, Johannsen D, Abumrad N, Rathmacher JA, Nissen S, Flakoll P (2009) Year-long changes in protein metabolism in elderly men and women supplemented with a nutrition cocktail of beta-hydroxy-beta-methylbutyrate (HMB), L-arginine, and L-lysine. JPEN J Parenter Enteral Nutr 33(1):71–82.  https://doi.org/10.1177/0148607108322403 CrossRefPubMedGoogle Scholar
  58. 58.
    Deutz NE, Pereira SL, Hays NP, Oliver JS, Edens NK, Evans CM, Wolfe RR (2013) Effect of beta-hydroxy-beta-methylbutyrate (HMB) on lean body mass during 10 days of bed rest in older adults. Clin Nutr 32(5):704–712.  https://doi.org/10.1016/j.clnu.2013.02.011 CrossRefPubMedGoogle Scholar
  59. 59.
    Alway SE, Pereira SL, Edens NK, Hao Y, Bennett BT (2013) beta-Hydroxy-beta-methylbutyrate (HMB) enhances the proliferation of satellite cells in fast muscles of aged rats during recovery from disuse atrophy. Exp Gerontol 48(9):973–984.  https://doi.org/10.1016/j.exger.2013.06.005 CrossRefPubMedGoogle Scholar
  60. 60.
    Meidenbauer JJ, Ta N, Seyfried TN (2014) Influence of a ketogenic diet, fish-oil, and calorie restriction on plasma metabolites and lipids in C57BL/6J mice. Nutr Metab (Lond) 11:23.  https://doi.org/10.1186/1743-7075-11-23 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Camperi A, Pin F, Costamagna D, Penna F, Menduina ML, Aversa Z, Zimmers T, Verzaro R, Fittipaldi R, Caretti G, Baccino FM, Muscaritoli M, Costelli P (2017) Vitamin D and VDR in cancer cachexia and muscle regeneration. Oncotarget 8(13):21778–21793.  https://doi.org/10.18632/oncotarget.15583 CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Beveridge LA, Ramage L, McMurdo ME, George J, Witham MD (2013) Allopurinol use is associated with greater functional gains in older rehabilitation patients. Age Ageing 42(3):400–404.  https://doi.org/10.1093/ageing/aft046 CrossRefPubMedGoogle Scholar
  63. 63.
    Derbre F, Ferrando B, Gomez-Cabrera MC, Sanchis-Gomar F, Martinez-Bello VE, Olaso-Gonzalez G, Diaz A, Gratas-Delamarche A, Cerda M, Vina J (2012) Inhibition of xanthine oxidase by allopurinol prevents skeletal muscle atrophy: role of p38 MAPKinase and E3 ubiquitin ligases. PLoS One 7(10):e46668.  https://doi.org/10.1371/journal.pone.0046668 CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Garber CE, Blissmer B, Deschenes MR, Franklin BA, Lamonte MJ, Lee IM, Nieman DC, Swain DP, American College of Sports Medicine (2011) American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc 43(7):1334–1359.  https://doi.org/10.1249/MSS.0b013e318213fefb CrossRefPubMedGoogle Scholar
  65. 65.
    McMurray JJ, Adamopoulos S, Anker SD, Auricchio A, Bohm M, Dickstein K, Falk V, Filippatos G, Fonseca C, Gomez-Sanchez MA, Jaarsma T, Kober L, Lip GY, Maggioni AP, Parkhomenko A, Pieske BM, Popescu BA, Ronnevik PK, Rutten FH, Schwitter J, Seferovic P, Stepinska J, Trindade PT, Voors AA, Zannad F, Zeiher A, Task Force for the D, Treatment of A, Chronic Heart Failure of the European Society of C, Bax JJ, Baumgartner H, Ceconi C, Dean V, Deaton C, Fagard R, Funck-Brentano C, Hasdai D, Hoes A, Kirchhof P, Knuuti J, Kolh P, McDonagh T, Moulin C, Popescu BA, Reiner Z, Sechtem U, Sirnes PA, Tendera M, Torbicki A, Vahanian A, Windecker S, McDonagh T, Sechtem U, Bonet LA, Avraamides P, Ben Lamin HA, Brignole M, Coca A, Cowburn P, Dargie H, Elliott P, Flachskampf FA, Guida GF, Hardman S, Iung B, Merkely B, Mueller C, Nanas JN, Nielsen OW, Orn S, Parissis JT, Ponikowski P, Guidelines ESCCfP (2012) ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: the task force for the diagnosis and treatment of acute and chronic heart failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail 14(8):803–869.  https://doi.org/10.1093/eurjhf/hfs105 CrossRefPubMedGoogle Scholar
  66. 66.
    Pietrangelo T, Di Filippo ES, Mancinelli R, Doria C, Rotini A, Fano-Illic G, Fulle S (2015) Low intensity exercise training improves skeletal muscle regeneration potential. Front Physiol 6:399.  https://doi.org/10.3389/fphys.2015.00399 CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Galimov A, Merry TL, Luca E, Rushing EJ, Mizbani A, Turcekova K, Hartung A, Croce CM, Ristow M, Krutzfeldt J (2016) MicroRNA-29a in adult muscle stem cells controls skeletal muscle regeneration during injury and exercise downstream of fibroblast growth factor-2. Stem Cells 34(3):768–780.  https://doi.org/10.1002/stem.2281 CrossRefPubMedGoogle Scholar
  68. 68.
    Hollriegel R, Beck EB, Linke A, Adams V, Mobius-Winkler S, Mangner N, Sandri M, Gielen S, Gutberlet M, Hambrecht R, Schuler G, Erbs S (2013) Anabolic effects of exercise training in patients with advanced chronic heart failure (NYHA IIIb): impact on ubiquitin-protein ligases expression and skeletal muscle size. Int J Cardiol 167(3):975–980.  https://doi.org/10.1016/j.ijcard.2012.03.083 CrossRefPubMedGoogle Scholar
  69. 69.
    Lenk K, Erbs S, Hollriegel R, Beck E, Linke A, Gielen S, Winkler SM, Sandri M, Hambrecht R, Schuler G, Adams V (2012) Exercise training leads to a reduction of elevated myostatin levels in patients with chronic heart failure. Eur J Prev Cardiol 19(3):404–411.  https://doi.org/10.1177/1741826711402735 CrossRefPubMedGoogle Scholar
  70. 70.
    Puppa MJ, White JP, Velazquez KT, Baltgalvis KA, Sato S, Baynes JW, Carson JA (2012) The effect of exercise on IL-6-induced cachexia in the Apc ( Min/+) mouse. J Cachexia Sarcopenia Muscle 3(2):117–137.  https://doi.org/10.1007/s13539-011-0047-1 CrossRefPubMedGoogle Scholar
  71. 71.
    Donatto FF, Neves RX, Rosa FO, Camargo RG, Ribeiro H, Matos-Neto EM, Seelaender M (2013) Resistance exercise modulates lipid plasma profile and cytokine content in the adipose tissue of tumour-bearing rats. Cytokine 61(2):426–432.  https://doi.org/10.1016/j.cyto.2012.10.021 CrossRefPubMedGoogle Scholar
  72. 72.
    Lira FS, Antunes Bde M, Seelaender M, Rosa Neto JC (2015) The therapeutic potential of exercise to treat cachexia. Curr Opin Support Palliat Care 9(4):317–324.  https://doi.org/10.1097/SPC.0000000000000170 CrossRefPubMedGoogle Scholar
  73. 73.
    Pigna E, Berardi E, Aulino P, Rizzuto E, Zampieri S, Carraro U, Kern H, Merigliano S, Gruppo M, Mericskay M, Li Z, Rocchi M, Barone R, Macaluso F, Di Felice V, Adamo S, Coletti D, Moresi V (2016) Aerobic exercise and pharmacological treatments counteract cachexia by modulating autophagy in colon cancer. Sci Rep 6:26991.  https://doi.org/10.1038/srep26991 CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Pin F, Busquets S, Toledo M, Camperi A, Lopez-Soriano FJ, Costelli P, Argiles JM, Penna F (2015) Combination of exercise training and erythropoietin prevents cancer-induced muscle alterations. Oncotarget 6(41):43202–43215.  https://doi.org/10.18632/oncotarget.6439 CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Gordon JN, Trebble TM, Ellis RD, Duncan HD, Johns T, Goggin PM (2005) Thalidomide in the treatment of cancer cachexia: a randomised placebo controlled trial. Gut 54(4):540–545.  https://doi.org/10.1136/gut.2004.047563 CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Belizario JE, Fontes-Oliveira CC, Borges JP, Kashiabara JA, Vannier E (2016) Skeletal muscle wasting and renewal: a pivotal role of myokine IL-6. Springerplus 5:619.  https://doi.org/10.1186/s40064-016-2197-2 CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Mantovani G, Maccio A, Madeddu C, Gramignano G, Lusso MR, Serpe R, Massa E, Astara G, Deiana L (2006) A phase II study with antioxidants, both in the diet and supplemented, pharmaconutritional support, progestagen, and anti-cyclooxygenase-2 showing efficacy and safety in patients with cancer-related anorexia/cachexia and oxidative stress. Cancer Epidemiol Biomark Prev 15(5):1030–1034.  https://doi.org/10.1158/1055-9965.EPI-05-0538 CrossRefGoogle Scholar
  78. 78.
    Garcia JM, Polvino WJ (2009) Pharmacodynamic hormonal effects of anamorelin, a novel oral ghrelin mimetic and growth hormone secretagogue in healthy volunteers. Growth Hormon IGF Res 19(3):267–273.  https://doi.org/10.1016/j.ghir.2008.12.003 CrossRefGoogle Scholar
  79. 79.
    Mantovani G, Maccio A, Madeddu C, Serpe R, Antoni G, Massa E, Dessi M, Panzone F (2010) Phase II nonrandomized study of the efficacy and safety of COX-2 inhibitor celecoxib on patients with cancer cachexia. J Mol Med (Berl) 88(1):85–92.  https://doi.org/10.1007/s00109-009-0547-z CrossRefGoogle Scholar
  80. 80.
    Zhang L, Tang H, Kou Y, Li R, Zheng Y, Wang Q, Zhou X, Jin L (2013) MG132-mediated inhibition of the ubiquitin-proteasome pathway ameliorates cancer cachexia. J Cancer Res Clin Oncol 139(7):1105–1115.  https://doi.org/10.1007/s00432-013-1412-6 CrossRefPubMedGoogle Scholar
  81. 81.
    Benny Klimek ME, Aydogdu T, Link MJ, Pons M, Koniaris LG, Zimmers TA (2010) Acute inhibition of myostatin-family proteins preserves skeletal muscle in mouse models of cancer cachexia. Biochem Biophys Res Commun 391(3):1548–1554.  https://doi.org/10.1016/j.bbrc.2009.12.123 CrossRefPubMedGoogle Scholar
  82. 82.
    Murphy KT, Chee A, Gleeson BG, Naim T, Swiderski K, Koopman R, Lynch GS (2011) Antibody-directed myostatin inhibition enhances muscle mass and function in tumor-bearing mice. Am J Phys Regul Integr Comp Phys 301(3):R716–R726.  https://doi.org/10.1152/ajpregu.00121.2011 CrossRefGoogle Scholar
  83. 83.
    Heineke J, Auger-Messier M, Xu J, Sargent M, York A, Welle S, Molkentin JD (2010) Genetic deletion of myostatin from the heart prevents skeletal muscle atrophy in heart failure. Circulation 121(3):419–425.  https://doi.org/10.1161/CIRCULATIONAHA.109.882068 CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Harrington D, Chua TP, Coats AJ (2000) The effect of salbutamol on skeletal muscle in chronic heart failure. Int J Cardiol 73(3):257–265CrossRefGoogle Scholar
  85. 85.
    Kamalakkannan G, Petrilli CM, George I, LaManca J, McLaughlin BT, Shane E, Mancini DM, Maybaum S (2008) Clenbuterol increases lean muscle mass but not endurance in patients with chronic heart failure. J Heart Lung Transplant 27(4):457–461.  https://doi.org/10.1016/j.healun.2008.01.013 CrossRefPubMedGoogle Scholar
  86. 86.
    Jankowska EA, Filippatos G, Ponikowska B, Borodulin-Nadzieja L, Anker SD, Banasiak W, Poole-Wilson PA, Ponikowski P (2009) Reduction in circulating testosterone relates to exercise capacity in men with chronic heart failure. J Card Fail 15(5):442–450.  https://doi.org/10.1016/j.cardfail.2008.12.011 CrossRefPubMedGoogle Scholar
  87. 87.
    Caminiti G, Volterrani M, Iellamo F, Marazzi G, Massaro R, Miceli M, Mammi C, Piepoli M, Fini M, Rosano GM (2009) Effect of long-acting testosterone treatment on functional exercise capacity, skeletal muscle performance, insulin resistance, and baroreflex sensitivity in elderly patients with chronic heart failure a double-blind, placebo-controlled, randomized study. J Am Coll Cardiol 54(10):919–927.  https://doi.org/10.1016/j.jacc.2009.04.078 CrossRefPubMedGoogle Scholar
  88. 88.
    Collamati A, Marzetti E, Calvani R, Tosato M, D’Angelo E, Sisto AN, Landi F (2016) Sarcopenia in heart failure: mechanisms and therapeutic strategies. J Geriatr Cardiol 13(7):615–624.  https://doi.org/10.11909/j.issn.1671-5411.2016.07.004 CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Nagaya N, Moriya J, Yasumura Y, Uematsu M, Ono F, Shimizu W, Ueno K, Kitakaze M, Miyatake K, Kangawa K (2004) Effects of ghrelin administration on left ventricular function, exercise capacity, and muscle wasting in patients with chronic heart failure. Circulation 110(24):3674–3679.  https://doi.org/10.1161/01.CIR.0000149746.62908.BB CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Kung T, Szabo T, Springer J, Doehner W, Anker SD, von Haehling S (2011) Cachexia in heart disease: highlights from the ESC 2010. J Cachexia Sarcopenia Muscle 2(1):63–69.  https://doi.org/10.1007/s13539-011-0020-z CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Chai W, Dong Z, Wang N, Wang W, Tao L, Cao W, Liu Z (2012) Glucagon-like peptide 1 recruits microvasculature and increases glucose use in muscle via a nitric oxide-dependent mechanism. Diabetes 61(4):888–896.  https://doi.org/10.2337/db11-1073 CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Scott D, Blizzard L, Fell J, Jones G (2009) Statin therapy, muscle function and falls risk in community-dwelling older adults. QJM 102(9):625–633.  https://doi.org/10.1093/qjmed/hcp093 CrossRefPubMedGoogle Scholar
  93. 93.
    Argiles JM, Lopez-Soriano FJ, Busquets S (2008) Novel approaches to the treatment of cachexia. Drug Discov Today 13(1–2):73–78.  https://doi.org/10.1016/j.drudis.2007.10.008 CrossRefPubMedGoogle Scholar
  94. 94.
    Murphy KT, Cobani V, Ryall JG, Ibebunjo C, Lynch GS (2011) Acute antibody-directed myostatin inhibition attenuates disuse muscle atrophy and weakness in mice. J Appl Physiol 110(4):1065–1072.  https://doi.org/10.1152/japplphysiol.01183.2010 CrossRefPubMedGoogle Scholar
  95. 95.
    Miki K, Maekura R, Nagaya N, Nakazato M, Kimura H, Murakami S, Ohnishi S, Hiraga T, Miki M, Kitada S, Yoshimura K, Tateishi Y, Arimura Y, Matsumoto N, Yoshikawa M, Yamahara K, Kangawa K (2012) Ghrelin treatment of cachectic patients with chronic obstructive pulmonary disease: a multicenter, randomized, double-blind, placebo-controlled trial. PLoS One 7(5):e35708.  https://doi.org/10.1371/journal.pone.0035708 CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    von Haehling S, Stepney R, Anker SD (2010) Advances in understanding and treating cardiac cachexia: highlights from the 5th Cachexia Conference. Int J Cardiol 144(3):347–349.  https://doi.org/10.1016/j.ijcard.2010.05.042 CrossRefGoogle Scholar
  97. 97.
    Levinson B, Gertner J (2012) Randomized study of the efficacy and safety of SUN11031 (synthetic human ghrelin) in cachexia associated with chronic obstructive pulmonary disease. e-SPEN J 7(5):e171–e175.  https://doi.org/10.1016/j.clnme.2012.07.004 CrossRefGoogle Scholar
  98. 98.
    Koechlin C, Couillard A, Simar D, Cristol JP, Bellet H, Hayot M, Prefaut C (2004) Does oxidative stress alter quadriceps endurance in chronic obstructive pulmonary disease? Am J Respir Crit Care Med 169(9):1022–1027.  https://doi.org/10.1164/rccm.200310-1465OC CrossRefPubMedGoogle Scholar
  99. 99.
    Rossman MJ, Groot HJ, Reese V, Zhao J, Amann M, Richardson RS (2013) Oxidative stress and COPD: the effect of oral antioxidants on skeletal muscle fatigue. Med Sci Sports Exerc 45(7):1235–1243.  https://doi.org/10.1249/MSS.0b013e3182846d7e CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Zhang L, Rajan V, Lin E, Hu Z, Han HQ, Zhou X, Song Y, Min H, Wang X, Du J, Mitch WE (2011) Pharmacological inhibition of myostatin suppresses systemic inflammation and muscle atrophy in mice with chronic kidney disease. FASEB J 25(5):1653–1663.  https://doi.org/10.1096/fj.10-176917 CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Zhang L, Pan J, Dong Y, Tweardy DJ, Dong Y, Garibotto G, Mitch WE (2013) Stat3 activation links a C/EBPdelta to myostatin pathway to stimulate loss of muscle mass. Cell Metab 18(3):368–379.  https://doi.org/10.1016/j.cmet.2013.07.012 CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Beg MS, Brenner AJ, Sachdev J, Borad M, Kang YK, Stoudemire J, Smith S, Bader AG, Kim S, Hong DS (2017) Phase I study of MRX34, a liposomal miR-34a mimic, administered twice weekly in patients with advanced solid tumors. Investig New Drugs 35(2):180–188.  https://doi.org/10.1007/s10637-016-0407-y CrossRefGoogle Scholar
  103. 103.
    Simonian M, Sharifi M, Nedaeinia R, Mosallaie M, Khosravi S, Avan A, Ghayour-Mobarhan M, Bagheri H, Salehi R (2018) Evaluation of miR-21 inhibition and its impact on cancer susceptibility candidate 2 long noncoding RNA in colorectal cancer cell line. Adv Biomed Res 7:14.  https://doi.org/10.4103/abr.abr_214_16 CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Lennox KA, Owczarzy R, Thomas DM, Walder JA, Behlke MA (2013) Improved performance of anti-miRNA oligonucleotides using a novel non-nucleotide modifier. Mol Ther Nucleic Acids 2:e117.  https://doi.org/10.1038/mtna.2013.46 CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Viereck J, Kumarswamy R, Foinquinos A, Xiao K, Avramopoulos P, Kunz M, Dittrich M, Maetzig T, Zimmer K, Remke J, Just A, Fendrich J, Scherf K, Bolesani E, Schambach A, Weidemann F, Zweigerdt R, de Windt LJ, Engelhardt S, Dandekar T, Batkai S, Thum T (2016) Long noncoding RNA Chast promotes cardiac remodeling. Sci Transl Med 8(326):326ra322.  https://doi.org/10.1126/scitranslmed.aaf1475 CrossRefGoogle Scholar
  106. 106.
    Piccoli MT, Gupta SK, Viereck J, Foinquinos A, Samolovac S, Kramer FL, Garg A, Remke J, Zimmer K, Batkai S, Thum T (2017) Inhibition of the cardiac fibroblast-enriched lncRNA Meg3 prevents cardiac fibrosis and diastolic dysfunction. Circ Res 121(5):575–583.  https://doi.org/10.1161/CIRCRESAHA.117.310624 CrossRefPubMedGoogle Scholar
  107. 107.
    Pendergraff HM, Krishnamurthy PM, Debacker AJ, Moazami MP, Sharma VK, Niitsoo L, Yu Y, Tan YN, Haitchi HM, Watts JK (2017) Locked nucleic acid gapmers and conjugates potently silence ADAM33, an asthma-associated metalloprotease with nuclear-localized mRNA. Mol Ther Nucleic Acids 8:158–168.  https://doi.org/10.1016/j.omtn.2017.06.012 CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Koutsoulidou A, Mastroyiannopoulos NP, Furling D, Uney JB, Phylactou LA (2011) Expression of miR-1, miR-133a, miR-133b and miR-206 increases during development of human skeletal muscle. BMC Dev Biol 11:34.  https://doi.org/10.1186/1471-213X-11-34 CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Mercatelli N, Fittipaldi S, De Paola E, Dimauro I, Paronetto MP, Jackson MJ, Caporossi D (2017) MiR-23-TrxR1 as a novel molecular axis in skeletal muscle differentiation. Sci Rep 7(1):7219.  https://doi.org/10.1038/s41598-017-07575-0 CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Lozano-Velasco E, Galiano-Torres J, Jodar-Garcia A, Aranega AE, Franco D (2015) miR-27 and miR-125 distinctly regulate muscle-enriched transcription factors in cardiac and skeletal myocytes. Biomed Res Int 2015:391306.  https://doi.org/10.1155/2015/391306 CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Yu Y, Li X, Liu L, Chai J, Haijun Z, Chu W, Yin H, Ma L, Duan H, Xiao M (2016) miR-628 promotes burn-induced skeletal muscle atrophy via targeting IRS1. Int J Biol Sci 12(10):1213–1224.  https://doi.org/10.7150/ijbs.15496 CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Wang J, Gao Y, Duan L, Wei S, Liu J, Tian L, Quan J, Zhang Q, Liu J, Yang J (2017) Metformin ameliorates skeletal muscle insulin resistance by inhibiting miR-21 expression in a high-fat dietary rat model. Oncotarget 8(58):98029–98039.  https://doi.org/10.18632/oncotarget.20442 CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Li J, Chan MC, Yu Y, Bei Y, Chen P, Zhou Q, Cheng L, Chen L, Ziegler O, Rowe GC, Das S, Xiao J (2017) miR-29b contributes to multiple types of muscle atrophy. Nat Commun 8:15201.  https://doi.org/10.1038/ncomms15201 CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Ma Y, Zhang L, Huang X (2014) Genome modification by CRISPR/Cas9. FEBS J 281(23):5186–5193.  https://doi.org/10.1111/febs.13110 CrossRefPubMedGoogle Scholar
  115. 115.
    Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD (2010) Genome editing with engineered zinc finger nucleases. Nat Rev Genet 11(9):636–646.  https://doi.org/10.1038/nrg2842 CrossRefPubMedGoogle Scholar
  116. 116.
    Joung JK, Sander JD (2013) TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol 14(1):49–55.  https://doi.org/10.1038/nrm3486 CrossRefPubMedGoogle Scholar
  117. 117.
    Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823.  https://doi.org/10.1126/science.1231143 CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339(6121):823–826.  https://doi.org/10.1126/science.1232033 CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Jinek M, East A, Cheng A, Lin S, Ma E, Doudna J (2013) RNA-programmed genome editing in human cells. elife 2:e00471.  https://doi.org/10.7554/eLife.00471 CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Hille F, Richter H, Wong SP, Bratovic M, Ressel S, Charpentier E (2018) The biology of CRISPR-Cas: backward and forward. Cell 172(6):1239–1259.  https://doi.org/10.1016/j.cell.2017.11.032 CrossRefPubMedGoogle Scholar
  121. 121.
    Cyranoski D (2016) Chinese scientists to pioneer first human CRISPR trial. Nature 535(7613):476–477.  https://doi.org/10.1038/nature.2016.20302 CrossRefPubMedGoogle Scholar
  122. 122.
    Maus MV, Grupp SA, Porter DL, June CH (2014) Antibody-modified T cells: CARs take the front seat for hematologic malignancies. Blood 123(17):2625–2635.  https://doi.org/10.1182/blood-2013-11-492231 CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Liao HK, Gu Y, Diaz A, Marlett J, Takahashi Y, Li M, Suzuki K, Xu R, Hishida T, Chang CJ, Esteban CR, Young J, Izpisua Belmonte JC (2015) Use of the CRISPR/Cas9 system as an intracellular defense against HIV-1 infection in human cells. Nat Commun 6:6413.  https://doi.org/10.1038/ncomms7413 CrossRefPubMedGoogle Scholar
  124. 124.
    Claussnitzer M, Dankel SN, Kim KH, Quon G, Meuleman W, Haugen C, Glunk V, Sousa IS, Beaudry JL, Puviindran V, Abdennur NA, Liu J, Svensson PA, Hsu YH, Drucker DJ, Mellgren G, Hui CC, Hauner H, Kellis M (2015) FTO obesity variant circuitry and adipocyte browning in humans. N Engl J Med 373(10):895–907.  https://doi.org/10.1056/NEJMoa1502214 CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Bi Y, Hua Z, Liu X, Hua W, Ren H, Xiao H, Zhang L, Li L, Wang Z, Laible G, Wang Y, Dong F, Zheng X (2016) Isozygous and selectable marker-free MSTN knockout cloned pigs generated by the combined use of CRISPR/Cas9 and Cre/LoxP. Sci Rep 6:31729.  https://doi.org/10.1038/srep31729 CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Guo R, Wan Y, Xu D, Cui L, Deng M, Zhang G, Jia R, Zhou W, Wang Z, Deng K, Huang M, Wang F, Zhang Y (2016) Generation and evaluation of Myostatin knock-out rabbits and goats using CRISPR/Cas9 system. Sci Rep 6:29855.  https://doi.org/10.1038/srep29855 CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Lv Q, Yuan L, Deng J, Chen M, Wang Y, Zeng J, Li Z, Lai L (2016) Efficient generation of myostatin gene mutated rabbit by CRISPR/Cas9. Sci Rep 6:25029.  https://doi.org/10.1038/srep25029 CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Wang K, Ouyang H, Xie Z, Yao C, Guo N, Li M, Jiao H, Pang D (2015) Efficient generation of myostatin mutations in pigs using the CRISPR/Cas9 system. Sci Rep 5:16623.  https://doi.org/10.1038/srep16623 CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Crispo M, Mulet AP, Tesson L, Barrera N, Cuadro F, dos Santos-Neto PC, Nguyen TH, Creneguy A, Brusselle L, Anegon I, Menchaca A (2015) Efficient generation of myostatin knock-out sheep using CRISPR/Cas9 technology and microinjection into zygotes. PLoS One 10(8):e0136690.  https://doi.org/10.1371/journal.pone.0136690 CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Zou Q, Wang X, Liu Y, Ouyang Z, Long H, Wei S, Xin J, Zhao B, Lai S, Shen J, Ni Q, Yang H, Zhong H, Li L, Hu M, Zhang Q, Zhou Z, He J, Yan Q, Fan N, Zhao Y, Liu Z, Guo L, Huang J, Zhang G, Ying J, Lai L, Gao X (2015) Generation of gene-target dogs using CRISPR/Cas9 system. J Mol Cell Biol 7(6):580–583.  https://doi.org/10.1093/jmcb/mjv061 CrossRefPubMedGoogle Scholar
  131. 131.
    Wang K, Tang X, Xie Z, Zou X, Li M, Yuan H, Guo N, Ouyang H, Jiao H, Pang D (2017) CRISPR/Cas9-mediated knockout of myostatin in Chinese indigenous Erhualian pigs. Transgenic Res 26(6):799–805.  https://doi.org/10.1007/s11248-017-0044-z CrossRefPubMedGoogle Scholar
  132. 132.
    Wang X, Niu Y, Zhou J, Zhu H, Ma B, Yu H, Yan H, Hua J, Huang X, Qu L, Chen Y (2018) CRISPR/Cas9-mediated MSTN disruption and heritable mutagenesis in goats causes increased body mass. Anim Genet 49(1):43–51.  https://doi.org/10.1111/age.12626 CrossRefPubMedGoogle Scholar
  133. 133.
    Wei Y, Chen Y, Qiu Y, Zhao H, Liu G, Zhang Y, Meng Q, Wu G, Chen Y, Cai X, Wang H, Ying H, Zhou B, Liu M, Li D, Ding Q (2016) Prevention of muscle wasting by CRISPR/Cas9-mediated disruption of myostatin in vivo. Mol Ther 24(11):1889–1891.  https://doi.org/10.1038/mt.2016.192 CrossRefPubMedPubMedCentralGoogle Scholar
  134. 134.
    Zou Y, Dong Y, Meng Q, Zhao Y, Li N (2018) Incorporation of a skeletal muscle-specific enhancer in the regulatory region of Igf1 upregulates IGF1 expression and induces skeletal muscle hypertrophy. Sci Rep 8(1):2781.  https://doi.org/10.1038/s41598-018-21122-5 CrossRefPubMedPubMedCentralGoogle Scholar
  135. 135.
    Wang X, Cai B, Zhou J, Zhu H, Niu Y, Ma B, Yu H, Lei A, Yan H, Shen Q, Shi L, Zhao X, Hua J, Huang X, Qu L, Chen Y (2016) Disruption of FGF5 in cashmere goats using CRISPR/Cas9 results in more secondary hair follicles and longer fibers. PLoS One 11(10):e0164640.  https://doi.org/10.1371/journal.pone.0164640 CrossRefPubMedPubMedCentralGoogle Scholar
  136. 136.
    Balakrishnan B, Jayandharan GR (2014) Basic biology of adeno-associated virus (AAV) vectors used in gene therapy. Curr Gene Ther 14(2):86–100CrossRefGoogle Scholar
  137. 137.
    Nathwani AC, Tuddenham EG, Rangarajan S, Rosales C, McIntosh J, Linch DC, Chowdary P, Riddell A, Pie AJ, Harrington C, O’Beirne J, Smith K, Pasi J, Glader B, Rustagi P, Ng CY, Kay MA, Zhou J, Spence Y, Morton CL, Allay J, Coleman J, Sleep S, Cunningham JM, Srivastava D, Basner-Tschakarjan E, Mingozzi F, High KA, Gray JT, Reiss UM, Nienhuis AW, Davidoff AM (2011) Adenovirus-associated virus vector-mediated gene transfer in hemophilia B. N Engl J Med 365(25):2357–2365.  https://doi.org/10.1056/NEJMoa1108046 CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Lisowski L, Tay SS, Alexander IE (2015) Adeno-associated virus serotypes for gene therapeutics. Curr Opin Pharmacol 24:59–67.  https://doi.org/10.1016/j.coph.2015.07.006 CrossRefPubMedGoogle Scholar
  139. 139.
    Daya S, Berns KI (2008) Gene therapy using adeno-associated virus vectors. Clin Microbiol Rev 21(4):583–593.  https://doi.org/10.1128/CMR.00008-08 CrossRefPubMedPubMedCentralGoogle Scholar
  140. 140.
    Hardcastle N, Boulis NM, Federici T (2018) AAV gene delivery to the spinal cord: serotypes, methods, candidate diseases, and clinical trials. Expert Opin Biol Ther 18(3):293–307.  https://doi.org/10.1080/14712598.2018.1416089 CrossRefPubMedGoogle Scholar
  141. 141.
    Odom GL, Gregorevic P, Allen JM, Finn E, Chamberlain JS (2008) Microutrophin delivery through rAAV6 increases lifespan and improves muscle function in dystrophic dystrophin/utrophin-deficient mice. Mol Ther 16(9):1539–1545.  https://doi.org/10.1038/mt.2008.149 CrossRefPubMedPubMedCentralGoogle Scholar
  142. 142.
    Koo T, Malerba A, Athanasopoulos T, Trollet C, Boldrin L, Ferry A, Popplewell L, Foster H, Foster K, Dickson G (2011) Delivery of AAV2/9-microdystrophin genes incorporating helix 1 of the coiled-coil motif in the C-terminal domain of dystrophin improves muscle pathology and restores the level of alpha1-syntrophin and alpha-dystrobrevin in skeletal muscles of mdx mice. Hum Gene Ther 22(11):1379–1388.  https://doi.org/10.1089/hum.2011.020 CrossRefPubMedPubMedCentralGoogle Scholar
  143. 143.
    Yalvac ME, Amornvit J, Chen L, Shontz KM, Lewis S, Sahenk Z (2018) AAV1.NT-3 gene therapy increases muscle fiber diameter through activation of mTOR pathway and metabolic remodeling in a CMT mouse model. Gene Ther.  https://doi.org/10.1038/s41434-018-0009-8 CrossRefGoogle Scholar
  144. 144.
    Winbanks CE, Murphy KT, Bernardo BC, Qian H, Liu Y, Sepulveda PV, Beyer C, Hagg A, Thomson RE, Chen JL, Walton KL, Loveland KL, McMullen JR, Rodgers BD, Harrison CA, Lynch GS, Gregorevic P (2016) Smad7 gene delivery prevents muscle wasting associated with cancer cachexia in mice. Sci Transl Med 8(348):348ra398.  https://doi.org/10.1126/scitranslmed.aac4976 CrossRefGoogle Scholar
  145. 145.
    Maricelli JW, Bishaw YM, Wang B, Du M, Rodgers BD (2017) Systemic SMAD7 gene therapy increases striated muscle mass and enhances exercise capacity in a dose-dependent manner. Hum Gene Ther.  https://doi.org/10.1089/hum.2017.158 CrossRefGoogle Scholar
  146. 146.
    Moimas S, Novati F, Ronchi G, Zacchigna S, Fregnan F, Zentilin L, Papa G, Giacca M, Geuna S, Perroteau I, Arnez ZM, Raimondo S (2013) Effect of vascular endothelial growth factor gene therapy on post-traumatic peripheral nerve regeneration and denervation-related muscle atrophy. Gene Ther 20(10):1014–1021.  https://doi.org/10.1038/gt.2013.26 CrossRefPubMedPubMedCentralGoogle Scholar
  147. 147.
    Goonasekera SA, Lam CK, Millay DP, Sargent MA, Hajjar RJ, Kranias EG, Molkentin JD (2011) Mitigation of muscular dystrophy in mice by SERCA overexpression in skeletal muscle. J Clin Invest 121(3):1044–1052.  https://doi.org/10.1172/JCI43844 CrossRefPubMedPubMedCentralGoogle Scholar
  148. 148.
    Hagg A, Colgan TD, Thomson RE, Qian H, Lynch GS, Gregorevic P (2016) Using AAV vectors expressing the beta2-adrenoceptor or associated Galpha proteins to modulate skeletal muscle mass and muscle fibre size. Sci Rep 6:23042.  https://doi.org/10.1038/srep23042 CrossRefPubMedPubMedCentralGoogle Scholar
  149. 149.
    Eichler F, Duncan C, Musolino PL, Orchard PJ, De Oliveira S, Thrasher AJ, Armant M, Dansereau C, Lund TC, Miller WP, Raymond GV, Sankar R, Shah AJ, Sevin C, Gaspar HB, Gissen P, Amartino H, Bratkovic D, Smith NJC, Paker AM, Shamir E, O’Meara T, Davidson D, Aubourg P, Williams DA (2017) Hematopoietic stem-cell gene therapy for cerebral adrenoleukodystrophy. N Engl J Med 377(17):1630–1638.  https://doi.org/10.1056/NEJMoa1700554 CrossRefPubMedPubMedCentralGoogle Scholar
  150. 150.
    Wang Y, Pati S, Schreiber M (2018) Cellular therapies and stem cell applications in trauma. Am J Surg 215(5):963–972.  https://doi.org/10.1016/j.amjsurg.2018.02.003 CrossRefPubMedGoogle Scholar
  151. 151.
    Rathod R, Surendran H, Battu R, Desai J, Pal R (2018) Induced pluripotent stem cells (iPSC)-derived retinal cells in disease modeling and regenerative medicine. J Chem Neuroanat.  https://doi.org/10.1016/j.jchemneu.2018.02.002
  152. 152.
    Frangogiannis NG (2018) Cell therapy for peripheral artery disease. Curr Opin Pharmacol 39:27–34.  https://doi.org/10.1016/j.coph.2018.01.005 CrossRefPubMedGoogle Scholar
  153. 153.
    Florea V, Rieger AC, DiFede DL, El-Khorazaty J, Natsumeda M, Banerjee MN, Tompkins BA, Khan A, Schulman IH, Landin AM, Mushtaq M, Golpanian S, Lowery MH, Byrnes JJ, Hendel RC, Cohen MG, Valasaki K, Pujol MV, Ghersin E, Miki R, Delgado C, Abuzeid F, Vidro-Casiano M, Saltzman RG, DaFonseca D, Caceres LV, Ramdas KN, Mendizabal A, Heldman AW, Mitrani RD, Hare JM (2017) Dose comparison study of allogeneic mesenchymal stem cells in patients with ischemic cardiomyopathy (The TRIDENT Study). Circ Res 121(11):1279–1290.  https://doi.org/10.1161/CIRCRESAHA.117.311827 CrossRefPubMedGoogle Scholar
  154. 154.
    Poglajen G, Zemljic G, Frljak S, Cerar A, Androcec V, Sever M, Cernelc P (2018) Stem cell therapy in patients with chronic nonischemic heart failure. Stem Cells Int 2018:6487812.  https://doi.org/10.1155/2018/6487812 CrossRefPubMedPubMedCentralGoogle Scholar
  155. 155.
    Fan D, Wu S, Ye S, Wang W, Guo X, Liu Z (2017) Umbilical cord mesenchyme stem cell local intramuscular injection for treatment of uterine niche: protocol for a prospective, randomized, double-blinded, placebo-controlled clinical trial. Medicine (Baltimore) 96(44):e8480.  https://doi.org/10.1097/MD.0000000000008480 CrossRefGoogle Scholar
  156. 156.
    Wagers AJ, Conboy IM (2005) Cellular and molecular signatures of muscle regeneration: current concepts and controversies in adult myogenesis. Cell 122(5):659–667.  https://doi.org/10.1016/j.cell.2005.08.021 CrossRefPubMedGoogle Scholar
  157. 157.
    Almada AE, Wagers AJ (2016) Molecular circuitry of stem cell fate in skeletal muscle regeneration, ageing and disease. Nat Rev Mol Cell Biol 17(5):267–279.  https://doi.org/10.1038/nrm.2016.7 CrossRefPubMedPubMedCentralGoogle Scholar
  158. 158.
    Partridge TA, Grounds M, Sloper JC (1978) Evidence of fusion between host and donor myoblasts in skeletal muscle grafts. Nature 273(5660):306–308CrossRefGoogle Scholar
  159. 159.
    Partridge TA, Morgan JE, Coulton GR, Hoffman EP, Kunkel LM (1989) Conversion of mdx myofibres from dystrophin-negative to -positive by injection of normal myoblasts. Nature 337(6203):176–179.  https://doi.org/10.1038/337176a0 CrossRefPubMedGoogle Scholar
  160. 160.
    Bentzinger CF, Wang YX, von Maltzahn J, Rudnicki MA (2013) The emerging biology of muscle stem cells: implications for cell-based therapies. BioEssays 35(3):231–241.  https://doi.org/10.1002/bies.201200063 CrossRefPubMedGoogle Scholar
  161. 161.
    Xu X, Wilschut KJ, Kouklis G, Tian H, Hesse R, Garland C, Sbitany H, Hansen S, Seth R, Knott PD, Hoffman WY, Pomerantz JH (2015) Human satellite cell transplantation and regeneration from diverse skeletal muscles. Stem Cell Reports 5(3):419–434.  https://doi.org/10.1016/j.stemcr.2015.07.016 CrossRefPubMedPubMedCentralGoogle Scholar
  162. 162.
    Klimczak A, Kozlowska U, Kurpisz M (2018) Muscle stem/progenitor cells and mesenchymal stem cells of bone marrow origin for skeletal muscle regeneration in muscular dystrophies. Arch Immunol Ther Exp (Warsz).  https://doi.org/10.1007/s00005-018-0509-7 CrossRefGoogle Scholar
  163. 163.
    Berry SE (2015) Concise review: mesoangioblast and mesenchymal stem cell therapy for muscular dystrophy: progress, challenges, and future directions. Stem Cells Transl Med 4(1):91–98.  https://doi.org/10.5966/sctm.2014-0060 CrossRefPubMedGoogle Scholar
  164. 164.
    Hosoyama T, Ichida S, Kanno M, Ishihara R, Hatashima T, Ueno K, Hamano K (2017) Microgravity influences maintenance of the human muscle stem/progenitor cell pool. Biochem Biophys Res Commun 493(2):998–1003.  https://doi.org/10.1016/j.bbrc.2017.09.103 CrossRefPubMedGoogle Scholar
  165. 165.
    Cappellari O, Cossu G (2013) Pericytes in development and pathology of skeletal muscle. Circ Res 113(3):341–347.  https://doi.org/10.1161/CIRCRESAHA.113.300203 CrossRefPubMedGoogle Scholar
  166. 166.
    Christov C, Chretien F, Abou-Khalil R, Bassez G, Vallet G, Authier FJ, Bassaglia Y, Shinin V, Tajbakhsh S, Chazaud B, Gherardi RK (2007) Muscle satellite cells and endothelial cells: close neighbors and privileged partners. Mol Biol Cell 18(4):1397–1409.  https://doi.org/10.1091/mbc.E06-08-0693 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Richard Y. Cao
    • 1
    • 2
  • Jin Li
    • 3
  • Qiying Dai
    • 4
    • 5
  • Qing Li
    • 1
    • 2
  • Jian Yang
    • 1
    • 2
  1. 1.Zhongshan-Xuhui HospitalFudan UniversityShanghaiChina
  2. 2.Shanghai Clinical Research CenterChinese Academy of SciencesShanghaiChina
  3. 3.Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life ScienceShanghai UniversityShanghaiChina
  4. 4.Metrowest Medical CenterFraminghamUSA
  5. 5.Department of CardiologyFirst Affiliated Hospital of Nanjing Medical UniversityNanjingChina

Personalised recommendations