Advertisement

Muscle Atrophy pp 369-391 | Cite as

Muscular Atrophy in Cardiovascular Disease

  • Isadora Rebolho Sisto
  • Melina Hauck
  • Rodrigo Della Méa PlentzEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1088)

Abstract

Currently, the number of chronic diseases has increased due to increasing in life expectancy of population. Among them, cardiovascular diseases (CVD) are the most prevalent and responsible for the high mortality and morbidity rates. Patients with CVD have metabolic, hemodynamic, and musculoskeletal changes. There is a debate regarding the correct term for musculoskeletal changes that affect this group of patients; therefore, we found in literature myopia, muscular atrophy, cardiac cachexia, and sarcopenia. However, although there is no standardization in relation to correct term, these musculoskeletal consequences directly affect the quality of life and are associated with a poor prognosis. In this way, the importance of prevention of muscular atrophy, but also of treatment for those patients with progressive muscle decline, is proven. We also emphasize the importance of a multi-professional team, because therapeutic strategies are needed that are capable of delaying the onset or minimizing the consequences of skeletal muscle loss, from pharmacological management and nutrition to physical exercise.

Keywords

Cardiovascular diseases Myocardial ischemia Stroke Peripheral vascular diseases Muscular atrophy Cachexia cardiac Sarcopenia Myopenia 

References

  1. 1.
    WHO (2011) Global atlas on cardiovascular disease prevention and control. In: Assess. http://www.who.int/cardiovascular_diseases/publications/atlas_cvd/en/
  2. 2.
    Okoshi MP, Romeiro FG, Paiva SAR, Okoshi K (2013) Heart failure-induced Cachexia. Arq Bras Cardiol.  https://doi.org/10.5935/abc.20130060
  3. 3.
    da Pícoli TS, de Figueiredo LL, Patrizzi LJ (2011) Sarcopenia e envelhecimento. Fisioter em Mov 24:455–462.  https://doi.org/10.1590/S0103-51502011000300010 CrossRefGoogle Scholar
  4. 4.
    Scherbakov N, Knops M, Ebner N et al (2016) Evaluation of C-terminal Agrin fragment as a marker of muscle wasting in patients after acute stroke during early rehabilitation. J Cachexia Sarcopenia Muscle 7:60–67.  https://doi.org/10.1002/jcsm.12068 CrossRefPubMedGoogle Scholar
  5. 5.
    Xue Q-L (2011) The frailty syndrome: definition and natural history. Clin Geriatr Med 27:1–15.  https://doi.org/10.1016/j.cger.2010.08.009.The CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Scherbakov N, Sandek A, Doehner W (2015) Stroke-related sarcopenia: specific characteristics. J Am Med Dir Assoc 16:272–276.  https://doi.org/10.1016/j.jamda.2014.12.007 CrossRefPubMedGoogle Scholar
  7. 7.
    Cruz-Jentoft AJ, Baeyens JP, Bauer JM et al (2010) Sarcopenia: European consensus on definition and diagnosis. Age Ageing 39:412–423.  https://doi.org/10.1093/ageing/afq034 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Harada H, Kai H, Niiyama H et al (2016) Effectiveness of cardiac rehabilitation for prevention and treatment of sarcopenia in patients with cardiovascular disease – a retrospective cross-sectional analysis. J Nutr Heal Aging 21:449–456.  https://doi.org/10.1007/s12603-016-0743-9 CrossRefGoogle Scholar
  9. 9.
    Valentova M, Von Haehling S, Bauditz J et al (2016) Intestinal congestion and right ventricular dysfunction: a link with appetite loss, inflammation, and cachexia in chronic heart failure. Eur Heart J 37:1684–1691.  https://doi.org/10.1093/eurheartj/ehw008 CrossRefPubMedGoogle Scholar
  10. 10.
    Xavier HT, Izar MC, Faria Neto JR et al (2013) V diretriz brasileira de da Aterosclerose V D iretriz B rasileira de D islipidemias e P revenção. Arq Bras Cardiol 101:1–20.  https://doi.org/10.1016/S0140-6736(11)60739-3.09-2015-VYT-13-BR-J CrossRefPubMedGoogle Scholar
  11. 11.
    Gersh B, Braunwald E, Bonow R (2000) Chronic coronary artery disease. In: Heart disease: a textbook of cardiovascular medicine. pp 272–363Google Scholar
  12. 12.
    Anderson L, Oldridge N, Thompson DR et al (2016) Exercise-based cardiac rehabilitation for coronary heart disease. J Am Coll Cardiol 67:1–12.  https://doi.org/10.1016/j.jacc.2015.10.044 CrossRefPubMedGoogle Scholar
  13. 13.
    Gofir A, Mulyono B, Sutarni S (2017) Hyperglycemia as a prognosis predictor of length of stay and functional outcomes in patients with acute ischemic stroke. Int J Neurosci 127:923–929.  https://doi.org/10.1080/00207454.2017.1280793 CrossRefPubMedGoogle Scholar
  14. 14.
    Testai FD, Aiyagari V (2008) Acute hemorrhagic stroke pathophysiology and medical interventions: blood pressure control, management of anticoagulant-associated brain hemorrhage and general management principles. Neurol Clin 26:963–985.  https://doi.org/10.1016/j.ncl.2008.06.001 CrossRefPubMedGoogle Scholar
  15. 15.
    Motyer R, Asadi H, Nicholson JTP, Kok HK (2018) Current evidence for endovascular therapy in stroke and remaining uncertainties (R1). J Intern Med 293:2–15.  https://doi.org/10.1111/ijlh.12426 CrossRefGoogle Scholar
  16. 16.
    Knops M, Werner CG, Scherbakov N et al (2013) Investigation of changes in body composition, metabolic profile and skeletal muscle functional capacity in ischemic stroke patients: the rationale and design of the Body Size in Stroke Study (BoSSS). J Cachexia Sarcopenia Muscle 4:199–207.  https://doi.org/10.1007/s13539-013-0103-0 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Ryan AS, Buscemi A, Forrester L et al (2011) Atrophy and intramuscular fat in specific muscles of the thigh: associated weakness and hyperinsulinemia in stroke survivors. Neurorehabil Neural Repair 25:865–872.  https://doi.org/10.1177/1545968311408920.Atrophy CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    WHO (2011) World report on disability. In: Assess. http://apps.who.int/iris/bitstream/10665/70670/1/WHO_NMH_VIP_11.01_eng.pdfGoogle Scholar
  19. 19.
    Ryan AS, Ivey FM, Serra MC et al (2017) Sarcopeia and physical function in middle-aged and older stroke survivors. Arch Phys Med Rehabil 98:495–499.  https://doi.org/10.1037/a0038432.Latino CrossRefPubMedGoogle Scholar
  20. 20.
    Deijle IA, Van Schaik SM, Van Wegen EEH et al (2017) Lifestyle interventions to prevent cardiovascular events after stroke and transient ischemic attack. Stroke 48:174–179.  https://doi.org/10.1161/STROKEAHA.116.013794 CrossRefPubMedGoogle Scholar
  21. 21.
    Hunnicutt JL, Gregory CM, Sciences H (2017) Skeletal muscle changes following stroke: a systematic review and comparison to healthy individuals. Top Stroke Rehabil 24:463–471.  https://doi.org/10.1080/10749357.2017.1292720.Skeletal CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Springer J, Schust S, Peske K et al (2014) Catabolic signaling and muscle wasting after acute ischemic stroke in mice: indication for a stroke-specific sarcopenia. Stroke 45:3675–3683.  https://doi.org/10.1161/STROKEAHA.114.006258 CrossRefPubMedGoogle Scholar
  23. 23.
    Scherbakov N, Von Haehling S, Anker SD et al (2013) Stroke induced sarcopenia: muscle wasting and disability after stroke. Int J Cardiol 170:89–94.  https://doi.org/10.1016/j.ijcard.2013.10.031 CrossRefPubMedGoogle Scholar
  24. 24.
    Scherbakov N, Doehner W (2011) Sarcopenia or muscle modifications in neurologic diseases: a lexical or patophysiological difference? J Cachexia Sarcopenia Muscle 2:5–8.  https://doi.org/10.1007/s13539-011-0024-8 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Pipinos II, Judge AR, Selsby JT et al (2008) The myopathy of peripheral arterial occlusive disease: part 1. Functional and histomorphological changes and evidence for mitochondrial dysfunction. Vasc Endovasc Surg 41:481–489.  https://doi.org/10.1177/1538574407311106 CrossRefGoogle Scholar
  26. 26.
    Askew CD, Parmenter B, Leicht AS et al (2014) Exercise & Sports Science Australia (ESSA) position statement on exercise prescription for patients with peripheral arterial disease and intermittent claudication. J Sci Med Sport 17:623–629.  https://doi.org/10.1016/j.jsams.2013.10.251 CrossRefPubMedGoogle Scholar
  27. 27.
    Zimmermann A, Senner S, Eckstein HH, Pelisek J (2015) Histomorphological evaluation of atherosclerotic lesions in patients with peripheral artery occlusive disease. Adv Med Sci 60:236–239.  https://doi.org/10.1016/j.advms.2015.03.003 CrossRefPubMedGoogle Scholar
  28. 28.
    Haitjema S, van Haelst STW, de Vries JPPM et al (2016) Time-dependent differences in femoral artery plaque characteristics of peripheral arterial disease patients. Atherosclerosis 255:66–72.  https://doi.org/10.1016/j.atherosclerosis.2016.10.039 CrossRefPubMedGoogle Scholar
  29. 29.
    Schieber MN, Hasenkamp RM, Pipinos II et al (2017) Muscle strength and control characteristics are altered by peripheral artery disease. J Vasc Surg 66:178–186.e12.  https://doi.org/10.1016/j.jvs.2017.01.051 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Pipinos II, Judge AR, Selsby JT, et al (2008) The myopathy of peripheral arterial occlusive disease: part 2. Oxidative stress, neuropathy, and shift in muscle fiber type. Vasc Endovascular Surg:101–112CrossRefGoogle Scholar
  31. 31.
    Cousin A, Popielarz S, Wieczorek V et al (2011) Impact of a rehabilitation program on muscular strength and endurance in peripheral arterial occlusive disease patients. Ann Phys Rehabil Med 54:429–442.  https://doi.org/10.1016/j.rehab.2011.07.961 CrossRefPubMedGoogle Scholar
  32. 32.
    Lane R, Ellis B, Watson L, Leng G (2014) Exercise for intermittent claudication. Cochrane Database Syst Rev: 997–1002.  https://doi.org/10.2522/ptj.20100419,91
  33. 33.
    Bocchi EA, Marcondes-Braga FG, Bacal F et al (2012) Atualização da Diretriz Brasileira de Insuficiência Cardíaca Crônica – 2012. Arquivos 98:1–33Google Scholar
  34. 34.
    Ladeira J, Neto R (2012) Principais temas em Cardiologia para residência médicaGoogle Scholar
  35. 35.
    Yancy CW, Jessup M, Bozkurt B et al (2013) 2013 ACCF/AHA guideline for the management of heart failure: executive summary: a report of the American college of cardiology foundation/american heart association task force on practice guidelines. J Am Coll Cardiol 62:1495–1539.  https://doi.org/10.1016/j.jacc.2013.05.020 CrossRefGoogle Scholar
  36. 36.
    Azevedo PS, Polegato BF, Minicucci MF, et al (2016) Cardiac Remodeling: concepts, clinical impact, pathophysiological mechanisms and pharmacologic treatment. Arq Bras Cardiol. doi:  https://doi.org/10.5935/abc.20160005
  37. 37.
    Okoshi MP, Capalbo RV, Romeiro FG, Okoshi K (2016) Cardiac cachexia: perspectives for prevention and treatment. Arq Bras Cardiol:1–7.  https://doi.org/10.5935/abc.20160142
  38. 38.
    Ventura-Clapier R, Garnier A, Veksler V (2004) Energy metabolism in heart failure. J Physiol 555:1–13.  https://doi.org/10.1113/jphysiol.2003.055095 CrossRefPubMedGoogle Scholar
  39. 39.
    Mancini D, Donchez L, Levine S (1997) Acute unloading of the work of breathing extends exercise duration in patients with heart failure. J Am Coll Cardiol 29:590–596.  https://doi.org/10.1016/S0735-1097(96)00556-6 CrossRefPubMedGoogle Scholar
  40. 40.
    Schocken DD, Benjamin EJ, Fonarow GC et al (2008) Prevention of heart failure: a scientific statement from the American Heart Association Councils on Epidemiology and Prevention, Clinical Cardiology, Cardiovascular Nursing, and High Blood Pressure Research; Quality of Care and Outcomes Research Interdisciplinary Working Group; and Functional Genomics and Translational Biology Interdisciplinary Working Group. Circulation 117:2544–2565.  https://doi.org/10.1161/CIRCULATIONAHA.107.188965 CrossRefPubMedGoogle Scholar
  41. 41.
    Najafi F, Jamrozik K, Dobson AJ (2009) Understanding the “epidemic of heart failure”: a systematic review of trends in determinants of heart failure. Eur J Heart Fail 11:472–479.  https://doi.org/10.1093/eurjhf/hfp029 CrossRefPubMedGoogle Scholar
  42. 42.
    Hunt SA, Abraham WT, Chin MH et al (2009) 2009 focused update incorporated into the ACC/AHA 2005 Guidelines for the Diagnosis and Management of Heart Failure in adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines: developed in collaboration with the International Society for Heart and Lung Transplantation. Circulation 119:e391–e479.  https://doi.org/10.1161/CIRCULATIONAHA.109.192065 CrossRefPubMedGoogle Scholar
  43. 43.
    da Saúde M (2008) Datasus: mortalidade – 1996 a 2012, pela CID-10 – Brasil. In: Assess. http://tabnet.datasus.gov.br/cgi/deftohtm.exe?sim/cnv/obt10uf.def
  44. 44.
    de Albuquerque DC, de Souza Neto JD, Bacal F et al (2015) I Brazilian registry of heart failure – clinical aspects, care quality and hospitalization outcomes. Arq Bras Cardiol.  https://doi.org/10.5935/abc.20150031
  45. 45.
    Mozaffarian D, Benjamin EJ, Go AS et al (2016) Executive summary: heart disease and stroke statistics-2016 update: a report from the American Heart Association. Circulation 133:447–454.  https://doi.org/10.1161/CIR.0000000000000366 CrossRefPubMedGoogle Scholar
  46. 46.
    Fülster S, Tacke M, Sandek A et al (2013) Muscle wasting in patients with chronic heart failure: results from the studies investigating co-morbidities aggravating heart failure (SICA-HF). Eur Heart J 34:512–519.  https://doi.org/10.1093/eurheartj/ehs381 CrossRefPubMedGoogle Scholar
  47. 47.
    Campbell RT, Jackson CE, Wright A et al (2015) Palliative care needs in patients hospitalized with heart failure (PCHF) study: rationale and design. ESC Hear Fail 2:25–36.  https://doi.org/10.1002/ehf2.12027 CrossRefGoogle Scholar
  48. 48.
    Marty E, Liu Y, Samuel A et al (2017) A review of sarcopenia: enhancing awareness of an increasingly prevalent disease. Bone 105:276–286.  https://doi.org/10.1016/j.bone.2017.09.008 CrossRefPubMedGoogle Scholar
  49. 49.
    Buckinx F, Reginster JY, Brunois T et al (2017) Prevalence of sarcopenia in a population of nursing home residents according to their frailty status: results of the SENIOR cohort. J Musculoskelet Neuronal Interact 17:209–217.  https://doi.org/10.1007/s00198-016-3520-z CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Rossignol P, Masson S, Barlera S et al (2015) Loss in body weight is an independent prognostic factor for mortality in chronic heart failure: insights from the GISSI-HF and Val-HeFT trials. Eur J Heart Fail 17:424–433.  https://doi.org/10.1002/ejhf.240 CrossRefPubMedGoogle Scholar
  51. 51.
    Landi F, Cruz-Jentoft AJ, Liperoti R et al (2013) Sarcopenia and mortality risk in frail olderpersons aged 80 years and older: results from iLSIRENTE study. Age Ageing 42:203–209.  https://doi.org/10.1093/ageing/afs194 CrossRefPubMedGoogle Scholar
  52. 52.
    Brown JC, Harhay MO, Harhay MN (2016) Sarcopenia and mortality among a population-based sample of community-dwelling older adults. J Cachexia Sarcopenia Muscle 7:290–298.  https://doi.org/10.1002/jcsm.12073 CrossRefPubMedGoogle Scholar
  53. 53.
    Ebner N, von Haehling S (2016) Unlocking the wasting enigma: highlights from the 8th Cachexia conference. J Cachexia Sarcopenia Muscle 7:90–94.  https://doi.org/10.1002/jcsm.12106 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Fearon K, Evans WJ, Anker SD (2011) Myopenia-a new universal term for muscle wasting. J Cachexia Sarcopenia Muscle 2:1–3.  https://doi.org/10.1007/s13539-011-0025-7 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Von Haehling S (2012) The muscle in dire straits: mechanisms of wasting in heart failure. Circulation 125:2686–2688.  https://doi.org/10.1161/CIRCULATIONAHA.112.109744 CrossRefGoogle Scholar
  56. 56.
    Anker SD, Coats AJS (1999) Cardiac cachexia: a syndrome with impaired survival and immune and neuroendocrine activation. Chest 115:836–847.  https://doi.org/10.1378/chest.115.3.836 CrossRefPubMedGoogle Scholar
  57. 57.
    Kotler DP (2000) Cachexia. Ann Intern Med 133:622–634CrossRefGoogle Scholar
  58. 58.
    Collamati A, Marzetti E, Calvani R et al (2016) Sarcopenia in heart failure: mechanisms and therapeutic strategies. J Geriatr Cardiol 13:615–624.  https://doi.org/10.11909/j.issn.1671-5411.2016.07.004 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Sullivan MJ, Green HJ, Cobb FR (1990) Skeletal muscle biochemistry and histology in ambulatory patients with long-term heart failure. Circulation 81:518–527.  https://doi.org/10.1161/01.CIR.81.2.518 CrossRefPubMedGoogle Scholar
  60. 60.
    Filippatosa GS, Anker SD, Kremastinos DT (2005) Pathophysiology of peripheral muscle wasting in cardiac cachexia Gerasimos. Curr Opin Clin Nutr Metab Care 8:249–254.  https://doi.org/10.1097/01.mco.0000165002.08955.5b CrossRefGoogle Scholar
  61. 61.
    Evans WJ, Morley JE, Argilés J et al (2008) Cachexia: a new definition. Clin Nutr 27:793–799.  https://doi.org/10.1016/j.clnu.2008.06.013 CrossRefPubMedGoogle Scholar
  62. 62.
    Von Haehling S, Anker SD (2015) Treatment of cachexia: an overview of recent developments. Int J Cardiol 184:726–742.  https://doi.org/10.1016/j.ijcard.2014.10.026 CrossRefGoogle Scholar
  63. 63.
    Von Haehling S (2002) Cachexia: a therapeutic approach beyond cytokine antagonism. Int J Cardiol 85:173–183CrossRefGoogle Scholar
  64. 64.
    Sakuma K, Yamaguchi A (2012) Sarcopenia and cachexia: the adaptations of negative regulators of skeletal muscle mass. J Cachexia Sarcopenia Muscle 3:77–94.  https://doi.org/10.1007/s13539-011-0052-4 CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Schulze PC, Späte U (2005) Insulin-like growth factor-1 and muscle wasting in chronic heart failure. Int J Biochem Cell Biol 37:2023–2035.  https://doi.org/10.1016/j.biocel.2005.04.017 CrossRefPubMedGoogle Scholar
  66. 66.
    Von Haehling S, Steinbeck L, Doehner W et al (2013) Muscle wasting in heart failure: an overview. Int J Biochem Cell Biol 45:2257–2265.  https://doi.org/10.1016/j.biocel.2013.04.02 CrossRefGoogle Scholar
  67. 67.
    Sharma R, Anker SD (2002) Cytokines, apoptosis and cachexia: the potential for TNF antagonism. Int J Cardiol 85:161–171.  https://doi.org/10.1016/S0167-5273(02)00244-9 CrossRefPubMedGoogle Scholar
  68. 68.
    Gielen S, Sandri M, Kozarez I et al (2012) Exercise training attenuates MuRF-1 expression in the skeletal muscle of patients with chronic heart failure independent of age: the randomized Leipzig exercise intervention in chronic heart failure and aging catabolism study. Circulation 125:2716–2727.  https://doi.org/10.1161/CIRCULATIONAHA.111.047381 CrossRefPubMedGoogle Scholar
  69. 69.
    Anker SD, Chua TP, Ponikowski P et al (1997) Hormonal changes and catabolic/ anabolic imbalance in chronic heart failure and their importance for cardiac cachexia. Circulation 96:526–534CrossRefGoogle Scholar
  70. 70.
    Morley J, Thomas D, Wilson M-M (2006) Cachexia: pathophysiology and clinical relevance. Am J Clin Nutr 83:735–743.  https://doi.org/10.1017/S0952675714000244 CrossRefPubMedGoogle Scholar
  71. 71.
    Zamboni M, Rossi AP, Corzato F et al (2013) Sarcopenia, cachexia and congestive heart failure in the elderly. Endocrine Metab Immune Disord 13:58–67CrossRefGoogle Scholar
  72. 72.
    Christensen HM, Kistorp C, Schou M et al (2013) Prevalence of cachexia in chronic heart failure and characteristics of body composition and metabolic status. Endocrine 43:626–634.  https://doi.org/10.1007/s12020-012-9836-3 CrossRefPubMedGoogle Scholar
  73. 73.
    Martinez PF, Okoshi K, Zornoff LAM et al (2010) Chronic heart failure-induced skeletal muscle atrophy, necrosis, and changes in myogenic regulatory factors. Med Sci Monit 16:BR374–BR383PubMedGoogle Scholar
  74. 74.
    Larsen AI, Skadberg Ø, Aarsland T et al (2009) B-type natriuretic peptide is related to histological skeletal muscle abnormalities in patients with chronic heart failure. Int J Cardiol 136:358–362.  https://doi.org/10.1016/j.ijcard.2008.04.085 CrossRefPubMedGoogle Scholar
  75. 75.
    Lipkin DP, Jones DA, Round JM, Poole-Wilson PA (1988) Abnormalities of skeletal muscle in patients with chronic heart failure. Int J Cardiol 18:187–195.  https://doi.org/10.1016/0167-5273%2888%2990164-7 CrossRefPubMedGoogle Scholar
  76. 76.
    Drexler H, Riede U, Munzel T et al (1992) Alterations of skeletal muscle in chronic heart failure. Circulation 85:1751–1759.  https://doi.org/10.1161/01.CIR.85.5.1751 CrossRefPubMedGoogle Scholar
  77. 77.
    Narici MV, Maffulli N (2010) Sarcopenia: characteristics, mechanisms and functional significance. Br Med Bull 95:139–159.  https://doi.org/10.1093/bmb/ldq008 CrossRefPubMedGoogle Scholar
  78. 78.
    Harrington D, Anker SD, Chua TP et al (1997) Skeletal muscle function and its relation to exercise tolerance in chronic heart failure. J Am Coll Cardiol 30:1758–1764.  https://doi.org/10.1016/S0735-1097%2897%2900381-1 CrossRefPubMedGoogle Scholar
  79. 79.
    Brum PC, Bacurau AV, Cunha TF et al (2014) Skeletal myopathy in heart failure: effects of aerobic exercise training. Exp Physiol 99:616–620.  https://doi.org/10.1113/expphysiol.2013.076844 CrossRefPubMedGoogle Scholar
  80. 80.
    Josiak K, Jankowska EA, Piepoli MF et al (2014) Skeletal myopathy in patients with chronic heart failure: significance of anabolic-androgenic hormones. J Cachexia Sarcopenia Muscle 5:287–296.  https://doi.org/10.1007/s13539-014-0152-z CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Von Haehling S, Ebner N, Dos Santos MR et al (2017) Muscle wasting and cachexia in heart failure: mechanisms and therapies. Nat Rev Cardiol 14:323–341.  https://doi.org/10.1038/nrcardio.2017.51 CrossRefGoogle Scholar
  82. 82.
    Pandey A, Parashar A, Kumbhani DJ et al (2015) Exercise training in patients with heart failure and preserved ejection fraction meta-analysis of randomized control trials. Circ Hear Fail 8:33–40.  https://doi.org/10.1161/CIRCHEARTFAILURE.114.001615 CrossRefGoogle Scholar
  83. 83.
    Gielen S, Adams V, Möbius-Winkler S et al (2003) Anti-inflammatory effects of exercise training in the skeletal muscle of patients with chronic heart failure. J Am Coll Cardiol 42:861–868.  https://doi.org/10.1016/S0735-1097(03)00848-9 CrossRefPubMedGoogle Scholar
  84. 84.
    Saitoh M, dos Santos MR, Anker M et al (2016) Neuromuscular electrical stimulation for muscle wasting in heart failure patients. Int J Cardiol 225:200–205.  https://doi.org/10.1016/j.ijcard.2016.09.127 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Isadora Rebolho Sisto
    • 1
  • Melina Hauck
    • 2
  • Rodrigo Della Méa Plentz
    • 3
    • 4
    • 5
    Email author
  1. 1.Graduate Program in RehabilitationFederal University of Health Sciences of Porto AlegrePorto AlegreBrazil
  2. 2.Graduate Program in Health ScienceFederal University of Health Sciences of Porto AlegrePorto AlegreBrazil
  3. 3.Graduate Program in Health SciencesUniversidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA)Porto AlegreBrazil
  4. 4.Graduate Program in Rehabilitation SciencesUniversidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA)Porto AlegreBrazil
  5. 5.Department of Physical TherapyUniversidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA)Porto AlegreBrazil

Personalised recommendations