Advertisement

Muscle Atrophy pp 347-368 | Cite as

The Molecular Mechanisms and Prevention Principles of Muscle Atrophy in Aging

  • Yu Zhang
  • Xiangbin Pan
  • Yi Sun
  • Yong-jian Geng
  • Xi-Yong Yu
  • Yangxin Li
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1088)

Abstract

Muscle atrophy in aging is characterized by progressive loss of muscle mass and function. Muscle mass is determined by the balance of synthesis and degradation of protein, which are regulated by several signaling pathways such as ubiquitin-proteasome system, autophagy-lysosome systems, oxidative stress, proinflammatory cytokines, hormones, and so on. Sufficient nutrition can enhance protein synthesis, while exercise can improve the quality of life in the elderly. This chapter will discuss the epidemiology, pathogenesis, as well as the current treatment for aging-induced muscular atrophy.

Keywords

Muscle atrophy Aging Prevalence Mechanisms Pathophysiological effects Treatments 

Notes

Acknowledgments

This work was supported by a Jiangsu Province Key Scientific and Technological Project (BE2016669), a Suzhou Science and Technology Project (SS201665), Jiangsu Province Peak of Talent in Six Industries (BU24600117), Jiangsu Province Key Discipline/Laboratory of Medicine (XK201118), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Conflict of Interest

The authors declare no conflict of interest.

References

  1. 1.
    DiGirolamo DJ, Kiel DP, Esser KA (2013) Bone and skeletal muscle: neighbors with close ties. J Bone Miner Res 28(7):1509–1518.  https://doi.org/10.1002/jbmr.1969 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Bann D, Chen H, Bonell C, Glynn NW, Fielding RA, Manini T, King AC, Pahor M, Mihalko SL, Gill TM, Life Study i (2016) Socioeconomic differences in the benefits of structured physical activity compared with health education on the prevention of major mobility disability in older adults: the LIFE study. J Epidemiol Community Health 70(9):930–933.  https://doi.org/10.1136/jech-2016-207321 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Pahor M, Guralnik JM, Ambrosius WT, Blair S, Bonds DE, Church TS, Espeland MA, Fielding RA, Gill TM, Groessl EJ, King AC, Kritchevsky SB, Manini TM, McDermott MM, Miller ME, Newman AB, Rejeski WJ, Sink KM, Williamson JD, Investigators LS (2014) Effect of structured physical activity on prevention of major mobility disability in older adults: the LIFE study randomized clinical trial. JAMA 311(23):2387–2396.  https://doi.org/10.1001/jama.2014.5616 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Palus S, Springer JI, Doehner W, von Haehling S, Anker M, Anker SD, Springer J (2017) Models of sarcopenia: short review. Int J Cardiol 238:19–21.  https://doi.org/10.1016/j.ijcard.2017.03.152 CrossRefPubMedGoogle Scholar
  5. 5.
    Iannuzzi-Sucich M, Prestwood KM, Kenny AM (2002) Prevalence of sarcopenia and predictors of skeletal muscle mass in healthy, older men and women. J Gerontol A Biol Sci Med Sci 57(12):M772–M777CrossRefGoogle Scholar
  6. 6.
    Santos VRD, Gomes IC, Bueno DR, Christofaro DGD, Freitas IF Jr, Gobbo LA (2017) Obesity, sarcopenia, sarcopenic obesity and reduced mobility in Brazilian older people aged 80 years and over. Einstein 15(4):435–440.  https://doi.org/10.1590/S1679-45082017AO4058 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Janssen I, Heymsfield SB, Ross R (2002) Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. J Am Geriatr Soc 50(5):889–896CrossRefGoogle Scholar
  8. 8.
    Vidan MT, Blaya-Novakova V, Sanchez E, Ortiz J, Serra-Rexach JA, Bueno H (2016) Prevalence and prognostic impact of frailty and its components in non-dependent elderly patients with heart failure. Eur J Heart Fail 18(7):869–875.  https://doi.org/10.1002/ejhf.518 CrossRefPubMedGoogle Scholar
  9. 9.
    Porter MM, Vandervoort AA, Lexell J (1995) Aging of human muscle: structure, function and adaptability. Scand J Med Sci Sports 5(3):129–142CrossRefGoogle Scholar
  10. 10.
    Kob R, Fellner C, Bertsch T, Wittmann A, Mishura D, Sieber CC, Fischer BE, Stroszczynski C, Bollheimer CL (2015) Gender-specific differences in the development of sarcopenia in the rodent model of the ageing high-fat rat. J Cachexia Sarcopenia Muscle 6(2):181–191.  https://doi.org/10.1002/jcsm.12019 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Guo AY, Leung KS, Siu PM, Qin JH, Chow SK, Qin L, Li CY, Cheung WH (2015) Muscle mass, structural and functional investigations of senescence-accelerated mouse P8 (SAMP8). Exp Anim 64(4):425–433.  https://doi.org/10.1538/expanim.15-0025 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Ohira Y, Yoshinaga T, Ohara M, Kawano F, Wang XD, Higo Y, Terada M, Matsuoka Y, Roy RR, Edgerton VR (2006) The role of neural and mechanical influences in maintaining normal fast and slow muscle properties. Cells Tissues Organs 182(3–4):129–142.  https://doi.org/10.1159/000093963 CrossRefPubMedGoogle Scholar
  13. 13.
    Wanagat J, Cao Z, Pathare P, Aiken JM (2001) Mitochondrial DNA deletion mutations colocalize with segmental electron transport system abnormalities, muscle fiber atrophy, fiber splitting, and oxidative damage in sarcopenia. FASEB J 15(2):322–332.  https://doi.org/10.1096/fj.00-0320com CrossRefPubMedGoogle Scholar
  14. 14.
    Kachaeva EV, Shenkman BS (2012) Various jobs of proteolytic enzymes in skeletal muscle during unloading: facts and speculations. J Biomed Biotechnol 2012:493618.  https://doi.org/10.1155/2012/493618 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Lagirand-Cantaloube J, Offner N, Csibi A, Leibovitch MP, Batonnet-Pichon S, Tintignac LA, Segura CT, Leibovitch SA (2008) The initiation factor eIF3-f is a major target for atrogin1/MAFbx function in skeletal muscle atrophy. EMBO J 27(8):1266–1276.  https://doi.org/10.1038/emboj.2008.52 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Kedar V, McDonough H, Arya R, Li HH, Rockman HA, Patterson C (2004) Muscle-specific RING finger 1 is a bona fide ubiquitin ligase that degrades cardiac troponin I. Proc Natl Acad Sci U S A 101(52):18135–18140.  https://doi.org/10.1073/pnas.0404341102 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Tskhovrebova L, Trinick J (2005) Muscle disease: a giant feels the strain. Nat Med 11(5):478–479.  https://doi.org/10.1038/nm0505-478 CrossRefPubMedGoogle Scholar
  18. 18.
    Labeit S, Kohl CH, Witt CC, Labeit D, Jung J, Granzier H (2010) Modulation of muscle atrophy, fatigue and MLC phosphorylation by MuRF1 as indicated by hindlimb suspension studies on MuRF1-KO mice. J Biomed Biotechnol 2010:693741.  https://doi.org/10.1155/2010/693741 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Chaudhary P, Suryakumar G, Prasad R, Singh SN, Ali S, Ilavazhagan G (2012) Chronic hypobaric hypoxia mediated skeletal muscle atrophy: role of ubiquitin-proteasome pathway and calpains. Mol Cell Biochem 364(1–2):101–113.  https://doi.org/10.1007/s11010-011-1210-x CrossRefPubMedGoogle Scholar
  20. 20.
    Sandri M, Sandri C, Gilbert A, Skurk C, Calabria E, Picard A, Walsh K, Schiaffino S, Lecker SH, Goldberg AL (2004) Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 117(3):399–412CrossRefGoogle Scholar
  21. 21.
    Fu W, Ma Q, Chen L, Li P, Zhang M, Ramamoorthy S, Nawaz Z, Shimojima T, Wang H, Yang Y, Shen Z, Zhang Y, Zhang X, Nicosia SV, Zhang Y, Pledger JW, Chen J, Bai W (2009) MDM2 acts downstream of p53 as an E3 ligase to promote FOXO ubiquitination and degradation. J Biol Chem 284(21):13987–14000.  https://doi.org/10.1074/jbc.M901758200 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Yang JY, Zong CS, Xia W, Yamaguchi H, Ding Q, Xie X, Lang JY, Lai CC, Chang CJ, Huang WC, Huang H, Kuo HP, Lee DF, Li LY, Lien HC, Cheng X, Chang KJ, Hsiao CD, Tsai FJ, Tsai CH, Sahin AA, Muller WJ, Mills GB, Yu D, Hortobagyi GN, Hung MC (2008) ERK promotes tumorigenesis by inhibiting FOXO3a via MDM2-mediated degradation. Nat Cell Biol 10(2):138–148.  https://doi.org/10.1038/ncb1676 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Liu M, Lee DF, Chen CT, Yen CJ, Li LY, Lee HJ, Chang CJ, Chang WC, Hsu JM, Kuo HP, Xia W, Wei Y, Chiu PC, Chou CK, Du Y, Dhar D, Karin M, Chen CH, Hung MC (2012) IKKalpha activation of NOTCH links tumorigenesis via FOXA2 suppression. Mol Cell 45(2):171–184.  https://doi.org/10.1016/j.molcel.2011.11.018 CrossRefPubMedGoogle Scholar
  24. 24.
    Cai D, Frantz JD, Tawa NE Jr, Melendez PA, Oh BC, Lidov HG, Hasselgren PO, Frontera WR, Lee J, Glass DJ, Shoelson SE (2004) IKKbeta/NF-kappaB activation causes severe muscle wasting in mice. Cell 119(2):285–298.  https://doi.org/10.1016/j.cell.2004.09.027 CrossRefPubMedGoogle Scholar
  25. 25.
    Ladner KJ, Caligiuri MA, Guttridge DC (2003) Tumor necrosis factor-regulated biphasic activation of NF-kappa B is required for cytokine-induced loss of skeletal muscle gene products. J Biol Chem 278(4):2294–2303.  https://doi.org/10.1074/jbc.M207129200 CrossRefPubMedGoogle Scholar
  26. 26.
    Masiero E, Agatea L, Mammucari C, Blaauw B, Loro E, Komatsu M, Metzger D, Reggiani C, Schiaffino S, Sandri M (2009) Autophagy is required to maintain muscle mass. Cell Metab 10(6):507–515.  https://doi.org/10.1016/j.cmet.2009.10.008 CrossRefPubMedGoogle Scholar
  27. 27.
    Aucello M, Dobrowolny G, Musaro A (2009) Localized accumulation of oxidative stress causes muscle atrophy through activation of an autophagic pathway. Autophagy 5(4):527–529CrossRefGoogle Scholar
  28. 28.
    Mizushima N, Yamamoto A, Matsui M, Yoshimori T, Ohsumi Y (2004) In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell 15(3):1101–1111.  https://doi.org/10.1091/mbc.E03-09-0704 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Zhao J, Brault JJ, Schild A, Cao P, Sandri M, Schiaffino S, Lecker SH, Goldberg AL (2007) FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab 6(6):472–483.  https://doi.org/10.1016/j.cmet.2007.11.004 CrossRefPubMedGoogle Scholar
  30. 30.
    Mammucari C, Milan G, Romanello V, Masiero E, Rudolf R, Del Piccolo P, Burden SJ, Di Lisi R, Sandri C, Zhao J, Goldberg AL, Schiaffino S, Sandri M (2007) FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab 6(6):458–471.  https://doi.org/10.1016/j.cmet.2007.11.001 CrossRefPubMedGoogle Scholar
  31. 31.
    McClung JM, Judge AR, Powers SK, Yan Z (2010) p38 MAPK links oxidative stress to autophagy-related gene expression in cachectic muscle wasting. Am J Physiol Cell Physiol 298(3):C542–C549.  https://doi.org/10.1152/ajpcell.00192.2009 CrossRefPubMedGoogle Scholar
  32. 32.
    Cohen S, Brault JJ, Gygi SP, Glass DJ, Valenzuela DM, Gartner C, Latres E, Goldberg AL (2009) During muscle atrophy, thick, but not thin, filament components are degraded by MuRF1-dependent ubiquitylation. J Cell Biol 185(6):1083–1095.  https://doi.org/10.1083/jcb.200901052 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Solomon V, Goldberg AL (1996) Importance of the ATP-ubiquitin-proteasome pathway in the degradation of soluble and myofibrillar proteins in rabbit muscle extracts. J Biol Chem 271(43):26690–26697CrossRefGoogle Scholar
  34. 34.
    Levine B, Kroemer G (2008) Autophagy in the pathogenesis of disease. Cell 132(1):27–42.  https://doi.org/10.1016/j.cell.2007.12.018 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Mizushima N, Levine B, Cuervo AM, Klionsky DJ (2008) Autophagy fights disease through cellular self-digestion. Nature 451(7182):1069–1075.  https://doi.org/10.1038/nature06639 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Kaneto H, Katakami N, Matsuhisa M, Matsuoka TA (2010) Role of reactive oxygen species in the progression of type 2 diabetes and atherosclerosis. Mediat Inflamm 2010:453892.  https://doi.org/10.1155/2010/453892 CrossRefGoogle Scholar
  37. 37.
    Piccirillo R, Demontis F, Perrimon N, Goldberg AL (2014) Mechanisms of muscle growth and atrophy in mammals and drosophila. Dev Dyn 243(2):201–215.  https://doi.org/10.1002/dvdy.24036 CrossRefPubMedGoogle Scholar
  38. 38.
    Kregel KC, Zhang HJ (2007) An integrated view of oxidative stress in aging: basic mechanisms, functional effects, and pathological considerations. Am J Physiol Regul Integr Comp Physiol 292(1):R18–R36.  https://doi.org/10.1152/ajpregu.00327.2006 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Sukhanov S, Semprun-Prieto L, Yoshida T, Michael Tabony A, Higashi Y, Galvez S, Delafontaine P (2011) Angiotensin II, oxidative stress and skeletal muscle wasting. Am J Med Sci 342(2):143–147.  https://doi.org/10.1097/MAJ.0b013e318222e620 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Dodd SL, Gagnon BJ, Senf SM, Hain BA, Judge AR (2010) Ros-mediated activation of NF-kappaB and Foxo during muscle disuse. Muscle Nerve 41(1):110–113.  https://doi.org/10.1002/mus.21526 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Zhao W, Swanson SA, Ye J, Li X, Shelton JM, Zhang W, Thomas GD (2006) Reactive oxygen species impair sympathetic vasoregulation in skeletal muscle in angiotensin II-dependent hypertension. Hypertension 48(4):637–643.  https://doi.org/10.1161/01.HYP.0000240347.51386.ea CrossRefPubMedGoogle Scholar
  42. 42.
    Wei Y, Sowers JR, Nistala R, Gong H, Uptergrove GM, Clark SE, Morris EM, Szary N, Manrique C, Stump CS (2006) Angiotensin II-induced NADPH oxidase activation impairs insulin signaling in skeletal muscle cells. J Biol Chem 281(46):35137–35146.  https://doi.org/10.1074/jbc.M601320200 CrossRefPubMedGoogle Scholar
  43. 43.
    Sukhanov S, Higashi Y, Shai SY, Blackstock C, Galvez S, Vaughn C, Titterington J, Delafontaine P (2011) Differential requirement for nitric oxide in IGF-1-induced anti-apoptotic, anti-oxidant and anti-atherosclerotic effects. FEBS Lett 585(19):3065–3072.  https://doi.org/10.1016/j.febslet.2011.08.029 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Pellegrino MA, Desaphy JF, Brocca L, Pierno S, Camerino DC, Bottinelli R (2011) Redox homeostasis, oxidative stress and disuse muscle atrophy. J Physiol 589(Pt 9):2147–2160.  https://doi.org/10.1113/jphysiol.2010.203232 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Palomero J, Pye D, Kabayo T, Spiller DG, Jackson MJ (2008) In situ detection and measurement of intracellular reactive oxygen species in single isolated mature skeletal muscle fibers by real time fluorescence microscopy. Antioxid Redox Signal 10(8):1463–1474.  https://doi.org/10.1089/ars.2007.2009 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Levine S, Nguyen T, Taylor N, Friscia ME, Budak MT, Rothenberg P, Zhu J, Sachdeva R, Sonnad S, Kaiser LR, Rubinstein NA, Powers SK, Shrager JB (2008) Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. N Engl J Med 358(13):1327–1335.  https://doi.org/10.1056/NEJMoa070447 CrossRefPubMedGoogle Scholar
  47. 47.
    Glover EI, Yasuda N, Tarnopolsky MA, Abadi A, Phillips SM (2010) Little change in markers of protein breakdown and oxidative stress in humans in immobilization-induced skeletal muscle atrophy. Appl Physiol Nutr Metab = Physiologie appliquee, nutrition et metabolisme 35(2):125–133.  https://doi.org/10.1139/H09-137 CrossRefPubMedGoogle Scholar
  48. 48.
    Baltgalvis KA, Berger FG, Pena MM, Davis JM, White JP, Carson JA (2009) Muscle wasting and interleukin-6-induced atrogin-I expression in the cachectic Apc ( Min/+ ) mouse. Pflugers Archiv 457(5):989–1001.  https://doi.org/10.1007/s00424-008-0574-6 CrossRefPubMedGoogle Scholar
  49. 49.
    Silva KA, Dong J, Dong Y, Dong Y, Schor N, Tweardy DJ, Zhang L, Mitch WE (2015) Inhibition of Stat3 activation suppresses caspase-3 and the ubiquitin-proteasome system, leading to preservation of muscle mass in cancer cachexia. J Biol Chem 290(17):11177–11187.  https://doi.org/10.1074/jbc.M115.641514 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Bach E, Nielsen RR, Vendelbo MH, Moller AB, Jessen N, Buhl M, Hafstrøm TK, Holm L, Pedersen SB, Pilegaard H, Bienso RS, Jorgensen JO, Moller N (2013) Direct effects of TNF-alpha on local fuel metabolism and cytokine levels in the placebo-controlled, bilaterally infused human leg: increased insulin sensitivity, increased net protein breakdown, and increased IL-6 release. Diabetes 62(12):4023–4029.  https://doi.org/10.2337/db13-0138 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Zhou J, Liu B, Liang C, Li Y, Song YH (2016) Cytokine signaling in skeletal muscle wasting. Trends Endocrinol Metab 27(5):335–347.  https://doi.org/10.1016/j.tem.2016.03.002 CrossRefPubMedGoogle Scholar
  52. 52.
    Wajant H, Scheurich P (2011) TNFR1-induced activation of the classical NF-kappaB pathway. FEBS J 278(6):862–876.  https://doi.org/10.1111/j.1742-4658.2011.08015.x CrossRefPubMedGoogle Scholar
  53. 53.
    Mittal A, Bhatnagar S, Kumar A, Lach-Trifilieff E, Wauters S, Li H, Makonchuk DY, Glass DJ, Kumar A (2010) The TWEAK-Fn14 system is a critical regulator of denervation-induced skeletal muscle atrophy in mice. J Cell Biol 188(6):833–849.  https://doi.org/10.1083/jcb.200909117 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Paul PK, Gupta SK, Bhatnagar S, Panguluri SK, Darnay BG, Choi Y, Kumar A (2010) Targeted ablation of TRAF6 inhibits skeletal muscle wasting in mice. J Cell Biol 191(7):1395–1411.  https://doi.org/10.1083/jcb.201006098 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Madrigal-Matute J, Fernandez-Laso V, Sastre C, Llamas-Granda P, Egido J, Martin-Ventura JL, Zalba G, Blanco-Colio LM (2015) TWEAK/Fn14 interaction promotes oxidative stress through NADPH oxidase activation in macrophages. Cardiovasc Res 108(1):139–147.  https://doi.org/10.1093/cvr/cvv204 CrossRefPubMedGoogle Scholar
  56. 56.
    Wissing ER, Boyer JG, Kwong JQ, Sargent MA, Karch J, McNally EM, Otsu K, Molkentin JD (2014) P38alpha MAPK underlies muscular dystrophy and myofiber death through a Bax-dependent mechanism. Hum Mol Genet 23(20):5452–5463.  https://doi.org/10.1093/hmg/ddu270 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Bernet JD, Doles JD, Hall JK, Kelly Tanaka K, Carter TA, Olwin BB (2014) p38 MAPK signaling underlies a cell-autonomous loss of stem cell self-renewal in skeletal muscle of aged mice. Nat Med 20(3):265–271.  https://doi.org/10.1038/nm.3465 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Zhao W, Qin W, Pan J, Wu Y, Bauman WA, Cardozo C (2009) Dependence of dexamethasone-induced Akt/FOXO1 signaling, upregulation of MAFbx, and protein catabolism upon the glucocorticoid receptor. Biochem Biophys Res Commun 378(3):668–672.  https://doi.org/10.1016/j.bbrc.2008.11.123 CrossRefPubMedGoogle Scholar
  59. 59.
    Tavi P, Westerblad H (2011) The role of in vivo Ca(2)(+) signals acting on Ca(2)(+)-calmodulin-dependent proteins for skeletal muscle plasticity. J Physiol 589(Pt 21):5021–5031.  https://doi.org/10.1113/jphysiol.2011.212860 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Brault JJ, Jespersen JG, Goldberg AL (2010) Peroxisome proliferator-activated receptor gamma coactivator 1alpha or 1beta overexpression inhibits muscle protein degradation, induction of ubiquitin ligases, and disuse atrophy. J Biol Chem 285(25):19460–19471.  https://doi.org/10.1074/jbc.M110.113092 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    van Wessel T, de Haan A, van der Laarse WJ, Jaspers RT (2010) The muscle fiber type-fiber size paradox: hypertrophy or oxidative metabolism? Eur J Appl Physiol 110(4):665–694.  https://doi.org/10.1007/s00421-010-1545-0 CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Chen LK, Liu LK, Woo J, Assantachai P, Auyeung TW, Bahyah KS, Chou MY, Chen LY, Hsu PS, Krairit O, Lee JS, Lee WJ, Lee Y, Liang CK, Limpawattana P, Lin CS, Peng LN, Satake S, Suzuki T, Won CW, Wu CH, Wu SN, Zhang T, Zeng P, Akishita M, Arai H (2014) Sarcopenia in Asia: consensus report of the Asian working Group for Sarcopenia. J Am Med Dir Assoc 15(2):95–101.  https://doi.org/10.1016/j.jamda.2013.11.025 CrossRefPubMedGoogle Scholar
  63. 63.
    McIntosh EI, Smale KB, Vallis LA (2013) Predicting fat-free mass index and sarcopenia: a pilot study in community-dwelling older adults. Age 35(6):2423–2434.  https://doi.org/10.1007/s11357-012-9505-8 CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Beaudart C, Reginster JY, Slomian J, Buckinx F, Dardenne N, Quabron A, Slangen C, Gillain S, Petermans J, Bruyere O (2015) Estimation of sarcopenia prevalence using various assessment tools. Exp Gerontol 61:31–37.  https://doi.org/10.1016/j.exger.2014.11.014 CrossRefPubMedGoogle Scholar
  65. 65.
    Christensen U, Stovring N, Schultz-Larsen K, Schroll M, Avlund K (2006) Functional ability at age 75: is there an impact of physical inactivity from middle age to early old age? Scand J Med Sci Sports 16(4):245–251.  https://doi.org/10.1111/j.1600-0838.2005.00459.x CrossRefPubMedGoogle Scholar
  66. 66.
    Macaluso A, De Vito G (2004) Muscle strength, power and adaptations to resistance training in older people. Eur J Appl Physiol 91(4):450–472.  https://doi.org/10.1007/s00421-003-0991-3 CrossRefPubMedGoogle Scholar
  67. 67.
    Pisconti A, Brunelli S, Di Padova M, De Palma C, Deponti D, Baesso S, Sartorelli V, Cossu G, Clementi E (2006) Follistatin induction by nitric oxide through cyclic GMP: a tightly regulated signaling pathway that controls myoblast fusion. J Cell Biol 172(2):233–244.  https://doi.org/10.1083/jcb.200507083 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Amthor H, Macharia R, Navarrete R, Schuelke M, Brown SC, Otto A, Voit T, Muntoni F, Vrbova G, Partridge T, Zammit P, Bunger L, Patel K (2007) Lack of myostatin results in excessive muscle growth but impaired force generation. Proc Natl Acad Sci U S A 104(6):1835–1840.  https://doi.org/10.1073/pnas.0604893104 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Narici MV, Maffulli N (2010) Sarcopenia: characteristics, mechanisms and functional significance. Br Med Bull 95:139–159.  https://doi.org/10.1093/bmb/ldq008 CrossRefPubMedGoogle Scholar
  70. 70.
    Martel GF, Roth SM, Ivey FM, Lemmer JT, Tracy BL, Hurlbut DE, Metter EJ, Hurley BF, Rogers MA (2006) Age and sex affect human muscle fibre adaptations to heavy-resistance strength training. Exp Physiol 91(2):457–464.  https://doi.org/10.1113/expphysiol.2005.032771 CrossRefPubMedGoogle Scholar
  71. 71.
    Hawke TJ (2005) Muscle stem cells and exercise training. Exerc Sport Sci Rev 33(2):63–68CrossRefGoogle Scholar
  72. 72.
    Mu X, Urso ML, Murray K, Fu F, Li Y (2010) Relaxin regulates MMP expression and promotes satellite cell mobilization during muscle healing in both young and aged mice. Am J Pathol 177(5):2399–2410.  https://doi.org/10.2353/ajpath.2010.091121 CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Wada KI, Takahashi H, Katsuta S, Soya H (2002) No decrease in myonuclear number after long-term denervation in mature mice. Am J Physiol Cell Physiol 283(2):C484–C488.  https://doi.org/10.1152/ajpcell.00025.2002 CrossRefPubMedGoogle Scholar
  74. 74.
    Kadi F, Charifi N, Denis C, Lexell J, Andersen JL, Schjerling P, Olsen S, Kjaer M (2005) The behaviour of satellite cells in response to exercise: what have we learned from human studies? Pflugers Archiv 451(2):319–327.  https://doi.org/10.1007/s00424-005-1406-6 CrossRefPubMedGoogle Scholar
  75. 75.
    Charge SB, Rudnicki MA (2004) Cellular and molecular regulation of muscle regeneration. Physiol Rev 84(1):209–238.  https://doi.org/10.1152/physrev.00019.2003 CrossRefPubMedGoogle Scholar
  76. 76.
    Hawke TJ, Garry DJ (2001) Myogenic satellite cells: physiology to molecular biology. J Appl Physiol 91(2):534–551.  https://doi.org/10.1152/jappl.2001.91.2.534 CrossRefPubMedGoogle Scholar
  77. 77.
    Tatsumi R, Sheehan SM, Iwasaki H, Hattori A, Allen RE (2001) Mechanical stretch induces activation of skeletal muscle satellite cells in vitro. Exp Cell Res 267(1):107–114.  https://doi.org/10.1006/excr.2001.5252 CrossRefPubMedGoogle Scholar
  78. 78.
    Anastasi S, Giordano S, Sthandier O, Gambarotta G, Maione R, Comoglio P, Amati P (1997) A natural hepatocyte growth factor/scatter factor autocrine loop in myoblast cells and the effect of the constitutive Met kinase activation on myogenic differentiation. J Cell Biol 137(5):1057–1068CrossRefGoogle Scholar
  79. 79.
    Metcalf D (2003) The unsolved enigmas of leukemia inhibitory factor. Stem Cells 21(1):5–14.  https://doi.org/10.1634/stemcells.21-1-5 CrossRefPubMedGoogle Scholar
  80. 80.
    Spangenburg EE, Booth FW (2002) Multiple signaling pathways mediate LIF-induced skeletal muscle satellite cell proliferation. Am J Physiol Cell Physiol 283(1):C204–C211.  https://doi.org/10.1152/ajpcell.00574.2001 CrossRefPubMedGoogle Scholar
  81. 81.
    Machida S, Booth FW (2004) Insulin-like growth factor 1 and muscle growth: implication for satellite cell proliferation. Proc Nutr Soc 63(2):337–340.  https://doi.org/10.1079/PNS2004354 CrossRefPubMedGoogle Scholar
  82. 82.
    Oksbjerg N, Gondret F, Vestergaard M (2004) Basic principles of muscle development and growth in meat-producing mammals as affected by the insulin-like growth factor (IGF) system. Domest Anim Endocrinol 27(3):219–240.  https://doi.org/10.1016/j.domaniend.2004.06.007 CrossRefPubMedGoogle Scholar
  83. 83.
    Kopan R, Nye JS, Weintraub H (1994) The intracellular domain of mouse Notch: a constitutively activated repressor of myogenesis directed at the basic helix-loop-helix region of MyoD. Development 120(9):2385–2396PubMedGoogle Scholar
  84. 84.
    Sun H, Li L, Vercherat C, Gulbagci NT, Acharjee S, Li J, Chung TK, Thin TH, Taneja R (2007) Stra13 regulates satellite cell activation by antagonizing Notch signaling. J Cell Biol 177(4):647–657.  https://doi.org/10.1083/jcb.200609007 CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Willert K, Jones KA (2006) Wnt signaling: is the party in the nucleus? Genes Dev 20(11):1394–1404.  https://doi.org/10.1101/gad.1424006 CrossRefPubMedGoogle Scholar
  86. 86.
    Shea KL, Xiang W, LaPorta VS, Licht JD, Keller C, Basson MA, Brack AS (2010) Sprouty1 regulates reversible quiescence of a self-renewing adult muscle stem cell pool during regeneration. Cell Stem Cell 6(2):117–129.  https://doi.org/10.1016/j.stem.2009.12.015 CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Iritani S, Imai K, Takai K, Hanai T, Ideta T, Miyazaki T, Suetsugu A, Shiraki M, Shimizu M, Moriwaki H (2015) Skeletal muscle depletion is an independent prognostic factor for hepatocellular carcinoma. J Gastroenterol 50(3):323–332.  https://doi.org/10.1007/s00535-014-0964-9 CrossRefPubMedGoogle Scholar
  88. 88.
    Rizzoli R (2015) Nutrition and sarcopenia. J Clin Densitometry 18(4):483–487.  https://doi.org/10.1016/j.jocd.2015.04.014 CrossRefGoogle Scholar
  89. 89.
    Wagatsuma A, Sakuma K (2014) Vitamin D signaling in myogenesis: potential for treatment of sarcopenia. Biomed Res Int 2014:121254.  https://doi.org/10.1155/2014/121254 CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Groen BB, Res PT, Pennings B, Hertle E, Senden JM, Saris WH, van Loon LJ (2012) Intragastric protein administration stimulates overnight muscle protein synthesis in elderly men. Am J Phys Endocrinol Metab 302(1):E52–E60.  https://doi.org/10.1152/ajpendo.00321.2011 CrossRefGoogle Scholar
  91. 91.
    Robinson S, Cooper C, Aihie Sayer A (2012) Nutrition and sarcopenia: a review of the evidence and implications for preventive strategies. J Aging Res 2012:510801.  https://doi.org/10.1155/2012/510801 CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Carlson ME, Suetta C, Conboy MJ, Aagaard P, Mackey A, Kjaer M, Conboy I (2009) Molecular aging and rejuvenation of human muscle stem cells. EMBO Mol Med 1(8–9):381–391.  https://doi.org/10.1002/emmm.200900045 CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Visser M, Pluijm SM, Stel VS, Bosscher RJ, Deeg DJ, Longitudinal Aging Study A (2002) Physical activity as a determinant of change in mobility performance: the Longitudinal Aging Study Amsterdam. J Am Geriatr Soc 50(11):1774–1781CrossRefGoogle Scholar
  94. 94.
    Marcotte GR, West DW, Baar K (2015) The molecular basis for load-induced skeletal muscle hypertrophy. Calcif Tissue Int 96(3):196–210.  https://doi.org/10.1007/s00223-014-9925-9 CrossRefPubMedGoogle Scholar
  95. 95.
    Kadi F, Charifi N, Denis C, Lexell J (2004) Satellite cells and myonuclei in young and elderly women and men. Muscle Nerve 29(1):120–127.  https://doi.org/10.1002/mus.10510 CrossRefPubMedGoogle Scholar
  96. 96.
    Paulsen G, Mikkelsen UR, Raastad T, Peake JM (2012) Leucocytes, cytokines and satellite cells: what role do they play in muscle damage and regeneration following eccentric exercise? Exerc Immunol Rev 18:42–97PubMedGoogle Scholar
  97. 97.
    Verney J, Kadi F, Charifi N, Feasson L, Saafi MA, Castells J, Piehl-Aulin K, Denis C (2008) Effects of combined lower body endurance and upper body resistance training on the satellite cell pool in elderly subjects. Muscle Nerve 38(3):1147–1154.  https://doi.org/10.1002/mus.21054 CrossRefPubMedGoogle Scholar
  98. 98.
    Horii N, Uchida M, Hasegawa N, Fujie S, Oyanagi E, Yano H, Hashimoto T, Iemitsu M (2018) Resistance training prevents muscle fibrosis and atrophy via down-regulation of C1q-induced Wnt signaling in senescent mice. FASEB J:fj201700772RRR.  https://doi.org/10.1096/fj.201700772RRR CrossRefGoogle Scholar
  99. 99.
    Chang YK, Chu CH, Wang CC, Song TF, Wei GX (2015) Effect of acute exercise and cardiovascular fitness on cognitive function: an event-related cortical desynchronization study. Psychophysiology 52(3):342–351.  https://doi.org/10.1111/psyp.12364 CrossRefPubMedGoogle Scholar
  100. 100.
    Santos RV, Viana VA, Boscolo RA, Marques VG, Santana MG, Lira FS, Tufik S, de Mello MT (2012) Moderate exercise training modulates cytokine profile and sleep in elderly people. Cytokine 60(3):731–735.  https://doi.org/10.1016/j.cyto.2012.07.028 CrossRefPubMedGoogle Scholar
  101. 101.
    Lira FS, Neto JC, Seelaender M (2014) Exercise training as treatment in cancer cachexia. Appl Physiol Nutr Metab = Physiologie appliquee, nutrition et metabolisme 39(6):679–686.  https://doi.org/10.1139/apnm-2013-0554 CrossRefPubMedGoogle Scholar
  102. 102.
    Alves CR, da Cunha TF, da Paixao NA, Brum PC (2015) Aerobic exercise training as therapy for cardiac and cancer cachexia. Life Sci 125:9–14.  https://doi.org/10.1016/j.lfs.2014.11.029 CrossRefPubMedGoogle Scholar
  103. 103.
    Meursinge Reynders R, Ronchi L, Ladu L, Van Etten-Jamaludin F, Bipat S (2013) Insertion torque and orthodontic mini-implants: a systematic review of the artificial bone literature. Proc Inst Mech Eng H J Eng Med 227(11):1181–1202.  https://doi.org/10.1177/0954411913495986 CrossRefGoogle Scholar
  104. 104.
    Handschin C, Spiegelman BM (2008) The role of exercise and PGC1alpha in inflammation and chronic disease. Nature 454(7203):463–469.  https://doi.org/10.1038/nature07206 CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Reynolds TH, Reid P, Larkin LM, Dengel DR (2004) Effects of aerobic exercise training on the protein kinase B (PKB)/mammalian target of rapamycin (mTOR) signaling pathway in aged skeletal muscle. Exp Gerontol 39(3):379–385.  https://doi.org/10.1016/j.exger.2003.12.005 CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Fujita S, Rasmussen BB, Cadenas JG, Drummond MJ, Glynn EL, Sattler FR, Volpi E (2007) Aerobic exercise overcomes the age-related insulin resistance of muscle protein metabolism by improving endothelial function and Akt/mammalian target of rapamycin signaling. Diabetes 56(6):1615–1622.  https://doi.org/10.2337/db06-1566 CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Kim TN, Choi KM (2013) Sarcopenia: definition, epidemiology, and pathophysiology. J Bone Metab 20(1):1–10.  https://doi.org/10.11005/jbm.2013.20.1.1 CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Winbanks CE, Murphy KT, Bernardo BC, Qian H, Liu Y, Sepulveda PV, Beyer C, Hagg A, Thomson RE, Chen JL, Walton KL, Loveland KL, McMullen JR, Rodgers BD, Harrison CA, Lynch GS, Gregorevic P (2016) Smad7 gene delivery prevents muscle wasting associated with cancer cachexia in mice. Sci Transl Med 8(348):348ra398.  https://doi.org/10.1126/scitranslmed.aac4976 CrossRefGoogle Scholar
  109. 109.
    Koning M, Werker PM, van Luyn MJ, Krenning G, Harmsen MC (2012) A global downregulation of microRNAs occurs in human quiescent satellite cells during myogenesis. Differentiation 84(4):314–321.  https://doi.org/10.1016/j.diff.2012.08.002 CrossRefPubMedGoogle Scholar
  110. 110.
    Chen Y, Gelfond J, McManus LM, Shireman PK (2011) Temporal microRNA expression during in vitro myogenic progenitor cell proliferation and differentiation: regulation of proliferation by miR-682. Physiol Genomics 43(10):621–630.  https://doi.org/10.1152/physiolgenomics.00136.2010 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Yu Zhang
    • 1
  • Xiangbin Pan
    • 2
  • Yi Sun
    • 3
  • Yong-jian Geng
    • 4
  • Xi-Yong Yu
    • 5
  • Yangxin Li
    • 1
  1. 1.Institute for Cardiovascular Science & Department of Cardiovascular SurgeryFirst Affiliated Hospital of Soochow UniversitySuzhouPeople’s Republic of China
  2. 2.Department of Cardiac SurgeryFuwai HospitalBeijingPeople’s Republic of China
  3. 3.Fuwai Yunnan Cardiovascular HospitalKunmingPeople’s Republic of China
  4. 4.University of TexasHoustonUSA
  5. 5.Guangzhou Medical UniversityGuangzhouPeople’s Republic of China

Personalised recommendations