Advertisement

An Overview of Muscle Atrophy

  • Shengguang Ding
  • Qiying Dai
  • Haitao Huang
  • Yiming Xu
  • Chongjun Zhong
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1088)

Abstract

Muscle is the most abundant tissue in human body, and it can be atrophy when synthesis is inferior to degradation. Muscle atrophy is prevalent as it is a complication of many diseases. Besides its devastating effects on health, it also decreases life quality and increases mortality as well. This review provides an overview of muscle atrophy, including its prevalence, economic and health burden, and clinical therapy. Its clinical therapy includes exercise training, nutritional therapy, electrical stimulation, and drugs such as testosterone and ghrelin/IGF-1 analogues. More large-scale, long-term clinical trials are needed for therapies for muscle atrophy. In addition, more therapeutic targets are highly needed.

Keywords

Muscle atrophy Overview 

Notes

Competing Financial Interests

The authors declare no competing financial interests.

References

  1. 1.
    Schwartz LM (2008) Atrophy and programmed cell death of skeletal muscle. Cell Death Differ 15(7):1163–1169.  https://doi.org/10.1038/cdd.2008.68 CrossRefPubMedGoogle Scholar
  2. 2.
    Bonaldo P, Sandri M (2013) Cellular and molecular mechanisms of muscle atrophy. Dis Model Mech 6(1):25–39.  https://doi.org/10.1242/dmm.010389 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Stein TP, Bolster DR (2006) Insights into muscle atrophy and recovery pathway based on genetic models. Curr Opin Clin Nutr Metab Care 9(4):395–402.  https://doi.org/10.1097/01.mco.0000232899.51544.69 CrossRefPubMedGoogle Scholar
  4. 4.
    Rodriguez J, Vernus B, Chelh I, Cassar-Malek I, Gabillard JC, Hadj Sassi A, Seiliez I, Picard B, Bonnieu A (2014) Myostatin and the skeletal muscle atrophy and hypertrophy signaling pathways. Cell Mol Life Sci 71(22):4361–4371.  https://doi.org/10.1007/s00018-014-1689-x CrossRefPubMedGoogle Scholar
  5. 5.
    Ruegg MA, Glass DJ (2011) Molecular mechanisms and treatment options for muscle wasting diseases. Annu Rev Pharmacol Toxicol 51:373–395.  https://doi.org/10.1146/annurev-pharmtox-010510-100537 CrossRefPubMedGoogle Scholar
  6. 6.
    Glass DJ (2005) Skeletal muscle hypertrophy and atrophy signaling pathways. Int J Biochem Cell Biol 37(10):1974–1984.  https://doi.org/10.1016/j.biocel.2005.04.018 CrossRefPubMedGoogle Scholar
  7. 7.
    Elliott B, Renshaw D, Getting S, Mackenzie R (2012) The central role of myostatin in skeletal muscle and whole body homeostasis. Acta Physiol (Oxford) 205(3):324–340.  https://doi.org/10.1111/j.1748-1716.2012.02423.x CrossRefGoogle Scholar
  8. 8.
    Pokorski M (2016) Preface. Neuroscience and respiration. Adv Exp Med Biol 878:v–viPubMedGoogle Scholar
  9. 9.
    Dutt V, Gupta S, Dabur R, Injeti E, Mittal A (2015) Skeletal muscle atrophy: potential therapeutic agents and their mechanisms of action. Pharmacol Res 99:86–100.  https://doi.org/10.1016/j.phrs.2015.05.010 CrossRefPubMedGoogle Scholar
  10. 10.
    Cohen S, Nathan JA, Goldberg AL (2015) Muscle wasting in disease: molecular mechanisms and promising therapies. Nat Rev Drug Discov 14(1):58–74.  https://doi.org/10.1038/nrd4467 CrossRefPubMedGoogle Scholar
  11. 11.
    Workeneh BT, Mitch WE (2010) Review of muscle wasting associated with chronic kidney disease. Am J Clin Nutr 91(4):1128S–1132S.  https://doi.org/10.3945/ajcn.2010.28608B CrossRefPubMedGoogle Scholar
  12. 12.
    Schieffer B, Wollert KC, Berchtold M, Saal K, Schieffer E, Hornig B, Riede UN, Drexler H (1995) Development and prevention of skeletal muscle structural alterations after experimental myocardial infarction. Am J Phys 269(5 Pt 2):H1507–H1513.  https://doi.org/10.1152/ajpheart.1995.269.5.H1507 CrossRefGoogle Scholar
  13. 13.
    Uchmanowicz I, Loboz-Rudnicka M, Szelag P, Jankowska-Polanska B, Loboz-Grudzien K (2014) Frailty in heart failure. Curr Heart Fail Rep 11(3):266–273.  https://doi.org/10.1007/s11897-014-0198-4 CrossRefPubMedGoogle Scholar
  14. 14.
    Damatto RL, Martinez PF, Lima AR, Cezar MD, Campos DH, Oliveira Junior SA, Guizoni DM, Bonomo C, Nakatani BT, Dal Pai Silva M, Carvalho RF, Okoshi K, Okoshi MP (2013) Heart failure-induced skeletal myopathy in spontaneously hypertensive rats. Int J Cardiol 167(3):698–703.  https://doi.org/10.1016/j.ijcard.2012.03.063 CrossRefPubMedGoogle Scholar
  15. 15.
    von Haehling S, Steinbeck L, Doehner W, Springer J, Anker SD (2013) Muscle wasting in heart failure: an overview. Int J Biochem Cell Biol 45(10):2257–2265.  https://doi.org/10.1016/j.biocel.2013.04.025 CrossRefGoogle Scholar
  16. 16.
    Ebner N, Elsner S, Springer J, von Haehling S (2014) Molecular mechanisms and treatment targets of muscle wasting and cachexia in heart failure: an overview. Curr Opin Support Palliat Care 8(1):15–24.  https://doi.org/10.1097/SPC.0000000000000030 CrossRefPubMedGoogle Scholar
  17. 17.
    Strassburg S, Springer J, Anker SD (2005) Muscle wasting in cardiac cachexia. Int J Biochem Cell Biol 37(10):1938–1947.  https://doi.org/10.1016/j.biocel.2005.03.013 CrossRefPubMedGoogle Scholar
  18. 18.
    Coats AJS (2018) Cardiac cachexia – a window to the wasting disorders cardiac cachexia: perspectives for prevention and treatment skeletal muscle aging: influence of oxidative stress and physical exercise cancer-induced muscle wasting: latest findings in prevention and treatment cancer-induced cardiac cachexia: pathogenesis and impact of physical activity (Review) muscle wasting and cachexia in heart failure: mechanisms and therapies effects of growth hormone on cardiac remodeling and soleus muscle in rats with aortic stenosis-induced heart failure. Arq Bras Cardiol 110(1):102–103.  https://doi.org/10.5935/abc.20180009 CrossRefPubMedGoogle Scholar
  19. 19.
    Dehlin O (1993) Sarcopenia – an old age disease possible to treat. Lakartidningen 90(18):1731PubMedGoogle Scholar
  20. 20.
    Evans WJ, Campbell WW (1993) Sarcopenia and age-related changes in body composition and functional capacity. J Nutr 123(2 Suppl):465–468CrossRefGoogle Scholar
  21. 21.
    Evans WJ (1995) What is sarcopenia? J Gerontol A Biol Sci Med Sci 50:5–8CrossRefGoogle Scholar
  22. 22.
    Short KR, Nair KS (1999) Mechanisms of sarcopenia of aging. J Endocrinol Investig 22(5 Suppl):95–105Google Scholar
  23. 23.
    Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, Martin FC, Michel JP, Rolland Y, Schneider SM, Topinkova E, Vandewoude M, Zamboni M, European Working Group on Sarcopenia in Older P (2010) Sarcopenia: European consensus on definition and diagnosis: report of the European working group on sarcopenia in older people. Age Ageing 39(4):412–423.  https://doi.org/10.1093/ageing/afq034 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Doherty TJ (2003) Invited review: aging and sarcopenia. J Appl Physiol (1985) 95(4):1717–1727.  https://doi.org/10.1152/japplphysiol.00347.2003 CrossRefGoogle Scholar
  25. 25.
    Morley JE, Baumgartner RN, Roubenoff R, Mayer J, Nair KS (2001) Sarcopenia. J Lab Clin Med 137(4):231–243.  https://doi.org/10.1067/mlc.2001.113504 CrossRefPubMedGoogle Scholar
  26. 26.
    Thompson LV (2009) Age-related muscle dysfunction. Exp Gerontol 44(1–2):106–111.  https://doi.org/10.1016/j.exger.2008.05.003 CrossRefPubMedGoogle Scholar
  27. 27.
    Keller K (2018) Sarcopenia. Wien Med Wochenschr.  https://doi.org/10.1007/s10354-018-0618-2
  28. 28.
    Lin J, Lopez EF, Jin Y, Van Remmen H, Bauch T, Han HC, Lindsey ML (2008) Age-related cardiac muscle sarcopenia: combining experimental and mathematical modeling to identify mechanisms. Exp Gerontol 43(4):296–306.  https://doi.org/10.1016/j.exger.2007.12.005 CrossRefPubMedGoogle Scholar
  29. 29.
    Lau EM, Lynn HS, Woo JW, Kwok TC, Melton LJ 3rd (2005) Prevalence of and risk factors for sarcopenia in elderly Chinese men and women. J Gerontol A Biol Sci Med Sci 60(2):213–216CrossRefGoogle Scholar
  30. 30.
    Evans WJ, Morley JE, Argiles J, Bales C, Baracos V, Guttridge D, Jatoi A, Kalantar-Zadeh K, Lochs H, Mantovani G, Marks D, Mitch WE, Muscaritoli M, Najand A, Ponikowski P, Rossi Fanelli F, Schambelan M, Schols A, Schuster M, Thomas D, Wolfe R, Anker SD (2008) Cachexia: a new definition. Clin Nutr 27(6):793–799.  https://doi.org/10.1016/j.clnu.2008.06.013 CrossRefPubMedGoogle Scholar
  31. 31.
    Lainscak M, Filippatos GS, Gheorghiade M, Fonarow GC, Anker SD (2008) Cachexia: common, deadly, with an urgent need for precise definition and new therapies. Am J Cardiol 101(11A):8E–10E.  https://doi.org/10.1016/j.amjcard.2008.02.065 CrossRefPubMedGoogle Scholar
  32. 32.
    Morley JE, Anker SD, Evans WJ (2009) Cachexia and aging: an update based on the fourth international cachexia meeting. J Nutr Health Aging 13(1):47–55CrossRefGoogle Scholar
  33. 33.
    Durham WJ, Dillon EL, Sheffield-Moore M (2009) Inflammatory burden and amino acid metabolism in cancer cachexia. Curr Opin Clin Nutr Metab Care 12(1):72–77.  https://doi.org/10.1097/MCO.0b013e32831cef61 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Fried LP, Tangen CM, Walston J, Newman AB, Hirsch C, Gottdiener J, Seeman T, Tracy R, Kop WJ, Burke G, McBurnie MA, Cardiovascular Health Study Collaborative Research G (2001) Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci 56(3):M146–M156CrossRefGoogle Scholar
  35. 35.
    Stenholm S, Harris TB, Rantanen T, Visser M, Kritchevsky SB, Ferrucci L (2008) Sarcopenic obesity: definition, cause and consequences. Curr Opin Clin Nutr Metab Care 11(6):693–700.  https://doi.org/10.1097/MCO.0b013e328312c37d CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Patel HP, Syddall HE, Jameson K, Robinson S, Denison H, Roberts HC, Edwards M, Dennison E, Cooper C, Aihie Sayer A (2013) Prevalence of sarcopenia in community-dwelling older people in the UK using the European Working Group on Sarcopenia in Older People (EWGSOP) definition: findings from the Hertfordshire Cohort Study (HCS). Age Ageing 42(3):378–384.  https://doi.org/10.1093/ageing/afs197 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Wu IC, Lin CC, Hsiung CA, Wang CY, Wu CH, Chan DC, Li TC, Lin WY, Huang KC, Chen CY, Hsu CC, Sarcopenia, Translational Aging Research in Taiwan T (2014) Epidemiology of sarcopenia among community-dwelling older adults in Taiwan: a pooled analysis for a broader adoption of sarcopenia assessments. Geriatr Gerontol Int 14(Suppl 1):52–60.  https://doi.org/10.1111/ggi.12193 CrossRefPubMedGoogle Scholar
  38. 38.
    Morley JE, Anker SD, von Haehling S (2014) Prevalence, incidence, and clinical impact of sarcopenia: facts, numbers, and epidemiology-update 2014. J Cachexia Sarcopenia Muscle 5(4):253–259.  https://doi.org/10.1007/s13539-014-0161-y CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Kemmler W, Teschler M, Goisser S, Bebenek M, von Stengel S, Bollheimer LC, Sieber CC, Freiberger E (2015) Prevalence of sarcopenia in Germany and the corresponding effect of osteoarthritis in females 70 years and older living in the community: results of the FORMoSA study. Clin Interv Aging 10:1565–1573.  https://doi.org/10.2147/CIA.S89585 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Gao L, Jiang J, Yang M, Hao Q, Luo L, Dong B (2015) Prevalence of sarcopenia and associated factors in Chinese community-dwelling elderly: comparison between rural and urban areas. J Am Med Dir Assoc 16(11):1003 e1001–1003 e1006.  https://doi.org/10.1016/j.jamda.2015.07.020 CrossRefGoogle Scholar
  41. 41.
    Lee ES, Park HM (2015) Prevalence of sarcopenia in healthy Korean elderly women. J Bone Metab 22(4):191–195.  https://doi.org/10.11005/jbm.2015.22.4.191 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Melton LJ 3rd, Khosla S, Crowson CS, O’Connor MK, O’Fallon WM, Riggs BL (2000) Epidemiology of sarcopenia. J Am Geriatr Soc 48(6):625–630CrossRefGoogle Scholar
  43. 43.
    Dodds RM, Roberts HC, Cooper C, Sayer AA (2015) The epidemiology of sarcopenia. J Clin Densitom 18(4):461–466.  https://doi.org/10.1016/j.jocd.2015.04.012 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Diz JB, Leopoldino AA, Moreira BS, Henschke N, Dias RC, Pereira LS, Oliveira VC (2017) Prevalence of sarcopenia in older Brazilians: a systematic review and meta-analysis. Geriatr Gerontol Int 17(1):5–16.  https://doi.org/10.1111/ggi.12720 CrossRefPubMedGoogle Scholar
  45. 45.
    Shafiee G, Keshtkar A, Soltani A, Ahadi Z, Larijani B, Heshmat R (2017) Prevalence of sarcopenia in the world: a systematic review and meta- analysis of general population studies. J Diabetes Metab Disord 16:21.  https://doi.org/10.1186/s40200-017-0302-x CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Hao Q, Hu X, Xie L, Chen J, Jiang J, Dong B, Yang M (2018) Prevalence of sarcopenia and associated factors in hospitalised older patients: a cross-sectional study. Australas J Ageing 37(1):62–67.  https://doi.org/10.1111/ajag.12492 CrossRefPubMedGoogle Scholar
  47. 47.
    Yoshimura Y, Wakabayashi H, Bise T, Tanoue M (2017) Prevalence of sarcopenia and its association with activities of daily living and dysphagia in convalescent rehabilitation ward inpatients. Clin Nutr.  https://doi.org/10.1016/j.clnu.2017.09.009
  48. 48.
    Skallerup A, Nygaard L, Olesen SS, Kohler M, Vinter-Jensen L, Rasmussen HH (2017) The prevalence of sarcopenia is markedly increased in patients with intestinal failure and associates with several risk factors. Clin Nutr.  https://doi.org/10.1016/j.clnu.2017.09.010
  49. 49.
    Yoo JI, Ha YC, Lee YK, Hana C, Yoo MJ, Koo KH (2017) High prevalence of sarcopenia among binge drinking elderly women: a nationwide population-based study. BMC Geriatr 17(1):114.  https://doi.org/10.1186/s12877-017-0507-3 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Souza VA, Oliveira D, Barbosa SR, Correa J, Colugnati FAB, Mansur HN, Fernandes N, Bastos MG (2017) Sarcopenia in patients with chronic kidney disease not yet on dialysis: analysis of the prevalence and associated factors. PLoS One 12(4):e0176230.  https://doi.org/10.1371/journal.pone.0176230 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Tan LF, Lim ZY, Choe R, Seetharaman S, Merchant R (2017) Screening for frailty and sarcopenia among older persons in medical outpatient clinics and its associations with healthcare burden. J Am Med Dir Assoc 18(7):583–587.  https://doi.org/10.1016/j.jamda.2017.01.004 CrossRefPubMedGoogle Scholar
  52. 52.
    Beaudart C, Rizzoli R, Bruyere O, Reginster JY, Biver E (2014) Sarcopenia: burden and challenges for public health. Arch Public Health 72(1):45.  https://doi.org/10.1186/2049-3258-72-45 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Hardy SE, Kang Y, Studenski SA, Degenholtz HB (2011) Ability to walk 1/4 mile predicts subsequent disability, mortality, and health care costs. J Gen Intern Med 26(2):130–135.  https://doi.org/10.1007/s11606-010-1543-2 CrossRefPubMedGoogle Scholar
  54. 54.
    Janssen I, Shepard DS, Katzmarzyk PT, Roubenoff R (2004) The healthcare costs of sarcopenia in the United States. J Am Geriatr Soc 52(1):80–85CrossRefGoogle Scholar
  55. 55.
    Antunes AC, Araujo DA, Verissimo MT, Amaral TF (2017) Sarcopenia and hospitalisation costs in older adults: a cross-sectional study. Nutr Diet 74(1):46–50.  https://doi.org/10.1111/1747-0080.12287 CrossRefPubMedGoogle Scholar
  56. 56.
    Gani F, Buettner S, Margonis GA, Sasaki K, Wagner D, Kim Y, Hundt J, Kamel IR, Pawlik TM (2016) Sarcopenia predicts costs among patients undergoing major abdominal operations. Surgery 160(5):1162–1171.  https://doi.org/10.1016/j.surg.2016.05.002 CrossRefPubMedGoogle Scholar
  57. 57.
    Sousa AS, Guerra RS, Fonseca I, Pichel F, Ferreira S, Amaral TF (2016) Financial impact of sarcopenia on hospitalization costs. Eur J Clin Nutr 70(9):1046–1051.  https://doi.org/10.1038/ejcn.2016.73 CrossRefPubMedGoogle Scholar
  58. 58.
    Wiggs MP (2015) Can endurance exercise preconditioning prevention disuse muscle atrophy? Front Physiol 6:63.  https://doi.org/10.3389/fphys.2015.00063 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Saeman MR, DeSpain K, Liu MM, Carlson BA, Song J, Baer LA, Wade CE, Wolf SE (2015) Effects of exercise on soleus in severe burn and muscle disuse atrophy. J Surg Res 198(1):19–26.  https://doi.org/10.1016/j.jss.2015.05.038 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Glass D, Roubenoff R (2010) Recent advances in the biology and therapy of muscle wasting. Ann N Y Acad Sci 1211:25–36.  https://doi.org/10.1111/j.1749-6632.2010.05809.x CrossRefPubMedGoogle Scholar
  61. 61.
    Barbat-Artigas S, Dupontgand S, Pion CH, Feiter-Murphy Y, Aubertin-Leheudre M (2014) Identifying recreational physical activities associated with muscle quality in men and women aged 50 years and over. J Cachexia Sarcopenia Muscle 5(3):221–228.  https://doi.org/10.1007/s13539-014-0143-0 CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Mavros Y, Kay S, Simpson KA, Baker MK, Wang Y, Zhao RR, Meiklejohn J, Climstein M, O’Sullivan AJ, de Vos N, Baune BT, Blair SN, Simar D, Rooney K, Singh NA, Fiatarone Singh MA (2014) Reductions in C-reactive protein in older adults with type 2 diabetes are related to improvements in body composition following a randomized controlled trial of resistance training. J Cachexia Sarcopenia Muscle 5(2):111–120.  https://doi.org/10.1007/s13539-014-0134-1 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Gielen S, Sandri M, Kozarez I, Kratzsch J, Teupser D, Thiery J, Erbs S, Mangner N, Lenk K, Hambrecht R, Schuler G, Adams V (2012) Exercise training attenuates MuRF-1 expression in the skeletal muscle of patients with chronic heart failure independent of age: the randomized Leipzig exercise intervention in chronic heart failure and aging catabolism study. Circulation 125(22):2716–2727.  https://doi.org/10.1161/CIRCULATIONAHA.111.047381 CrossRefPubMedGoogle Scholar
  64. 64.
    Stec MJ, Thalacker-Mercer A, Mayhew DL, Kelly NA, Tuggle SC, Merritt EK, Brown CJ, Windham ST, Dell’Italia LJ, Bickel CS, Roberts BM, Vaughn KM, Isakova-Donahue I, Many GM, Bamman MM (2017) Randomized, four-arm, dose-response clinical trial to optimize resistance exercise training for older adults with age-related muscle atrophy. Exp Gerontol 99:98–109.  https://doi.org/10.1016/j.exger.2017.09.018 CrossRefPubMedGoogle Scholar
  65. 65.
    Kouidi E, Albani M, Natsis K, Megalopoulos A, Gigis P, Guiba-Tziampiri O, Tourkantonis A, Deligiannis A (1998) The effects of exercise training on muscle atrophy in haemodialysis patients. Nephrol Dial Transplant 13(3):685–699CrossRefGoogle Scholar
  66. 66.
    Koltai E, Hart N, Taylor AW, Goto S, Ngo JK, Davies KJ, Radak Z (2012) Age-associated declines in mitochondrial biogenesis and protein quality control factors are minimized by exercise training. Am J Phys Regul Integr Comp Phys 303(2):R127–R134.  https://doi.org/10.1152/ajpregu.00337.2011 CrossRefGoogle Scholar
  67. 67.
    Lundby C, Jacobs RA (2016) Adaptations of skeletal muscle mitochondria to exercise training. Exp Physiol 101(1):17–22.  https://doi.org/10.1113/EP085319 CrossRefPubMedGoogle Scholar
  68. 68.
    Theilen NT, Kunkel GH, Tyagi SC (2017) The role of exercise and TFAM in preventing skeletal muscle atrophy. J Cell Physiol 232(9):2348–2358.  https://doi.org/10.1002/jcp.25737 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Gomes-Marcondes MC, Tisdale MJ (2002) Induction of protein catabolism and the ubiquitin-proteasome pathway by mild oxidative stress. Cancer Lett 180(1):69–74CrossRefGoogle Scholar
  70. 70.
    Busquets S, Almendro V, Barreiro E, Figueras M, Argiles JM, Lopez-Soriano FJ (2005) Activation of UCPs gene expression in skeletal muscle can be independent on both circulating fatty acids and food intake. Involvement of ROS in a model of mouse cancer cachexia. FEBS Lett 579(3):717–722.  https://doi.org/10.1016/j.febslet.2004.12.050 CrossRefPubMedGoogle Scholar
  71. 71.
    Steinbacher P, Eckl P (2015) Impact of oxidative stress on exercising skeletal muscle. Biomol Ther 5(2):356–377.  https://doi.org/10.3390/biom5020356 CrossRefGoogle Scholar
  72. 72.
    Barreiro E, de la Puente B, Busquets S, Lopez-Soriano FJ, Gea J, Argiles JM (2005) Both oxidative and nitrosative stress are associated with muscle wasting in tumour-bearing rats. FEBS Lett 579(7):1646–1652.  https://doi.org/10.1016/j.febslet.2005.02.017 CrossRefPubMedGoogle Scholar
  73. 73.
    Ji LL (1999) Antioxidants and oxidative stress in exercise. Proc Soc Exp Biol Med 222(3):283–292CrossRefGoogle Scholar
  74. 74.
    Berzosa C, Cebrian I, Fuentes-Broto L, Gomez-Trullen E, Piedrafita E, Martinez-Ballarin E, Lopez-Pingarron L, Reiter RJ, Garcia JJ (2011) Acute exercise increases plasma total antioxidant status and antioxidant enzyme activities in untrained men. J Biomed Biotechnol 2011:540458.  https://doi.org/10.1155/2011/540458 CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Miyazaki H, Oh-ishi S, Ookawara T, Kizaki T, Toshinai K, Ha S, Haga S, Ji LL, Ohno H (2001) Strenuous endurance training in humans reduces oxidative stress following exhausting exercise. Eur J Appl Physiol 84(1–2):1–6.  https://doi.org/10.1007/s004210000342 CrossRefPubMedGoogle Scholar
  76. 76.
    Gould DW, Lahart I, Carmichael AR, Koutedakis Y, Metsios GS (2013) Cancer cachexia prevention via physical exercise: molecular mechanisms. J Cachexia Sarcopenia Muscle 4(2):111–124.  https://doi.org/10.1007/s13539-012-0096-0 CrossRefPubMedGoogle Scholar
  77. 77.
    Leeuwenburgh C, Hollander J, Leichtweis S, Griffiths M, Gore M, Ji LL (1997) Adaptations of glutathione antioxidant system to endurance training are tissue and muscle fiber specific. Am J Phys 272(1 Pt 2):R363–R369.  https://doi.org/10.1152/ajpregu.1997.272.1.R363 CrossRefGoogle Scholar
  78. 78.
    Ohkuwa T, Sato Y, Naoi M (1997) Glutathione status and reactive oxygen generation in tissues of young and old exercised rats. Acta Physiol Scand 159(3):237–244.  https://doi.org/10.1046/j.1365-201X.1997.576351000.x CrossRefPubMedGoogle Scholar
  79. 79.
    Sen CK, Marin E, Kretzschmar M, Hanninen O (1992) Skeletal muscle and liver glutathione homeostasis in response to training, exercise, and immobilization. J Appl Physiol (1985) 73(4):1265–1272.  https://doi.org/10.1152/jappl.1992.73.4.1265 CrossRefGoogle Scholar
  80. 80.
    Chevion S, Moran DS, Heled Y, Shani Y, Regev G, Abbou B, Berenshtein E, Stadtman ER, Epstein Y (2003) Plasma antioxidant status and cell injury after severe physical exercise. Proc Natl Acad Sci U S A 100(9):5119–5123.  https://doi.org/10.1073/pnas.0831097100 CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Neuzil J, Stocker R (1993) Bilirubin attenuates radical-mediated damage to serum albumin. FEBS Lett 331(3):281–284CrossRefGoogle Scholar
  82. 82.
    Visser M, Pahor M, Taaffe DR, Goodpaster BH, Simonsick EM, Newman AB, Nevitt M, Harris TB (2002) Relationship of interleukin-6 and tumor necrosis factor-alpha with muscle mass and muscle strength in elderly men and women: the health ABC study. J Gerontol A Biol Sci Med Sci 57(5):M326–M332CrossRefGoogle Scholar
  83. 83.
    Lambert CP, Wright NR, Finck BN, Villareal DT (2008) Exercise but not diet-induced weight loss decreases skeletal muscle inflammatory gene expression in frail obese elderly persons. J Appl Physiol (1985) 105(2):473–478.  https://doi.org/10.1152/japplphysiol.00006.2008 CrossRefGoogle Scholar
  84. 84.
    Petersen AM, Pedersen BK (2005) The anti-inflammatory effect of exercise. J Appl Physiol (1985) 98(4):1154–1162.  https://doi.org/10.1152/japplphysiol.00164.2004 CrossRefGoogle Scholar
  85. 85.
    Shleptsova VA, Trushkin EV, Bystryh OA, Davydov JI, Obrazcova NP, Grebenuk ES, Tonevitsky AG (2010) Expression of early immune response genes during physical exercise. Bull Exp Biol Med 149(1):89–92CrossRefGoogle Scholar
  86. 86.
    Ostrowski K, Rohde T, Asp S, Schjerling P, Pedersen BK (1999) Pro- and anti-inflammatory cytokine balance in strenuous exercise in humans. J Physiol 515(Pt 1):287–291CrossRefGoogle Scholar
  87. 87.
    Perry BD, Caldow MK, Brennan-Speranza TC, Sbaraglia M, Jerums G, Garnham A, Wong C, Levinger P, Asrar Ul Haq M, Hare DL, Price SR, Levinger I (2016) Muscle atrophy in patients with type 2 diabetes mellitus: roles of inflammatory pathways, physical activity and exercise. Exerc Immunol Rev 22:94–109PubMedPubMedCentralGoogle Scholar
  88. 88.
    Griffiths RD (1997) The 1995 John M. Kinney international award for nutrition and metabolism. Effect of passive stretching on the wasting of muscle in the critically ill: background. Nutrition 13(1):70–74CrossRefGoogle Scholar
  89. 89.
    Little JP, Phillips SM (2009) Resistance exercise and nutrition to counteract muscle wasting. Appl Physiol Nutr Metab 34(5):817–828.  https://doi.org/10.1139/H09-093 CrossRefPubMedGoogle Scholar
  90. 90.
    Mourtzakis M, Bedbrook M (2009) Muscle atrophy in cancer: a role for nutrition and exercise. Appl Physiol Nutr Metab 34(5):950–956.  https://doi.org/10.1139/H09-075 CrossRefPubMedGoogle Scholar
  91. 91.
    Glover EI, Phillips SM (2010) Resistance exercise and appropriate nutrition to counteract muscle wasting and promote muscle hypertrophy. Curr Opin Clin Nutr Metab Care 13(6):630–634.  https://doi.org/10.1097/MCO.0b013e32833f1ae5 CrossRefPubMedGoogle Scholar
  92. 92.
    Solerte SB, Gazzaruso C, Bonacasa R, Rondanelli M, Zamboni M, Basso C, Locatelli E, Schifino N, Giustina A, Fioravanti M (2008) Nutritional supplements with oral amino acid mixtures increases whole-body lean mass and insulin sensitivity in elderly subjects with sarcopenia. Am J Cardiol 101(11A):69E–77E.  https://doi.org/10.1016/j.amjcard.2008.03.004 CrossRefPubMedGoogle Scholar
  93. 93.
    Verreijen AM, Verlaan S, Engberink MF, Swinkels S, de Vogel-van den Bosch J, Weijs PJ (2015) A high whey protein-, leucine-, and vitamin D-enriched supplement preserves muscle mass during intentional weight loss in obese older adults: a double-blind randomized controlled trial. Am J Clin Nutr 101(2):279–286.  https://doi.org/10.3945/ajcn.114.090290 CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Blottner D, Bosutti A, Degens H, Schiffl G, Gutsmann M, Buehlmeier J, Rittweger J, Ganse B, Heer M, Salanova M (2014) Whey protein plus bicarbonate supplement has little effects on structural atrophy and proteolysis marker immunopatterns in skeletal muscle disuse during 21 days of bed rest. J Musculoskelet Neuronal Interact 14(4):432–444PubMedGoogle Scholar
  95. 95.
    Aleman-Mateo H, Carreon VR, Macias L, Astiazaran-Garcia H, Gallegos-Aguilar AC, Enriquez JR (2014) Nutrient-rich dairy proteins improve appendicular skeletal muscle mass and physical performance, and attenuate the loss of muscle strength in older men and women subjects: a single-blind randomized clinical trial. Clin Interv Aging 9:1517–1525.  https://doi.org/10.2147/CIA.S67449 CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Smith GI, Julliand S, Reeds DN, Sinacore DR, Klein S, Mittendorfer B (2015) Fish oil-derived n-3 PUFA therapy increases muscle mass and function in healthy older adults. Am J Clin Nutr 102(1):115–122.  https://doi.org/10.3945/ajcn.114.105833 CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Williams R, Weaver L, Rush S, Smith D (1977) Application of a muscle-potential monitor to electroconvulsive therapy. IEEE Trans Biomed Eng 24(2):197–199.  https://doi.org/10.1109/TBME.1977.326130 CrossRefPubMedGoogle Scholar
  98. 98.
    Dirks ML, Hansen D, Van Assche A, Dendale P, Van Loon LJ (2015) Neuromuscular electrical stimulation prevents muscle wasting in critically ill comatose patients. Clin Sci (Lond) 128(6):357–365.  https://doi.org/10.1042/CS20140447 CrossRefGoogle Scholar
  99. 99.
    Josiak K, Jankowska EA, Piepoli MF, Banasiak W, Ponikowski P (2014) Skeletal myopathy in patients with chronic heart failure: significance of anabolic-androgenic hormones. J Cachexia Sarcopenia Muscle 5(4):287–296.  https://doi.org/10.1007/s13539-014-0152-z CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Jankowska EA, Biel B, Majda J, Szklarska A, Lopuszanska M, Medras M, Anker SD, Banasiak W, Poole-Wilson PA, Ponikowski P (2006) Anabolic deficiency in men with chronic heart failure: prevalence and detrimental impact on survival. Circulation 114(17):1829–1837.  https://doi.org/10.1161/CIRCULATIONAHA.106.649426 CrossRefPubMedGoogle Scholar
  101. 101.
    Zhao W, Pan J, Wang X, Wu Y, Bauman WA, Cardozo CP (2008) Expression of the muscle atrophy factor muscle atrophy F-box is suppressed by testosterone. Endocrinology 149(11):5449–5460.  https://doi.org/10.1210/en.2008-0664 CrossRefPubMedGoogle Scholar
  102. 102.
    Dos Santos MR, Sayegh AL, Bacurau AV, Arap MA, Brum PC, Pereira RM, Takayama L, Barretto AC, Negrao CE, Alves MJ (2016) Effect of exercise training and testosterone replacement on skeletal muscle wasting in patients with heart failure with testosterone deficiency. Mayo Clin Proc 91(5):575–586.  https://doi.org/10.1016/j.mayocp.2016.02.014 CrossRefPubMedGoogle Scholar
  103. 103.
    Sinha-Hikim I, Artaza J, Woodhouse L, Gonzalez-Cadavid N, Singh AB, Lee MI, Storer TW, Casaburi R, Shen R, Bhasin S (2002) Testosterone-induced increase in muscle size in healthy young men is associated with muscle fiber hypertrophy. Am J Physiol Endocrinol Metab 283(1):E154–E164.  https://doi.org/10.1152/ajpendo.00502.2001 CrossRefPubMedGoogle Scholar
  104. 104.
    von Haehling S (2015) The wasting continuum in heart failure: from sarcopenia to cachexia. Proc Nutr Soc 74(4):367–377.  https://doi.org/10.1017/S0029665115002438 CrossRefGoogle Scholar
  105. 105.
    Caminiti G, Volterrani M, Iellamo F, Marazzi G, Massaro R, Miceli M, Mammi C, Piepoli M, Fini M, Rosano GM (2009) Effect of long-acting testosterone treatment on functional exercise capacity, skeletal muscle performance, insulin resistance, and baroreflex sensitivity in elderly patients with chronic heart failure a double-blind, placebo-controlled, randomized study. J Am Coll Cardiol 54(10):919–927.  https://doi.org/10.1016/j.jacc.2009.04.078 CrossRefPubMedGoogle Scholar
  106. 106.
    Iellamo F, Volterrani M, Caminiti G, Karam R, Massaro R, Fini M, Collins P, Rosano GM (2010) Testosterone therapy in women with chronic heart failure: a pilot double-blind, randomized, placebo-controlled study. J Am Coll Cardiol 56(16):1310–1316.  https://doi.org/10.1016/j.jacc.2010.03.090 CrossRefPubMedGoogle Scholar
  107. 107.
    Fitts RH, Peters JR, Dillon EL, Durham WJ, Sheffield-Moore M, Urban RJ (2015) Weekly versus monthly testosterone administration on fast and slow skeletal muscle fibers in older adult males. J Clin Endocrinol Metab 100(2):E223–E231.  https://doi.org/10.1210/jc.2014-2759 CrossRefPubMedGoogle Scholar
  108. 108.
    Yu G, Traish AM (2011) Induced testosterone deficiency: from clinical presentation of fatigue, erectile dysfunction and muscle atrophy to insulin resistance and diabetes. Horm Mol Biol Clin Invest 8(1):425–430.  https://doi.org/10.1515/HMBCI.2011.131 CrossRefGoogle Scholar
  109. 109.
    Wu Y, Collier L, Pan J, Qin W, Bauman WA, Cardozo CP (2012) Testosterone reduced methylprednisolone-induced muscle atrophy in spinal cord-injured rats. Spinal Cord 50(1):57–62.  https://doi.org/10.1038/sc.2011.91 CrossRefPubMedGoogle Scholar
  110. 110.
    Qin W, Pan J, Wu Y, Bauman WA, Cardozo C (2010) Protection against dexamethasone-induced muscle atrophy is related to modulation by testosterone of FOXO1 and PGC-1alpha. Biochem Biophys Res Commun 403(3–4):473–478.  https://doi.org/10.1016/j.bbrc.2010.11.061 CrossRefPubMedGoogle Scholar
  111. 111.
    Zhao W, Pan J, Zhao Z, Wu Y, Bauman WA, Cardozo CP (2008) Testosterone protects against dexamethasone-induced muscle atrophy, protein degradation and MAFbx upregulation. J Steroid Biochem Mol Biol 110(1–2):125–129.  https://doi.org/10.1016/j.jsbmb.2008.03.024 CrossRefPubMedGoogle Scholar
  112. 112.
    Oner J, Oner H, Sahin Z, Demir R, Ustunel I (2008) Melatonin is as effective as testosterone in the prevention of soleus muscle atrophy induced by castration in rats. Anat Rec (Hoboken) 291(4):448–455.  https://doi.org/10.1002/ar.20659 CrossRefGoogle Scholar
  113. 113.
    Curran MJ, Bihrle W 3rd (1999) Dramatic rise in prostate-specific antigen after androgen replacement in a hypogonadal man with occult adenocarcinoma of the prostate. Urology 53(2):423–424CrossRefGoogle Scholar
  114. 114.
    Rosen J, Negro-Vilar A (2002) Novel, non-steroidal, selective androgen receptor modulators (SARMs) with anabolic activity in bone and muscle and improved safety profile. J Musculoskelet Neuronal Interact 2(3):222–224PubMedGoogle Scholar
  115. 115.
    Cilotti A, Falchetti A (2009) Male osteoporosis and androgenic therapy: from testosterone to SARMs. Clin Cases Miner Bone Metab 6(3):229–233PubMedPubMedCentralGoogle Scholar
  116. 116.
    Gao W, Dalton JT (2007) Expanding the therapeutic use of androgens via selective androgen receptor modulators (SARMs). Drug Discov Today 12(5–6):241–248.  https://doi.org/10.1016/j.drudis.2007.01.003 CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Lackey K (2004) Medicinal chemistry – 29th national symposium. SERMs and SARMs. IDrugs 7(8):729–731PubMedGoogle Scholar
  118. 118.
    Bhasin S, Calof OM, Storer TW, Lee ML, Mazer NA, Jasuja R, Montori VM, Gao W, Dalton JT (2006) Drug insight: testosterone and selective androgen receptor modulators as anabolic therapies for chronic illness and aging. Nat Clin Pract Endocrinol Metab 2(3):146–159.  https://doi.org/10.1038/ncpendmet0120 CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Narayanan R, Mohler ML, Bohl CE, Miller DD, Dalton JT (2008) Selective androgen receptor modulators in preclinical and clinical development. Nucl Recept Signal 6:e010.  https://doi.org/10.1621/nrs.06010 CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Zilbermint MF, Dobs AS (2009) Nonsteroidal selective androgen receptor modulator Ostarine in cancer cachexia. Future Oncol 5(8):1211–1220.  https://doi.org/10.2217/fon.09.106 CrossRefPubMedGoogle Scholar
  121. 121.
    Dalton JT, Barnette KG, Bohl CE, Hancock ML, Rodriguez D, Dodson ST, Morton RA, Steiner MS (2011) The selective androgen receptor modulator GTx-024 (enobosarm) improves lean body mass and physical function in healthy elderly men and postmenopausal women: results of a double-blind, placebo-controlled phase II trial. J Cachexia Sarcopenia Muscle 2(3):153–161.  https://doi.org/10.1007/s13539-011-0034-6 CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Dobs AS, Boccia RV, Croot CC, Gabrail NY, Dalton JT, Hancock ML, Johnston MA, Steiner MS (2013) Effects of enobosarm on muscle wasting and physical function in patients with cancer: a double-blind, randomised controlled phase 2 trial. Lancet Oncol 14(4):335–345.  https://doi.org/10.1016/S1470-2045(13)70055-X CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Jarkovska Z, Krsek M, Rosicka M, Marek J (2004) Endocrine and metabolic activities of a recently isolated peptide hormone ghrelin, an endogenous ligand of the growth hormone secretagogue receptor. Endocr Regul 38(2):80–86PubMedGoogle Scholar
  124. 124.
    Fanzani A, Conraads VM, Penna F, Martinet W (2012) Molecular and cellular mechanisms of skeletal muscle atrophy: an update. J Cachexia Sarcopenia Muscle 3(3):163–179.  https://doi.org/10.1007/s13539-012-0074-6 CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Vestergaard ET, Moller N, Jorgensen JO (2013) Acute peripheral tissue effects of ghrelin on interstitial levels of glucose, glycerol, and lactate: a microdialysis study in healthy human subjects. Am J Physiol Endocrinol Metab 304(12):E1273–E1280.  https://doi.org/10.1152/ajpendo.00662.2012 CrossRefPubMedGoogle Scholar
  126. 126.
    Steinman J, DeBoer MD (2013) Treatment of cachexia: melanocortin and ghrelin interventions. Vitam Horm 92:197–242.  https://doi.org/10.1016/B978-0-12-410473-0.00008-8 CrossRefPubMedGoogle Scholar
  127. 127.
    Naznin F, Toshinai K, Waise TMZ, Okada T, Sakoda H, Nakazato M (2018) Restoration of metabolic inflammation-related ghrelin resistance by weight loss. J Mol Endocrinol 60(2):109–118.  https://doi.org/10.1530/JME-17-0192 CrossRefPubMedGoogle Scholar
  128. 128.
    Liang WY, Li ZR, Li Y (2013) Ghrelin and inflammation. Sheng Li Ke Xue Jin Zhan 44(2):129–132PubMedGoogle Scholar
  129. 129.
    Markofski MM, Carrillo AE, Timmerman KL, Jennings K, Coen PM, Pence BD, Flynn MG (2014) Exercise training modifies ghrelin and adiponectin concentrations and is related to inflammation in older adults. J Gerontol A Biol Sci Med Sci 69(6):675–681.  https://doi.org/10.1093/gerona/glt132 CrossRefPubMedGoogle Scholar
  130. 130.
    Prodam F, Filigheddu N (2014) Ghrelin gene products in acute and chronic inflammation. Arch Immunol Ther Exp 62(5):369–384.  https://doi.org/10.1007/s00005-014-0287-9 CrossRefGoogle Scholar
  131. 131.
    Akamizu T, Kangawa K (2010) Ghrelin for cachexia. J Cachexia Sarcopenia Muscle 1(2):169–176.  https://doi.org/10.1007/s13539-010-0011-5 CrossRefPubMedPubMedCentralGoogle Scholar
  132. 132.
    Hatanaka M, Konishi M, Ishida J, Saito M, Springer J (2015) Novel mechanism of ghrelin therapy for cachexia. J Cachexia Sarcopenia Muscle 6(4):393.  https://doi.org/10.1002/jcsm.12084 CrossRefPubMedPubMedCentralGoogle Scholar
  133. 133.
    Garcia JM, Friend J, Allen S (2013) Therapeutic potential of anamorelin, a novel, oral ghrelin mimetic, in patients with cancer-related cachexia: a multicenter, randomized, double-blind, crossover, pilot study. Support Care Cancer 21(1):129–137.  https://doi.org/10.1007/s00520-012-1500-1 CrossRefPubMedGoogle Scholar
  134. 134.
    Prommer E (2017) Oncology update: anamorelin. Palliat Care 10:1178224217726336.  https://doi.org/10.1177/1178224217726336 CrossRefPubMedPubMedCentralGoogle Scholar
  135. 135.
    Sidaway P (2018) Palliative care: anamorelin provides benefit to patients with cachexia. Nat Rev Clin Oncol 15(2):68.  https://doi.org/10.1038/nrclinonc.2017.204 CrossRefPubMedGoogle Scholar
  136. 136.
    Graf SA, Garcia JM (2017) Anamorelin hydrochloride in the treatment of cancer anorexia-cachexia syndrome: design, development, and potential place in therapy. Drug Des Devel Ther 11:2325–2331.  https://doi.org/10.2147/DDDT.S110131 CrossRefPubMedPubMedCentralGoogle Scholar
  137. 137.
    Garcia JM, Polvino WJ (2009) Pharmacodynamic hormonal effects of anamorelin, a novel oral ghrelin mimetic and growth hormone secretagogue in healthy volunteers. Growth Hormon IGF Res 19(3):267–273.  https://doi.org/10.1016/j.ghir.2008.12.003 CrossRefGoogle Scholar
  138. 138.
    Katakami N, Uchino J, Yokoyama T, Naito T, Kondo M, Yamada K, Kitajima H, Yoshimori K, Sato K, Saito H, Aoe K, Tsuji T, Takiguchi Y, Takayama K, Komura N, Takiguchi T, Eguchi K (2018) Anamorelin (ONO-7643) for the treatment of patients with non-small cell lung cancer and cachexia: results from a randomized, double-blind, placebo-controlled, multicenter study of Japanese patients (ONO-7643-04). Cancer 124(3):606–616.  https://doi.org/10.1002/cncr.31128 CrossRefPubMedGoogle Scholar
  139. 139.
    Zhang H, Garcia JM (2015) Anamorelin hydrochloride for the treatment of cancer-anorexia-cachexia in NSCLC. Expert Opin Pharmacother 16(8):1245–1253.  https://doi.org/10.1517/14656566.2015.1041500 CrossRefPubMedPubMedCentralGoogle Scholar
  140. 140.
    Temel JS, Abernethy AP, Currow DC, Friend J, Duus EM, Yan Y, Fearon KC (2016) Anamorelin in patients with non-small-cell lung cancer and cachexia (ROMANA 1 and ROMANA 2): results from two randomised, double-blind, phase 3 trials. Lancet Oncol 17(4):519–531.  https://doi.org/10.1016/S1470-2045(15)00558-6 CrossRefPubMedGoogle Scholar
  141. 141.
    Blauwhoff-Buskermolen S, Langius JA, Heijboer AC, Becker A, de van der Schueren MA, Verheul HM (2017) Plasma ghrelin levels are associated with anorexia but not cachexia in patients with NSCLC. Front Physiol 8:119.  https://doi.org/10.3389/fphys.2017.00119 CrossRefPubMedPubMedCentralGoogle Scholar
  142. 142.
    Topyildiz F, Kiyici S, Gul Z, Sigirli D, Guclu M, Kisakol G, Cavun S (2016) Exenatide treatment causes suppression of serum ghrelin levels following mixed meal test in obese diabetic women. J Diabetes Res 2016:1309502.  https://doi.org/10.1155/2016/1309502 CrossRefPubMedPubMedCentralGoogle Scholar
  143. 143.
    Mao Y, Tokudome T, Kishimoto I (2014) Ghrelin as a treatment for cardiovascular diseases. Hypertension 64(3):450–454.  https://doi.org/10.1161/HYPERTENSIONAHA.114.03726 CrossRefPubMedGoogle Scholar
  144. 144.
    Fujitsuka N, Asakawa A, Amitani H, Hattori T, Inui A (2012) Efficacy of ghrelin in cancer cachexia: clinical trials and a novel treatment by rikkunshito. Crit Rev Oncog 17(3):277–284CrossRefGoogle Scholar
  145. 145.
    Argiles JM, Stemmler B (2013) The potential of ghrelin in the treatment of cancer cachexia. Expert Opin Biol Ther 13(1):67–76.  https://doi.org/10.1517/14712598.2013.727390 CrossRefPubMedGoogle Scholar
  146. 146.
    Yoowannakul S, Tangvoraphonkchai K, Davenport A (2018) The prevalence of muscle wasting (sarcopenia) in peritoneal dialysis patients varies with ethnicity due to differences in muscle mass measured by bioimpedance. Eur J Clin Nutr 72(3):381–387.  https://doi.org/10.1038/s41430-017-0033-6 CrossRefPubMedGoogle Scholar
  147. 147.
    Kargul J, Laurent GJ (2013) Muscle atrophy: from molecular pathways to clinical therapy. Int J Biochem Cell Biol 45(10):2119.  https://doi.org/10.1016/j.biocel.2013.08.001 CrossRefPubMedGoogle Scholar
  148. 148.
    von Haehling S, Springer J (2015) Treatment of muscle wasting: an overview of promising treatment targets. J Am Med Dir Assoc 16(12):1014–1019.  https://doi.org/10.1016/j.jamda.2015.10.001 CrossRefGoogle Scholar
  149. 149.
    Muscaritoli M, Bossola M, Bellantone R, Rossi Fanelli F (2004) Therapy of muscle wasting in cancer: what is the future? Curr Opin Clin Nutr Metab Care 7(4):459–466CrossRefGoogle Scholar
  150. 150.
    Skipworth RJ, Stewart GD, Ross JA, Guttridge DC, Fearon KC (2006) The molecular mechanisms of skeletal muscle wasting: implications for therapy. Surgeon 4(5):273–283CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Shengguang Ding
    • 1
  • Qiying Dai
    • 2
    • 3
  • Haitao Huang
    • 1
  • Yiming Xu
    • 1
  • Chongjun Zhong
    • 1
  1. 1.Department of Thoracic and Cardiovascular SurgeryThe Second Affiliated Hospital of Nantong UniversityNantongChina
  2. 2.Metrowest Medical CenterFraminghamUSA
  3. 3.Department of CardiologyFirst Affiliated Hospital of Nanjing Medical UniversityNanjingChina

Personalised recommendations