Advertisement

Cardiac Transcriptome Profile in Heart Diseases

  • Lili Hao
  • Shiyu Chen
  • Jing Ma
  • Deyong Xiao
  • Duan Ma
Chapter
Part of the Translational Bioinformatics book series (TRBIO, volume 16)

Abstract

Heart development is a complex process. It requires morphological and functional changes of multiple cell types that must organize into a complex structure. This process necessitates elaborate control of multiple transcripts’ expression in a temporal and spatial manner. New sequencing technologies, combined with bioinformatics and computational tools, have allowed the scientific community to appreciate the great complexity of the cardiac transcriptome. These will promote the understanding of the complex molecular mechanisms in heart developmental processes. In this chapter, we briefly introduce several major technology platforms of cardiac transcriptome profile and compare the differences between them to realize their better applications in cardiac transcriptomics. Since various cardiac cells play their unique functions in the heart, we describe the expression profile in cardiac development and different conditions by summarizing the expression changes and biomarkers in different cardiac cells. Finally, we review the transcriptomics-based biomarkers or candidate transcripts in several heart diseases including coronary artery disease, congestive heart failure, and common congenital heart disease.

Keywords

Cardiac transcriptome profile RNA sequencing Noncoding RNAs Cardiac cells Heart diseases Biomarkers 

References

  1. Aad G, Abbott B, Abdallah J, Abdelalim AA, Abdesselam A, Abdinov O, Abi B, Abramowicz M, Abreu H, Acerbi H. Observation of a centrality-dependent dijet asymmetry in lead-lead collisions at root s(NN)=2.76 TeV with the ATLAS detector at the LHC. Phys Rev Lett. 2010;105(25):252303.CrossRefGoogle Scholar
  2. Abdelmohsen K, Panda A, Kang MJ, Xu J, Selimyan R, Yoon JH, et al. Senescence-associated lncRNAs: senescence-associated long noncoding RNAs. Aging Cell,12,5(2013-07-14). 2013;12(5):890.Google Scholar
  3. Archacki S, Wang Q. Expression profiling of cardiovascular disease. Hum Genomics. 2004;1(5):1–16.CrossRefGoogle Scholar
  4. Bang C, Batkai S, Dangwal S, Gupta S, Foinquinos A, Holzmann A, Just A, Remke J, Zimmer K, Zeug A. Cardiac fibroblast–derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy. J Clin Invest. 2014;124(5):2136.CrossRefGoogle Scholar
  5. Barrans JD, Allen PD, Stamatiou D, Dzau VJ, Liew CC. Global gene expression profiling of end-stage dilated cardiomyopathy using a human cardiovascular-based cDNA microarray. Am J Pathol. 2002;160(6):2035–43.CrossRefGoogle Scholar
  6. Bochenek G, Häsler R, El Mokhtari NE, König IR, Loos BG, Jepsen S, Rosenstiel P, Schreiber S, Schaefer AS. The large non-coding RNA ANRIL, which is associated with atherosclerosis, periodontitis and several forms of cancer, regulates ADIPOR1, VAMP3 and C11ORF10. Hum Mol Genet. 2013;22(22):4516.CrossRefGoogle Scholar
  7. Busch A, Eken SM, Maegdefessel L. Prospective and therapeutic screening value of non-coding RNA as biomarkers in cardiovascular disease. Ann Transl Med. 2016;4(12):236.CrossRefGoogle Scholar
  8. Calverley DC, Casserly IP, Choudhury QG, Phang TL, Gao B. Platelet gene expression as a biomarker risk stratification tool in acute myocardial infarction: a pilot investigation. Clin Med Insights: Blood Disord,2010,3(2010-07-29). 2010;2010(3):9–15.Google Scholar
  9. Cao X, Wang J, Wang Z, Du J, Yuan X, Huang W, Meng J, Gu H, Nie Y, Ji B. MicroRNA profiling during rat ventricular maturation: a role for miR-29a in regulating cardiomyocyte cell cycle re-entry. FEBS Lett. 2013;587(10):1548–55.CrossRefGoogle Scholar
  10. Catalucci D, Latronico MV, Condorelli G. MicroRNAs control gene expression: importance for cardiac development and pathophysiology. Ann N Y Acad Sci. 2008;1123(1):20.CrossRefGoogle Scholar
  11. Chandramohan R, Wu PY, Phan JH, Wang MD. Benchmarking RNA-Seq quantification tools. Conf Proc IEEE Eng Med Biol Soc. 2013;2013(2013):647–50.PubMedPubMedCentralGoogle Scholar
  12. Chen J, Wang DZ. microRNAs in cardiovascular development. J Mol Cell Cardiol. 2012;52(5):949.CrossRefGoogle Scholar
  13. Chen Y, Park S, Li Y, Missov E, Hou M, Han X, Hall JL, Miller LW, Bache RJ. Alterations of gene expression in failing myocardium following left ventricular assist device support. Physiol Genomics. 2003;14(3):251.CrossRefGoogle Scholar
  14. Choudhary R, Iqbal N, Khusro F, Higginbotham E, Green E, Maisel A. Heart failure biomarkers. J Cardiovasc Transl Res. 2013;6(4):471.CrossRefGoogle Scholar
  15. Conesa A, Madrigal P, Tarazona S, Gomez-Cabrero D, Cervera A, Mcpherson A, Szcześniak MW, Gaffney DJ, Elo LL, Zhang X. A survey of best practices for RNA-seq data analysis. Genome Biol. 2016;17(1):13.CrossRefGoogle Scholar
  16. Corsten MF, Dennert R, Jochems S, Kuznetsova T, Devaux Y, Hofstra L, Wagner DR, Staessen JA, Heymans S, Schroen B. Circulating MicroRNA-208b and MicroRNA-499 reflect myocardial damage in cardiovascular disease. Circ Cardiovasc Genet. 2010;3(6):499.CrossRefGoogle Scholar
  17. D’alessandra Y, Devanna P, Limana F, Straino S, Di CA, Brambilla PG, Rubino M, Carena MC, Spazzafumo L, De SM. Circulating microRNAs are new and sensitive biomarkers of myocardial infarction. Eur Heart J. 2010;31(22):2765.CrossRefGoogle Scholar
  18. D’alessandra Y, Carena MC, Spazzafumo L, Martinelli F, Bassetti B, Devanna P, Rubino M, Marenzi G, Colombo GI, Achilli F. Diagnostic potential of plasmatic microRNA signatures in stable and unstable angina. PLoS One. 2013;8(11):e80345.CrossRefGoogle Scholar
  19. Delaughter DM, Bick AG, Wakimoto H, Mckean D, Gorham JM, Kathiriya IS, Hinson JT, Homsy J, Gray J, Pu W. Single-cell resolution of temporal gene expression during heart development. Dev Cell. 2016;39(4):480.CrossRefGoogle Scholar
  20. Devaux Y, Mueller M, Haaf P, Goretti E, Twerenbold R, Zangrando J, Vausort M, Reichlin T, Wildi K, Moehring B. Diagnostic and prognostic value of circulating microRNAs in patients with acute chest pain. J Intern Med. 2015;277(2):260–71.CrossRefGoogle Scholar
  21. Díaz-Araya G, Vivar R, Humeres C, Boza P, Bolivar S, Muñoz C. Cardiac fibroblasts as sentinel cells in cardiac tissue: receptors, signaling pathways and cellular functions. Pharmacol Res. 2015;101:30.CrossRefGoogle Scholar
  22. Economou EK, Oikonomou E, Siasos G, Papageorgiou N, Tsalamandris S, Mourouzis K, Papaioanou S, Tousoulis D. The role of microRNAs in coronary artery disease: from pathophysiology to diagnosis and treatment. Atherosclerosis. 2015;241(2):624.CrossRefGoogle Scholar
  23. Espinozalewis RA, Wang DZ. MicroRNAs in heart development. Curr Top Dev Biol. 2012;100(2):279.CrossRefGoogle Scholar
  24. Eulalio A, Mano M, Dal FM, Zentilin L, Sinagra G, Zacchigna S, Giacca M. Functional screening identifies miRNAs inducing cardiac regeneration. Nature. 2012;492(7429):376.CrossRefGoogle Scholar
  25. Fichtlscherer S, De Rosa S, Fox H, Schwietz T, Fischer A, Liebetrau C, Weber M, Hamm CW, Röxe T, Müller-Ardogan M. Circulating microRNAs in patients with coronary artery disease. Circ Res. 2010;107(5):677.CrossRefGoogle Scholar
  26. Friede KA, Ginsburg GS, Voora D. Gene expression signatures and the spectrum of coronary artery disease. J Cardiovasc Transl Res. 2015;8(6):339.CrossRefGoogle Scholar
  27. Furtado MB, Costa MW, Pranoto EA, Salimova E, Pinto AR, Lam NT, Park A, Snider P, Chandran A, Harvey RP. Cardiogenic genes expressed in cardiac fibroblasts contribute to heart development and repair. Circ Res. 2014;114(9):1422–34.CrossRefGoogle Scholar
  28. Gao C, Wang Y. Transcriptome complexity in cardiac development and diseases: an expanding universe between genome and phenome. Circ J Off J Jpn Circ Soc. 2014;78(5):1038–47.Google Scholar
  29. Goddeeris MM, Rho S, Petiet A, Davenport CL, Johnson GA, Meyers EN, Klingensmith J. Intracardiac septation requires hedgehog-dependent cellular contributions from outside the heart. Development. 2008;135(10):1887–95.CrossRefGoogle Scholar
  30. Gomes CPC, Spencer H, Ford KL, Michel LYM, Baker AH, Emanueli C, Balligand JL, Devaux Y. The function and therapeutic potential of long non-coding RNAs in cardiovascular development and disease. Mol Ther Nucleic Acids. 2017;8(C):494.CrossRefGoogle Scholar
  31. Green SM, Green JA, Jr JJ. Natriuretic peptide testing for heart failure therapy guidance in the inpatient and outpatient setting. Am J Ther. 2009;16(2):171.CrossRefGoogle Scholar
  32. Grote P, Wittler L, Hendrix D, Koch F, Währisch S, Beisaw A, Macura K, Bläss G, Kellis M, Werber M. The tissue-specific lncRNA Fendrr is an essential regulator of heart and body wall development in the mouse. Dev Cell. 2013;24(2):206–14.CrossRefGoogle Scholar
  33. Healy AM, Pickard MD, Pradhan AD, Wang Y, Chen Z, Croce K, Sakuma M, Shi C, Zago AC, Garasic J. Platelet expression profiling and clinical validation of myeloid-related protein-14 as a novel determinant of cardiovascular events. Circulation. 2006;113(19):2278.CrossRefGoogle Scholar
  34. Hoeijmakers WA, Bártfai R, Stunnenberg HG. Transcriptome analysis using RNA-Seq. Methods Mol Biol. 2013;923(923):221.PubMedGoogle Scholar
  35. Hoekstra M, Ca VDL, Halvorsen B, Gullestad L, Kuiper J, Aukrust P, Van Berkel TJ, Biessen EA. The peripheral blood mononuclear cell microRNA signature of coronary artery disease. Biochem Biophys Res Commun. 2010;394(3):792–7.CrossRefGoogle Scholar
  36. Hudson MP, Christenson RH, Newby LK, Kaplan AL, Ohman EM. Cardiac markers: point of care testing. Clin Chim Acta. 1999;284(2):223–37.CrossRefGoogle Scholar
  37. Hwang JJ, Allen PD, Tseng GC, Lam CW, Fananapazir L, Dzau VJ, Liew CC. Microarray gene expression profiles in dilated and hypertrophic cardiomyopathic end-stage heart failure. Physiol Genomics. 2002;10(1):31–44.CrossRefGoogle Scholar
  38. Kattman SJ, Witty AD, Gagliardi M, Dubois NC, Niapour M, Hotta A, Ellis J, Keller G. Stage-specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines. Cell Stem Cell. 2011;8(2):228.CrossRefGoogle Scholar
  39. Kaynak B, von Heydebreck A, Mebus S, Seelow D, Henig S, Vogel J, Sperling HP, Pregla R, Alexi-Meskeshvili V, Hetzer R. Genome-wide array analysis of normal and malformed human hearts. Circulation. 2003;107(19):2467.CrossRefGoogle Scholar
  40. Kiliszek M, Burzynska B, Michalak M, Gora M, Winkler A, Maciejak A, Leszczynska A, Gajda E, Kochanowski J, Opolski G. Altered gene expression pattern in peripheral blood mononuclear cells in patients with acute myocardial infarction. PLoS One. 2012;7(11):e50054.CrossRefGoogle Scholar
  41. Klattenhoff CA, Scheuermann JC, Surface LE, Bradley RK, Fields PA, Steinhauser ML, Ding H, Butty VL, Torrey L, Haas S. Braveheart, a long noncoding RNA required for cardiovascular lineage commitment. Cell. 2013;152(3):570–83.CrossRefGoogle Scholar
  42. Krishnaswamy G, Kelley J, Yerra L, Smith JK, Chi DS. Human endothelium as a source of multifunctional cytokines: molecular regulation and possible role in human disease. J Interferon Cytokine Res Off J Int Soc Interferon Cytokine Res. 1999;19(2):91.CrossRefGoogle Scholar
  43. Kuppusamy KT, Jones DC, Sperber H, Madan A, Fischer KA, Rodriguez ML, Pabon L, Zhu WZ, Tulloch NL, Yang X. Let-7 family of microRNA is required for maturation and adult-like metabolism in stem cell-derived cardiomyocytes. Proc Natl Acad Sci U S A. 2015;112(21):2785–94.CrossRefGoogle Scholar
  44. Latronico MV, Catalucci D, Condorelli G. MicroRNA and cardiac pathologies. Physiol Genomics. 2008;34(3):239–42.CrossRefGoogle Scholar
  45. Lech M, Anders HJ. Macrophages and fibrosis: how resident and infiltrating mononuclear phagocytes orchestrate all phases of tissue injury and repair. Biochim Biophys Acta. 2013;1832(7):989–97.CrossRefGoogle Scholar
  46. Li T, Cao H, Zhuang J, Wan J, Guan M, Yu B, Li X, Zhang W. Identification of miR-130a, miR-27b and miR-210 as serum biomarkers for atherosclerosis obliterans. Clin Chim Acta. 2011;412(1–2):66–70.CrossRefGoogle Scholar
  47. Li C, Fang Z, Jiang T, Zhang Q, Liu C, Zhang C, Xiang Y. Serum microRNAs profile from genome-wide serves as a fingerprint for diagnosis of acute myocardial infarction and angina pectoris. BMC Med Genet. 2013a;6(1):1–9.CrossRefGoogle Scholar
  48. Li D, Ji L, Liu L, Liu Y, Hou H, Yu K, Sun Q, Zhao Z. Characterization of circulating microRNA expression in patients with a ventricular septal defect. PLoS One. 2013b;9(8):e106318.CrossRefGoogle Scholar
  49. Li J, Cao Y, Ma XJ, Wang HJ, Ma D, Huang GY. Roles of miR-1-1 and miR-181c in ventricular septal defects. Int J Cardiol. 2013c;168(2):1441.CrossRefGoogle Scholar
  50. Li LM, Cai WB, Ye Q, Liu JM, Li X, Liao XX. Comparison of plasma microRNA-1 and cardiac troponin T in early diagnosis of patients with acute myocardial infarction. World J Emerg Med. 2014;5(3):182.CrossRefGoogle Scholar
  51. Li G, Xu A, Sim S, Priest JR, Tian X, Khan T, Quertermous T, Zhou B, Tsao PS, Quake SR. Transcriptomic profiling maps anatomically patterned subpopulations among single embryonic cardiac cells. Dev Cell. 2016;39(4):491.CrossRefGoogle Scholar
  52. Liquori ME, Christenson RH, Collinson PO, Defilippi CR. Cardiac biomarkers in heart failure. Clin Biochem. 2014;47(6):327–37.CrossRefGoogle Scholar
  53. Liu N, Williams AH, Kim Y, McAnally J, Bezprozvannaya S, Sutherland LB, Richardson JA, Bassel-Duby R, Olson EN. An intragenic MEF2-dependent enhancer directs muscle-specific expression of microRNAs 1 and 133. Proc Natl Acad Sci U S A. 2007;104(52):20844.CrossRefGoogle Scholar
  54. Lok DJ, Lok SI, Badings E, Lipsic E, Wijngaarden JV, Boer RAD, Veldhuisen DJV, Meer PVD. Galectin-3 is an independent marker for ventricular remodeling and mortality in patients with chronic heart failure. Clin Res Cardiol. 2013;102(2):103–10.CrossRefGoogle Scholar
  55. Long B, Liu CY, Liu F, Wang K, Zhou LY, Li PF, Zhou QY, Fan YYCARL. lncRNA inhibits anoxia-induced mitochondrial fission and apoptosis in cardiomyocytes by impairing miR-539-dependent PHB2 downregulation. Nat Commun. 2014;5(5):3596.PubMedGoogle Scholar
  56. Maisel A, Hollander JE, Guss D, Mccullough P, Nowak R, Green G, Saltzberg M, Ellison SR, Bhalla MA, Bhalla V. Primary results of the Rapid Emergency Department Heart Failure Outpatient Trial (REDHOT). A multicenter study of B-type natriuretic peptide levels, emergency department decision making, and outcomes in patients presenting with shortness of breath. J Am Coll Cardiol. 2004;44(6):1328–33.CrossRefGoogle Scholar
  57. Matkovich SJ. Transcriptome analysis in heart failure. Curr Opin Cardiol. 2016;31(3):242.CrossRefGoogle Scholar
  58. Maznyczka A, Kaier T, Marber M. Troponins and other biomarkers in the early diagnosis of acute myocardial infarction. Postgrad Med J. 2015;91(1076):322–30.CrossRefGoogle Scholar
  59. Meder B, Keller A, Vogel B, Haas J, Sedaghat-Hamedani F, Kayvanpour E, Just S, Borries A, Rudloff J, Leidinger P. MicroRNA signatures in total peripheral blood as novel biomarkers for acute myocardial infarction. Basic Res Cardiol. 2011;106(1):13–23.CrossRefGoogle Scholar
  60. Michalik KM, You X, Manavski Y, Doddaballapur A, Zörnig M, Braun T, John D, Ponomareva Y, Chen W, Uchida S. Long noncoding RNA MALAT1 regulates endothelial cell function and vessel growthnovelty and significance. Circ Res. 2014;114(9):1389.CrossRefGoogle Scholar
  61. Michiels C. Endothelial cell functions. J Cell Physiol. 2003;196(3):430–43.CrossRefGoogle Scholar
  62. Minami Y, Satoh M, Maesawa C, Takahashi Y, Tabuchi T, Itoh T, Nakamura M. Effect of atorvastatin on microRNA 221/222 expression in endothelial progenitor cells obtained from patients with coronary artery disease. Eur J Clin Investig. 2009;39(5):359–67.CrossRefGoogle Scholar
  63. Miquerol L, Kelly RG. Organogenesis of the vertebrate heart. Wires Dev Biol. 2013;2(1):17–29.CrossRefGoogle Scholar
  64. Mueller M, Vafaie M, Biener M, Giannitsis E, Katus HA. Cardiac troponin T: from diagnosis of myocardial infarction to cardiovascular risk prediction. Circ J Off J Jpn Circ Soc. 2013;77(7):1653–61.Google Scholar
  65. Nigam V, Sievers HH, Jensen BC, Sier HA, Simpson PC, Srivastava D, Mohamed SA. Altered micrornas in bicuspid aortic valve: a comparison between stenotic and insufficient valves. J Heart Valve Dis. 2010;19(4):459.PubMedPubMedCentralGoogle Scholar
  66. O’Brien J Jr, Kibiryeva N, Zhou XG, Marshall JA, Lofland GK, Artman M, Chen J, Bittel DC. Noncoding RNA expression in myocardium from infants with tetralogy of Fallot. Circ Cardiovasc Genet. 2012;5(3):279.CrossRefGoogle Scholar
  67. Oerlemans MI, Mosterd A, Dekker MS, De Vrey EA, Van MA, Pasterkamp G, Doevendans PA, Hoes AW, Sluijter JP. Early assessment of acute coronary syndromes in the emergency department: the potential diagnostic value of circulating microRNAs. EMBO Mol Med. 2012;4(11):1176–85.CrossRefGoogle Scholar
  68. Oeth P, Parry GC, Mackman N. Regulation of the tissue factor gene in human monocytic cells. Role of AP-1, NF-kappa B/Rel, and Sp1 proteins in uninduced and lipopolysaccharide-induced expression. Thromb Haemost. 1997;78(1):747–54.CrossRefGoogle Scholar
  69. Olivieri F, Antonicelli R, Lorenzi M, D’alessandra Y, Lazzarini R, Santini G, Spazzafumo L, Lisa R, La SL, Galeazzi R. Diagnostic potential of circulating miR-499-5p in elderly patients with acute non ST-elevation myocardial infarction. Int J Cardiol. 2013;167(2):531–6.CrossRefGoogle Scholar
  70. Pei H, Wei L, Lin CH, Jin Y, Shang C, Nuernberg ST, Kai JK, Xu W, Lin CY, Lin CJ. A long non-coding RNA protects the heart from pathological hypertrophy. Nature. 2014;514(7520):102–6.CrossRefGoogle Scholar
  71. Rana MS, Christoffels VM, Moorman AF. A molecular and genetic outline of cardiac morphogenesis. Acta Physiol. 2013;207(4):588–615.CrossRefGoogle Scholar
  72. Ratajczak MZ. Igf2-H19, an imprinted tandem gene, is an important regulator of embryonic development, a guardian of proliferation of adult pluripotent stem cells, a regulator of longevity, and a ‘passkey’ to cancerogenesis. Folia Histochem Cytobiol. 2012;50(2):171–9.CrossRefGoogle Scholar
  73. Rooij EV, Sutherland LB, Thatcher JE, Dimaio JM, Naseem RH, Marshall WS, Hill JA, Olson EN. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc Natl Acad Sci U S A. 2008;105(35):13027.CrossRefGoogle Scholar
  74. Rosenberg S, Elashoff MR, Beineke P, Daniels SE, Wingrove JA, Tingley WG, Sager PT, Kraus WE, Newby LK, Schwartz RS. Multi-center validation of the diagnostic accuracy of a blood-based gene expression test for assessment of obstructive coronary artery disease in non-diabetic patients. Ann Intern Med. 2010;153(7):425–34.CrossRefGoogle Scholar
  75. Santoro MM, Nicoli S. miRNAs in endothelial cell signaling: the endomiRNAs. Exp Cell Res. 2013;319(9):1324–30.CrossRefGoogle Scholar
  76. Scheuermann JC, Boyer LA. Getting to the heart of the matter: long non-coding RNAs in cardiac development and disease. EMBO J. 2013;32(13):1805–16.CrossRefGoogle Scholar
  77. Smith T, Rajakaruna C, Caputo M, Emanueli C. MicroRNAs in congenital heart disease. Ann Transl Med. 2015;3(21):333.PubMedPubMedCentralGoogle Scholar
  78. Sondermeijer BM, Bakker A, Halliani A, Ronde MWJD, Marquart AA, Tijsen AJ, Mulders TA, Kok MGM, Battjes S, Maiwald S. Platelets in patients with premature coronary artery disease exhibit upregulation of miRNA340* and miRNA624*. PLoS One. 2011;6(10):e25946.CrossRefGoogle Scholar
  79. Später D, Hansson EM, Zangi L, Chien KR. How to make a cardiomyocyte. Development. 2014;141(23):4418–31.CrossRefGoogle Scholar
  80. Steenbergen C, Afshari CA, Petranka JG, Collins J, Martin K, Bennett L, Haugen A, Bushel P, Murphy E. Alterations in apoptotic signaling in human idiopathic cardiomyopathic hearts in failure. Am J Physiol Heart Circ Physiol. 2003;284(1):H268.CrossRefGoogle Scholar
  81. Taurino C, Miller WH, Mcbride MW, Mcclure JD, Khanin R, Moreno MU, Dymott JA, Delles C, Dominiczak AF. Gene expression profiling in whole blood of patients with coronary artery disease. Clin Sci. 2010;119(8):335.CrossRefGoogle Scholar
  82. Uosaki H, Cahan P, Lee D, Wang S, Miyamoto M, Fernandez L, Kass D, Kwon C. Transcriptional landscape of cardiomyocyte maturation. Cell Rep. 2015;13(8):1705–16.CrossRefGoogle Scholar
  83. Ventura A, Young AG, Winslow MM, Lintault L, Meissner A, Erkeland SJ, Newman J, Bronson RT, Crowley D, Stone JR. Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell. 2008;132(5):875–86.CrossRefGoogle Scholar
  84. Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009;10(1):57.CrossRefGoogle Scholar
  85. Wang GK, Zhu JQ, Zhang JT, Li Q, Li Y, He J, Qin YW, Jing Q. Circulating microRNA: a novel potential biomarker for early diagnosis of acute myocardial infarction in humans. Eur Heart J. 2010;31(6):659.CrossRefGoogle Scholar
  86. Wang H, Lin YZ, Lu HM, Zhou Y, Luo C, Lu SH, Zhao L, Liu F. Circulating microRNA-92a in patients with ST-segment elevation myocardial infarction. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue = Chin Crit Care Med = Zhongguo Weizhongbing Jijiuyixue. 2011;23(12):718.Google Scholar
  87. Wang F, Long G, Zhao C, Li H, Chaugai S, Wang Y, Chen C, Wang DW. Atherosclerosis-related circulating miRNAs as novel and sensitive predictors for acute myocardial infarction. PLoS One. 2014a;9(9):e105734.CrossRefGoogle Scholar
  88. Wang K, Liu F, Zhou LY, Long B, Yuan SM, Wang Y, Liu CY, Sun T, Zhang XJ, Li PF. The long noncoding RNA CHRF regulates cardiac hypertrophy by targeting miR-489. Circ Res. 2014b;114(9):1377–88.CrossRefGoogle Scholar
  89. Wang W, Niu Z, Wang Y, Li Y, Zou H, Yang L, Meng M, Wei C, Li Q, Duan L. Comparative transcriptome analysis of atrial septal defect identifies dysregulated genes during heart septum morphogenesis. Gene. 2016;575(2):303–12.CrossRefGoogle Scholar
  90. Weber M, Baker MB, Patel RS, Quyyumi AA, Bao G, Searles CD. MicroRNA expression profile in CAD patients and the impact of ACEI/ARB. Cardiol Res Pract. 2011;2011(6):532915.PubMedPubMedCentralGoogle Scholar
  91. Weber KT, Sun Y, Bhattacharya SK, Ahokas RA, Gerling IC. Myofibroblast-mediated mechanisms of pathological remodelling of the heart. Nat Rev Cardiol. 2013;10(1):15.CrossRefGoogle Scholar
  92. Wingrove JA, Daniels SE, Sehnert AJ, Tingley W, Elashoff MR, Rosenberg S, Buellesfeld L, Grube E, Newby LK, Ginsburg GS. Correlation of peripheral-blood gene expression with the extent of coronary artery stenosis. Circ Cardiovasc Genet. 2008;1(1):31.CrossRefGoogle Scholar
  93. Yang IS, Kim S. Analysis of whole transcriptome sequencing data: workflow and software. Genomics Inform. 2015;13(4):119.CrossRefGoogle Scholar
  94. Yao R, Ma Y, Du Y, Liao M, Li H, Liang W, Yuan J, Ma Z, Yu X, Xiao H. The altered expression of inflammation-related microRNAs with microRNA-155 expression correlates with Th17 differentiation in patients with acute coronary syndrome. Cell Mol Immunol. 2011;8(6):486.CrossRefGoogle Scholar
  95. Yasue H, Yoshimura M, Sumida H, Kikuta K, Kugiyama K, Jougasaki M, Ogawa H, Okumura K, Mukoyama M, Nakao K. Localization and mechanism of secretion of B-type natriuretic peptide in comparison with those of A-type natriuretic peptide in normal subjects and patients with heart failure. Circulation. 1994;90(1):195–203.CrossRefGoogle Scholar
  96. Zhu S, Department C. Identification of maternal serum microRNAs as novel noninvasive biomarkers for prenatal detection of fetal congenital heart defects. Clin Chim Acta. 2013;424:66–72.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Lili Hao
    • 1
  • Shiyu Chen
    • 2
  • Jing Ma
    • 3
  • Deyong Xiao
    • 1
  • Duan Ma
    • 1
  1. 1.Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Collaborative Innovation Center of Genetics and Development, Institutes of Biomedical Sciences, School of Basic Medical SciencesFudan UniversityShanghaiChina
  2. 2.Institutes of Biomedical Sciences, School of Basic Medical SciencesShanghai Medical College of Fudan UniversityShanghaiChina
  3. 3.Shanghai Key Lab of Birth DefectChildren’s Hospital of Fudan UniversityShanghaiChina

Personalised recommendations