Circular RNAs Act as miRNA Sponges

  • Amaresh Chandra Panda
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1087)


Majority of RNAs expressed in animal cells lack protein-coding ability. Unlike other cellular RNAs, circular (circ)RNAs include a large family of noncoding (nc)RNAs that lack the 5′ or 3′ ends. The improvements in high-throughput RNA sequencing and novel bioinformatics tools have led to the identification of thousands of circRNAs in various organisms. CircRNAs can regulate gene expression by influencing the transcription, the mRNA turnover, and translation by sponging RNA-binding proteins and microRNAs. Given the broad impact of circRNA on miRNA activity, there is huge interest in understanding the impact of miRNA sponging by circRNA on gene regulation. In this review, we summarize our current knowledge of the miRNA-circRNA interaction and mechanisms that influence gene expression.


mRNA miRNA circRNA Competing endogenous RNA Translation miRNA sponge 



This work was supported by the Science and Engineering Research Board, a statutory body of the Department of Science and Technology (DST), Government of India (SERB/F/6890/2017-18).

Conflicts of Interest

The authors have no conflicts of interest to declare.


  1. 1.
    Crick F (1970) Central dogma of molecular biology. Nature 227(5258):561–563CrossRefGoogle Scholar
  2. 2.
    Derrien T, Johnson R, Bussotti G et al (2012) The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 22(9):1775–1789CrossRefGoogle Scholar
  3. 3.
    Noller HF (1991) Ribosomal RNA and translation. Annu Rev Biochem 60:191–227CrossRefGoogle Scholar
  4. 4.
    Hsiao KY, Sun HS, Tsai SJ (2017) Circular RNA – new member of noncoding RNA with novel functions. Exp Biol Med (Maywood) 242(11):1136–1141CrossRefGoogle Scholar
  5. 5.
    Wery M, Kwapisz M, Morillon A (2011) Noncoding RNAs in gene regulation. Wiley Interdiscip Rev Syst Biol Med 3(6):728–738CrossRefGoogle Scholar
  6. 6.
    Yoon JH, Abdelmohsen K, Gorospe M (2013) Posttranscriptional gene regulation by long noncoding RNA. J Mol Biol 425(19):3723–3730CrossRefGoogle Scholar
  7. 7.
    Sanger HL, Klotz G, Riesner D et al (1976) Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc Natl Acad Sci U S A 73(11):3852–3856CrossRefGoogle Scholar
  8. 8.
    Kos A, Dijkema R, Arnberg AC et al (1986) The hepatitis delta (delta) virus possesses a circular RNA. Nature 323(6088):558–560CrossRefGoogle Scholar
  9. 9.
    Nigro JM, Cho KR, Fearon ER et al (1991) Scrambled exons. Cell 64(3):607–613CrossRefGoogle Scholar
  10. 10.
    Jeck WR, Sharpless NE (2014) Detecting and characterizing circular RNAs. Nat Biotechnol 32(5):453–461CrossRefGoogle Scholar
  11. 11.
    Panda AC, Abdelmohsen K, Gorospe M (2017) RT-qPCR detection of senescence-associated circular RNAs. Methods Mol Biol 1534:79–87CrossRefGoogle Scholar
  12. 12.
    Memczak S, Jens M, Elefsinioti A et al (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495(7441):333–338CrossRefGoogle Scholar
  13. 13.
    Jeck WR, Sorrentino JA, Wang K et al (2013) Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 19(2):141–157CrossRefGoogle Scholar
  14. 14.
    Hansen TB, Jensen TI, Clausen BH et al (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495(7441):384–388CrossRefGoogle Scholar
  15. 15.
    Panda AC, De S, Grammatikakis I et al (2017) High-purity circular RNA isolation method (RPAD) reveals vast collection of intronic circRNAs. Nucleic Acids Res 45(12):e116CrossRefGoogle Scholar
  16. 16.
    Xia S, Feng J, Lei L et al (2017) Comprehensive characterization of tissue-specific circular RNAs in the human and mouse genomes. Brief Bioinform 18(6):984–992PubMedGoogle Scholar
  17. 17.
    Chen LL, Yang L (2015) Regulation of circRNA biogenesis. RNA Biol 12(4):381–388CrossRefGoogle Scholar
  18. 18.
    Panda AC, Grammatikakis I, Munk R et al (2017) Emerging roles and context of circular RNAs. Wiley Interdiscip Rev RNA 8(2):e1413CrossRefGoogle Scholar
  19. 19.
    Li Z, Huang C, Bao C et al (2015) Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol 22(3):256–264CrossRefGoogle Scholar
  20. 20.
    Chen LL (2016) The biogenesis and emerging roles of circular RNAs. Nat Rev Mol Cell Biol 17(4):205–211CrossRefGoogle Scholar
  21. 21.
    Zhang Y, Xue W, Li X et al (2016) The biogenesis of nascent circular RNAs. Cell Rep 15(3):611–624CrossRefGoogle Scholar
  22. 22.
    Abdelmohsen K, Panda AC, Munk R et al (2017) Identification of HuR target circular RNAs uncovers suppression of PABPN1 translation by CircPABPN1. RNA Biol 14(3):361–369CrossRefGoogle Scholar
  23. 23.
    Haque S, Harries LW (2017) Circular RNAs (circRNAs) in health and disease. Genes (Basel) 8(12):353CrossRefGoogle Scholar
  24. 24.
    Berezikov E, Guryev V, van de Belt J et al (2005) Phylogenetic shadowing and computational identification of human microRNA genes. Cell 120(1):21–24CrossRefGoogle Scholar
  25. 25.
    Rajewsky N (2006) microRNA target predictions in animals. Nat Genet 38(Suppl):S8–S13CrossRefGoogle Scholar
  26. 26.
    Kozomara A, Griffiths-Jones S (2011) miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 39(Database issue):D152–D157CrossRefGoogle Scholar
  27. 27.
    Siomi H, Siomi MC (2010) Posttranscriptional regulation of microRNA biogenesis in animals. Mol Cell 38(3):323–332CrossRefGoogle Scholar
  28. 28.
    Pillai RS (2005) MicroRNA function: multiple mechanisms for a tiny RNA? RNA 11(12):1753–1761CrossRefGoogle Scholar
  29. 29.
    Zhou X, Yang PC (2012) MicroRNA: a small molecule with a big biological impact. Microrna 1(1):1CrossRefGoogle Scholar
  30. 30.
    Lee KP, Shin YJ, Panda AC et al (2015) miR-431 promotes differentiation and regeneration of old skeletal muscle by targeting Smad4. Genes Dev 29(15):1605–1617CrossRefGoogle Scholar
  31. 31.
    Panda AC, Abdelmohsen K, Gorospe M (2017) SASP regulation by noncoding RNA. Mech Ageing Dev 168:37–43CrossRefGoogle Scholar
  32. 32.
    Panda AC, Sahu I, Kulkarni SD et al (2014) miR-196b-mediated translation regulation of mouse insulin2 via the 5′UTR. PLoS One 9(7):e101084CrossRefGoogle Scholar
  33. 33.
    Munk R, Panda AC, Grammatikakis I et al (2017) Senescence-associated microRNAs. Int Rev Cell Mol Biol 334:177–205CrossRefGoogle Scholar
  34. 34.
    Yu L, Gong X, Sun L et al (2016) The circular RNA Cdr1as act as an oncogene in hepatocellular carcinoma through targeting miR-7 expression. PLoS One 11(7):e0158347CrossRefGoogle Scholar
  35. 35.
    Tang W, Ji M, He G et al (2017) Silencing CDR1as inhibits colorectal cancer progression through regulating microRNA-7. Onco Targets Ther 10:2045–2056CrossRefGoogle Scholar
  36. 36.
    Peng L, Yuan XQ, Li GC (2015) The emerging landscape of circular RNA ciRS-7 in cancer (review). Oncol Rep 33(6):2669–2674CrossRefGoogle Scholar
  37. 37.
    Lukiw WJ (2013) Circular RNA (circRNA) in Alzheimer’s disease (AD). Front Genet 4:307PubMedPubMedCentralGoogle Scholar
  38. 38.
    Xu H, Guo S, Li W et al (2015) The circular RNA Cdr1as, via miR-7 and its targets, regulates insulin transcription and secretion in islet cells. Sci Rep 5:12453CrossRefGoogle Scholar
  39. 39.
    Kefas B, Godlewski J, Comeau L et al (2008) microRNA-7 inhibits the epidermal growth factor receptor and the Akt pathway and is down-regulated in glioblastoma. Cancer Res 68(10):3566–3572CrossRefGoogle Scholar
  40. 40.
    Pan H, Li T, Jiang Y et al (2018) Overexpression of circular RNA ciRS-7 abrogates the tumor suppressive effect of miR-7 on gastric cancer via PTEN/PI3K/AKT signaling pathway. J Cell Biochem 119(1):440–446CrossRefGoogle Scholar
  41. 41.
    Capel B, Swain A, Nicolis S et al (1993) Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell 73(5):1019–1030CrossRefGoogle Scholar
  42. 42.
    Long L, Huang G, Zhu H et al (2013) Down-regulation of miR-138 promotes colorectal cancer metastasis via directly targeting TWIST2. J Transl Med 11:275CrossRefGoogle Scholar
  43. 43.
    Huang G, Zhu H, Shi Y et al (2015) cir-ITCH plays an inhibitory role in colorectal cancer by regulating the Wnt/beta-catenin pathway. PLoS One 10(6):e0131225CrossRefGoogle Scholar
  44. 44.
    Yang C, Yuan W, Yang X et al (2018) Circular RNA circ-ITCH inhibits bladder cancer progression by sponging miR-17/miR-224 and regulating p21, PTEN expression. Mol Cancer 17(1):19CrossRefGoogle Scholar
  45. 45.
    Li F, Zhang L, Li W et al (2015) Circular RNA ITCH has inhibitory effect on ESCC by suppressing the Wnt/beta-catenin pathway. Oncotarget 6(8):6001–6013PubMedPubMedCentralGoogle Scholar
  46. 46.
    Wan L, Zhang L, Fan K et al (2016) Circular RNA-ITCH suppresses lung cancer proliferation via inhibiting the Wnt/beta-catenin pathway. Biomed Res Int 2016:1579490PubMedPubMedCentralGoogle Scholar
  47. 47.
    Zheng Q, Bao C, Guo W et al (2016) Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nat Commun 7:11215CrossRefGoogle Scholar
  48. 48.
    Chen G, Shi Y, Liu M et al (2018) circHIPK3 regulates cell proliferation and migration by sponging miR-124 and regulating AQP3 expression in hepatocellular carcinoma. Cell Death Dis 9(2):175CrossRefGoogle Scholar
  49. 49.
    Li Y, Zheng F, Xiao X et al (2017) Circ HIPK3 sponges mi R-558 to suppress heparanase expression in bladder cancer cells. EMBO Rep 18(9):1646–1659CrossRefGoogle Scholar
  50. 50.
    Tian F, Wang Y, Xiao Z et al (2017) Circular RNA circHIPK3 promotes NCI-H1299 and NCI-H2170 cell proliferation through miR-379 and its target IGF1. Zhongguo Fei Ai Za Zhi 20(7):459–467PubMedPubMedCentralGoogle Scholar
  51. 51.
    Panda AC, Grammatikakis I, Kim KM et al (2017) Identification of senescence-associated circular RNAs (SAC-RNAs) reveals senescence suppressor CircPVT1. Nucleic Acids Res 45(7):4021–4035CrossRefGoogle Scholar
  52. 52.
    Chen J, Li Y, Zheng Q et al (2017) Circular RNA profile identifies circPVT1 as a proliferative factor and prognostic marker in gastric cancer. Cancer Lett 388:208–219CrossRefGoogle Scholar
  53. 53.
    Liu Q, Zhang X, Hu X et al (2016) Circular RNA related to the chondrocyte ECM regulates MMP13 expression by functioning as a MiR-136 ‘Sponge’ in human cartilage degradation. Sci Rep 6:22572CrossRefGoogle Scholar
  54. 54.
    Zhong Z, Huang M, Lv M et al (2017) Circular RNA MYLK as a competing endogenous RNA promotes bladder cancer progression through modulating VEGFA/VEGFR2 signaling pathway. Cancer Lett 403:305–317CrossRefGoogle Scholar
  55. 55.
    Zhong Z, Lv M, Chen J (2016) Screening differential circular RNA expression profiles reveals the regulatory role of circTCF25-miR-103a-3p/miR-107-CDK6 pathway in bladder carcinoma. Sci Rep 6:30919CrossRefGoogle Scholar
  56. 56.
    Wang K, Sun Y, Tao W et al (2017) Androgen receptor (AR) promotes clear cell renal cell carcinoma (ccRCC) migration and invasion via altering the circHIAT1/miR-195-5p/29a-3p/29c-3p/CDC42 signals. Cancer Lett 394:1–12CrossRefGoogle Scholar
  57. 57.
    Wang K, Long B, Liu F et al (2016) A circular RNA protects the heart from pathological hypertrophy and heart failure by targeting miR-223. Eur Heart J 37(33):2602–2611CrossRefGoogle Scholar
  58. 58.
    Peng L, Chen G, Zhu Z et al (2017) Circular RNA ZNF609 functions as a competitive endogenous RNA to regulate AKT3 expression by sponging miR-150-5p in Hirschsprung’s disease. Oncotarget 8(1):808–818PubMedPubMedCentralGoogle Scholar
  59. 59.
    Xie H, Ren X, Xin S et al (2016) Emerging roles of circRNA_001569 targeting miR-145 in the proliferation and invasion of colorectal cancer. Oncotarget 7(18):26680–26691PubMedPubMedCentralGoogle Scholar
  60. 60.
    Song YZ, Li JF (2018) Circular RNA hsa_circ_0001564 regulates osteosarcoma proliferation and apoptosis by acting miRNA sponge. Biochem Biophys Res Commun 495(3):2369–2375CrossRefGoogle Scholar
  61. 61.
    Cheng X, Zhang L, Zhang K et al (2018) Circular RNA VMA21 protects against intervertebral disc degeneration through targeting miR-200c and X linked inhibitor-of-apoptosis protein. Ann Rheum Dis 77(5):770–779CrossRefGoogle Scholar
  62. 62.
    Zhou ZB, Du D, Huang GX et al (2018) Circular RNA Atp9b, a competing endogenous RNA, regulates the progression of osteoarthritis by targeting miR-138-5p. Gene 646:203–209CrossRefGoogle Scholar
  63. 63.
    Wang L, Wei Y, Yan Y et al (2018) CircDOCK1 suppresses cell apoptosis via inhibition of miR196a5p by targeting BIRC3 in OSCC. Oncol Rep 39(3):951–966PubMedGoogle Scholar
  64. 64.
    Han D, Li J, Wang H et al (2017) Circular RNA circMTO1 acts as the sponge of microRNA-9 to suppress hepatocellular carcinoma progression. Hepatology 66(4):1151–1164CrossRefGoogle Scholar
  65. 65.
    Fu L, Chen Q, Yao T et al (2017) Hsa_circ_0005986 inhibits carcinogenesis by acting as a miR-129-5p sponge and is used as a novel biomarker for hepatocellular carcinoma. Oncotarget 8(27):43878–43888PubMedPubMedCentralGoogle Scholar
  66. 66.
    Xu XW, Zheng BA, Hu ZM et al (2017) Circular RNA hsa_circ_000984 promotes colon cancer growth and metastasis by sponging miR-106b. Oncotarget 8(53):91674–91683PubMedPubMedCentralGoogle Scholar
  67. 67.
    Zhang XL, Xu LL, Wang F (2017) Hsa_circ_0020397 regulates colorectal cancer cell viability, apoptosis and invasion by promoting the expression of the miR-138 targets TERT and PD-L1. Cell Biol Int 41(9):1056–1064CrossRefGoogle Scholar
  68. 68.
    Deng N, Li L, Gao J et al (2018) Hsa_circ_0009910 promotes carcinogenesis by promoting the expression of miR-449a target IL6R in osteosarcoma. Biochem Biophys Res Commun 495(1):189–196CrossRefGoogle Scholar
  69. 69.
    He R, Liu P, Xie X et al (2017) circGFRA1 and GFRA1 act as ceRNAs in triple negative breast cancer by regulating miR-34a. J Exp Clin Cancer Res 36(1):145CrossRefGoogle Scholar
  70. 70.
    Jin H, Jin X, Zhang H et al (2017) Circular RNA hsa-circ-0016347 promotes proliferation, invasion and metastasis of osteosarcoma cells. Oncotarget 8(15):25571–25581Google Scholar
  71. 71.
    Chen J, Cui L, Yuan J et al (2017) Circular RNA WDR77 target FGF-2 to regulate vascular smooth muscle cells proliferation and migration by sponging miR-124. Biochem Biophys Res Commun 494(1–2):126–132CrossRefGoogle Scholar
  72. 72.
    Sun Y, Yang Z, Zheng B et al (2017) A novel regulatory mechanism of smooth muscle alpha-actin expression by NRG-1/circACTA2/miR-548f-5p axis. Circ Res 121(6):628–635CrossRefGoogle Scholar
  73. 73.
    Wang X, Zhu X, Zhang H et al (2018) Increased circular RNA hsa_circ_0012673 acts as a sponge of miR-22 to promote lung adenocarcinoma proliferation. Biochem Biophys Res Commun 496(4):1069–1075CrossRefGoogle Scholar
  74. 74.
    Zhang J, Liu H, Hou L et al (2017) Circular RNA_LARP4 inhibits cell proliferation and invasion of gastric cancer by sponging miR-424-5p and regulating LATS1 expression. Mol Cancer 16(1):151CrossRefGoogle Scholar
  75. 75.
    Liang HF, Zhang XZ, Liu BG et al (2017) Circular RNA circ-ABCB10 promotes breast cancer proliferation and progression through sponging miR-1271. Am J Cancer Res 7(7):1566–1576PubMedPubMedCentralGoogle Scholar
  76. 76.
    Dudekula DB, Panda AC, Grammatikakis I et al (2016) CircInteractome: a web tool for exploring circular RNAs and their interacting proteins and microRNAs. RNA Biol 13(1):34–42CrossRefGoogle Scholar
  77. 77.
    Panda AC, Dudekula DB, Abdelmohsen K et al (2018) Analysis of circular RNAs using the web tool CircInteractome. Methods Mol Biol 1724:43–56CrossRefGoogle Scholar
  78. 78.
    Glazar P, Papavasileiou P, Rajewsky N (2014) circBase: a database for circular RNAs. RNA 20(11):1666–1670CrossRefGoogle Scholar
  79. 79.
    Ghosal S, Das S, Sen R et al (2013) Circ2Traits: a comprehensive database for circular RNA potentially associated with disease and traits. Front Genet 4:283CrossRefGoogle Scholar
  80. 80.
    Liu YC, Li JR, Sun CH et al (2016) CircNet: a database of circular RNAs derived from transcriptome sequencing data. Nucleic Acids Res 44(D1):D209–D215CrossRefGoogle Scholar
  81. 81.
    Li JH, Liu S, Zhou H et al (2014) starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res 42(Database issue):D92–D97CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Amaresh Chandra Panda
    • 1
  1. 1.Institute of Life SciencesBhubaneswarIndia

Personalised recommendations