Circular RNAs pp 309-325 | Cite as

The Role of Circular RNAs in Cerebral Ischemic Diseases: Ischemic Stroke and Cerebral Ischemia/Reperfusion Injury

  • Jian Yang
  • Mengli Chen
  • Richard Y. Cao
  • Qing Li
  • Fu Zhu
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1087)


Cerebral ischemic diseases including ischemic stroke and cerebral ischemia reperfusion injury can result in serious dysfunction of the brain, which leads to extremely high mortality and disability. There are no effective therapeutics for cerebral ischemic diseases to date. Circular RNAs are a kind of newly investigated noncoding RNAs. It is reported that circular RNAs are enriched in multiple organs, especially abundant in the brain, which indicates that circular RNAs may be involved in cerebral physiological and pathological processes. In this chapter, we will firstly review the pathophysiology, underlying mechanisms, and current treatments of cerebral ischemic diseases including ischemic stroke and cerebral ischemia/reperfusion injury. Secondly, the characteristics and function of circular RNAs will be outlined, and then we are going to introduce the roles circular RNAs play in human diseases. Finally, we will summarize the function of circular RNAs in cerebral ischemic diseases.


Circular RNAs Cerebral ischemic diseases Ischemic stroke Cerebral ischemia/reperfusion injury 


Competing Financial Interests

The authors declare no competing financial interests.


  1. 1.
    Turley KR, Toledo-Pereyra LH, Kothari RU (2005) Molecular mechanisms in the pathogenesis and treatment of acute ischemic stroke. J Investig Surg 18(4):207–218CrossRefGoogle Scholar
  2. 2.
    Eltzschig HK, Eckle T (2011) Ischemia and reperfusion--from mechanism to translation. Nat Med 17(11):1391–1401CrossRefGoogle Scholar
  3. 3.
    Ma Z, Xin Z, Di W et al (2017) Melatonin and mitochondrial function during ischemia/reperfusion injury. Cell Mol Life Sci 74(21):3989–3998CrossRefGoogle Scholar
  4. 4.
    Benjamin EJ, Virani SS, Callaway CW et al (2018) Heart disease and stroke statistics-2018 update: a report from the American Heart Association. Circulation 137:e67. CrossRefGoogle Scholar
  5. 5.
    Hentze MW, Preiss T (2013) Circular RNAs: splicing’s enigma variations. EMBO J 32(7):923–925PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Xie L, Mao M, Xiong K et al (2017) Circular RNAs: a novel player in development and disease of the central nervous system. Front Cell Neurosci 11:354PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Earls LR, Westmoreland JJ, Zakharenko SS (2014) Non-coding RNA regulation of synaptic plasticity and memory: implications for aging. Ageing Res Rev 17:34–42CrossRefGoogle Scholar
  8. 8.
    Rybak-Wolf A, Stottmeister C, Glazar P et al (2015) Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol Cell 58(5):870–885CrossRefPubMedGoogle Scholar
  9. 9.
    Lees KR, Bath PM, Naylor AR (2000) ABC of arterial and venous disease. Secondary prevention of transient ischaemic attack and stroke. BMJ 320(7240):991–994PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Edwards JD, Kapral MK, Fang J et al (2017) Trends in long-term mortality and morbidity in patients with no early complications after stroke and transient ischemic attack. J Stroke Cerebrovasc Dis 26(7):1641–1645CrossRefGoogle Scholar
  11. 11.
    Grysiewicz RA, Thomas K, Pandey DK (2008) Epidemiology of ischemic and hemorrhagic stroke: incidence, prevalence, mortality, and risk factors. Neurol Clin 26(4):871–895 viiCrossRefGoogle Scholar
  12. 12.
    Woodruff TM, Thundyil J, Tang SC et al (2011) Pathophysiology, treatment, and animal and cellular models of human ischemic stroke. Mol Neurodegener 6(1):11PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Saver JL (2006) Time is brain–quantified. Stroke 37(1):263–266CrossRefGoogle Scholar
  14. 14.
    Cobley JN, Fiorello ML, Bailey DM (2018) 13 reasons why the brain is susceptible to oxidative stress. Redox Biol 15:490–503PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Jin R, Liu L, Zhang S et al (2013) Role of inflammation and its mediators in acute ischemic stroke. J Cardiovasc Transl Res 6(5):834–851CrossRefGoogle Scholar
  16. 16.
    Fricker M, Tolkovsky AM, Borutaite V et al (2018) Neuronal cell death. Physiol Rev 98(2):813–880CrossRefGoogle Scholar
  17. 17.
    Ramos-Cabrer P, Campos F, Sobrino T et al (2011) Targeting the ischemic penumbra. Stroke 42(1 Suppl):S7–S11CrossRefGoogle Scholar
  18. 18.
    Huang Q, Sun M, Li M et al (2017) Combination of NAD(+) and NADPH offers greater neuroprotection in ischemic stroke models by relieving metabolic stress. Mol Neurobiol 55:6063. CrossRefGoogle Scholar
  19. 19.
    Liu J, Wang LN (2015) Peroxisome proliferator-activated receptor gamma agonists for preventing recurrent stroke and other vascular events in patients with stroke or transient ischaemic attack. Cochrane Database Syst Rev 8(10):CD010693. CrossRefGoogle Scholar
  20. 20.
    Kim YS, Kim C, Jung KH et al (2017) Range of glucose as a glycemic variability and 3-month outcome in diabetic patients with acute ischemic stroke. PLoS One 12(9):e0183894PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Pan Y, Chen W, Jing J et al (2017) Pancreatic beta-cell function and prognosis of nondiabetic patients with ischemic stroke. Stroke 48(11):2999–3005CrossRefGoogle Scholar
  22. 22.
    Iadecola C, Anrather J (2011) The immunology of stroke: from mechanisms to translation. Nat Med 17(7):796–808PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Felger JC, Abe T, Kaunzner UW et al (2010) Brain dendritic cells in ischemic stroke: time course, activation state, and origin. Brain Behav Immun 24(5):724–737CrossRefGoogle Scholar
  24. 24.
    Kostulas N, Li HL, Xiao BG et al (2002) Dendritic cells are present in ischemic brain after permanent middle cerebral artery occlusion in the rat. Stroke 33(4):1129–1134CrossRefGoogle Scholar
  25. 25.
    Gelderblom M, Leypoldt F, Steinbach K et al (2009) Temporal and spatial dynamics of cerebral immune cell accumulation in stroke. Stroke 40(5):1849–1857CrossRefGoogle Scholar
  26. 26.
    Yilmaz A, Fuchs T, Dietel B et al (2009) Transient decrease in circulating dendritic cell precursors after acute stroke: potential recruitment into the brain. Clin Sci (Lond) 118(2):147–157CrossRefGoogle Scholar
  27. 27.
    Yilmaz G, Arumugam TV, Stokes KY et al (2006) Role of T lymphocytes and interferon-gamma in ischemic stroke. Circulation 113(17):2105–2112CrossRefGoogle Scholar
  28. 28.
    Hallenbeck JM (1996) Significance of the inflammatory response in brain ischemia. Acta Neurochir Suppl 66:27–31Google Scholar
  29. 29.
    Zhai SK, Volgina VV, Sethupathi P et al (2014) Chemokine-mediated B cell trafficking during early rabbit GALT development. J Immunol 193(12):5951–5959PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Fernandez EJ, Lolis E (2002) Structure, function, and inhibition of chemokines. Annu Rev Pharmacol Toxicol 42:469–499CrossRefGoogle Scholar
  31. 31.
    Murphy PM (2002) International Union of Pharmacology. XXX. Update on chemokine receptor nomenclature. Pharmacol Rev 54(2):227–229CrossRefGoogle Scholar
  32. 32.
    Mirabelli-Badenier M, Braunersreuther V, Viviani GL et al (2011) CC and CXC chemokines are pivotal mediators of cerebral injury in ischaemic stroke. Thromb Haemost 105(3):409–420CrossRefGoogle Scholar
  33. 33.
    Herrmann O, Tarabin V, Suzuki S et al (2003) Regulation of body temperature and neuroprotection by endogenous interleukin-6 in cerebral ischemia. J Cereb Blood Flow Metab 23(4):406–415CrossRefGoogle Scholar
  34. 34.
    Waje-Andreassen U, Krakenes J, Ulvestad E et al (2005) IL-6: an early marker for outcome in acute ischemic stroke. Acta Neurol Scand 111(6):360–365CrossRefGoogle Scholar
  35. 35.
    Xu N, Zhang Y, Doycheva DM et al (2018) Adiponectin attenuates neuronal apoptosis induced by hypoxia-ischemia via the activation of AdipoR1/APPL1/LKB1/AMPK pathway in neonatal rats. Neuropharmacology 133:415–428CrossRefGoogle Scholar
  36. 36.
    Lossi L, Castagna C, Merighi A (2015) Neuronal cell death: an overview of its different forms in central and peripheral neurons. Methods Mol Biol 1254:1–18CrossRefGoogle Scholar
  37. 37.
    Shabanzadeh AP, D’Onofrio PM, Monnier PP et al (2015) Targeting caspase-6 and caspase-8 to promote neuronal survival following ischemic stroke. Cell Death Dis 6:e1967PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    Yang W, Shen Y, Chen Y et al (2014) Mesencephalic astrocyte-derived neurotrophic factor prevents neuron loss via inhibiting ischemia-induced apoptosis. J Neurol Sci 344(1–2):129–138CrossRefGoogle Scholar
  39. 39.
    van Wijk SJ, Hageman GJ (2005) Poly(ADP-ribose) polymerase-1 mediated caspase-independent cell death after ischemia/reperfusion. Free Radic Biol Med 39(1):81–90CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Zhao Y, Pan R, Li S et al (2014) Chelating intracellularly accumulated zinc decreased ischemic brain injury through reducing neuronal apoptotic death. Stroke 45(4):1139–1147CrossRefGoogle Scholar
  41. 41.
    Rengan R, Ochs HD, Sweet LI et al (2000) Actin cytoskeletal function is spared, but apoptosis is increased, in WAS patient hematopoietic cells. Blood 95(4):1283–1292Google Scholar
  42. 42.
    Cevik O, Adiguzel Z, Baykal AT et al (2013) The apoptotic actions of platelets in acute ischemic stroke. Mol Biol Rep 40(12):6721–6727CrossRefGoogle Scholar
  43. 43.
    Astrup J, Symon L, Branston NM et al (1977) Cortical evoked potential and extracellular K+ and H+ at critical levels of brain ischemia. Stroke 8(1):51–57CrossRefGoogle Scholar
  44. 44.
    Liu R, Yuan H, Yuan F et al (2012) Neuroprotection targeting ischemic penumbra and beyond for the treatment of ischemic stroke. Neurol Res 34(4):331–337CrossRefGoogle Scholar
  45. 45.
    Mies G, Iijima T, Hossmann KA (1993) Correlation between peri-infarct DC shifts and ischaemic neuronal damage in rat. Neuroreport 4(6):709–711CrossRefGoogle Scholar
  46. 46.
    White SH, Brisson CD, Andrew RD (2012) Examining protection from anoxic depolarization by the drugs dibucaine and carbetapentane using whole cell recording from CA1 neurons. J Neurophysiol 107(8):2083–2095CrossRefGoogle Scholar
  47. 47.
    Yoshie T, Ueda T, Takada T et al (2018) Effects of pretreatment cerebral blood volume and time to recanalization on clinical outcomes in endovascular Thrombectomy for acute ischemic stroke. J Stroke Cerebrovasc Dis 27:1802. CrossRefGoogle Scholar
  48. 48.
    White CJ, Abou-Chebl A, Cates CU et al (2011) Stroke intervention: catheter-based therapy for acute ischemic stroke. J Am Coll Cardiol 58(2):101–116CrossRefGoogle Scholar
  49. 49.
    Powers WJ, Derdeyn CP, Biller J et al (2015) 2015 American Heart Association/American Stroke Association focused update of the 2013 guidelines for the early management of patients with acute ischemic stroke regarding endovascular treatment: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 46(10):3020–3035CrossRefGoogle Scholar
  50. 50.
    Moussaddy A, Demchuk AM, Hill MD (2018) Thrombolytic therapies for ischemic stroke: triumphs and future challenges. Neuropharmacology 134:272. CrossRefGoogle Scholar
  51. 51.
    Del Zoppo GJ, Saver JL, Jauch EC et al (2009) Expansion of the time window for treatment of acute ischemic stroke with intravenous tissue plasminogen activator: a science advisory from the American Heart Association/American Stroke Association. Stroke 40(8):2945–2948PubMedCentralCrossRefPubMedGoogle Scholar
  52. 52.
    Wapshott T, Blum B, Kelsey W et al (2017) Investigation of gender differences and exclusive criteria in a diabetic acute ischemic stroke population treated with recombinant tissue-type plasminogen activator (rtPA). J Vasc Interv Neurol 9(6):26–32PubMedCentralPubMedGoogle Scholar
  53. 53.
    Guo Z, Yu S, Chen X et al (2018) Suppression of NLRP3 attenuates hemorrhagic transformation after delayed rtPA treatment in thromboembolic stroke rats: involvement of neutrophil recruitment. Brain Res Bull 137:229–240CrossRefGoogle Scholar
  54. 54.
    Shere A, Goyal H (2017) Cannabis can augment thrombolytic properties of rtPA: intracranial hemorrhage in a heavy cannabis user. Am J Emerg Med 35(12):1988 e1981–1988 e1982CrossRefGoogle Scholar
  55. 55.
    Jovin TG, Chamorro A, Cobo E et al (2015) Thrombectomy within 8 hours after symptom onset in ischemic stroke. N Engl J Med 372(24):2296–2306CrossRefGoogle Scholar
  56. 56.
    Berkhemer OA, Fransen PS, Beumer D et al (2015) A randomized trial of intraarterial treatment for acute ischemic stroke. N Engl J Med 372(1):11–20CrossRefGoogle Scholar
  57. 57.
    Campbell BC, Mitchell PJ, Kleinig TJ et al (2015) Endovascular therapy for ischemic stroke with perfusion-imaging selection. N Engl J Med 372(11):1009–1018CrossRefGoogle Scholar
  58. 58.
    Shafi N, Kasner SE (2011) Treatment of acute ischemic stroke: beyond thrombolysis and supportive care. Neurotherapeutics 8(3):425–433PubMedCentralCrossRefPubMedGoogle Scholar
  59. 59.
    Thwaites JW, Reebye V, Mintz P et al (2012) Cellular replacement and regenerative medicine therapies in ischemic stroke. Regen Med 7(3):387–395CrossRefGoogle Scholar
  60. 60.
    Deng W, Obrocka M, Fischer I et al (2001) In vitro differentiation of human marrow stromal cells into early progenitors of neural cells by conditions that increase intracellular cyclic AMP. Biochem Biophys Res Commun 282(1):148–152CrossRefGoogle Scholar
  61. 61.
    Yang Z, Zhu L, Li F et al (2014) Bone marrow stromal cells as a therapeutic treatment for ischemic stroke. Neurosci Bull 30(3):524–534PubMedCentralCrossRefPubMedGoogle Scholar
  62. 62.
    Wu P, Zuo X, Ji A (2012) Stroke-induced microRNAs: the potential therapeutic role for stroke. Exp Ther Med 3(4):571–576PubMedCentralCrossRefPubMedGoogle Scholar
  63. 63.
    Bhalala OG, Srikanth M, Kessler JA (2013) The emerging roles of microRNAs in CNS injuries. Nat Rev Neurol 9(6):328–339PubMedCentralCrossRefPubMedGoogle Scholar
  64. 64.
    Vemuganti R (2010) The MicroRNAs and stroke: no need to be coded to be counted. Transl Stroke Res 1(3):158–160PubMedCentralCrossRefPubMedGoogle Scholar
  65. 65.
    Zheng HW, Wang YL, Lin JX et al (2012) Circulating MicroRNAs as potential risk biomarkers for hematoma enlargement after intracerebral hemorrhage. CNS Neurosci Ther 18(12):1003–1011CrossRefGoogle Scholar
  66. 66.
    Mishima T, Mizuguchi Y, Kawahigashi Y et al (2007) RT-PCR-based analysis of microRNA (miR-1 and -124) expression in mouse CNS. Brain Res 1131(1):37–43CrossRefGoogle Scholar
  67. 67.
    Sun Y, Gui H, Li Q et al (2013) MicroRNA-124 protects neurons against apoptosis in cerebral ischemic stroke. CNS Neurosci Ther 19(10):813–819PubMedGoogle Scholar
  68. 68.
    Wang ZS, Luo P, Dai SH et al (2013) Salvianolic acid B induces apoptosis in human glioma U87 cells through p38-mediated ROS generation. Cell Mol Neurobiol 33(7):921–928CrossRefGoogle Scholar
  69. 69.
    Lv H, Wang L, Shen J et al (2015) Salvianolic acid B attenuates apoptosis and inflammation via SIRT1 activation in experimental stroke rats. Brain Res Bull 115:30–36CrossRefGoogle Scholar
  70. 70.
    Li D, Shao Z, Vanden Hoek TL et al (2007) Reperfusion accelerates acute neuronal death induced by simulated ischemia. Exp Neurol 206(2):280–287PubMedCentralCrossRefPubMedGoogle Scholar
  71. 71.
    Jung JE, Kim GS, Chen H et al (2010) Reperfusion and neurovascular dysfunction in stroke: from basic mechanisms to potential strategies for neuroprotection. Mol Neurobiol 41(2–3):172–179PubMedCentralCrossRefPubMedGoogle Scholar
  72. 72.
    The NINDS t-PA Stroke Study Group (1997) Intracerebral hemorrhage after intravenous t-PA therapy for ischemic stroke. Stroke 28(11):2109–2118CrossRefGoogle Scholar
  73. 73.
    Pan J, Konstas AA, Bateman B et al (2007) Reperfusion injury following cerebral ischemia: pathophysiology, MR imaging, and potential therapies. Neuroradiology 49(2):93–102CrossRefGoogle Scholar
  74. 74.
    Gobin YP, Starkman S, Duckwiler GR et al (2004) MERCI 1: a phase 1 study of mechanical embolus removal in cerebral ischemia. Stroke 35(12):2848–2854CrossRefGoogle Scholar
  75. 75.
    Nanetti L, Raffaelli F, Vignini A et al (2011) Oxidative stress in ischaemic stroke. Eur J Clin Investig 41(12):1318–1322CrossRefGoogle Scholar
  76. 76.
    Jin R, Yang G, Li G (2010) Inflammatory mechanisms in ischemic stroke: role of inflammatory cells. J Leukoc Biol 87(5):779–789PubMedCentralCrossRefPubMedGoogle Scholar
  77. 77.
    Kristian T, Gido G, Kuroda S et al (1998) Calcium metabolism of focal and penumbral tissues in rats subjected to transient middle cerebral artery occlusion. Exp Brain Res 120(4):503–509CrossRefGoogle Scholar
  78. 78.
    Wang GH, Lan R, Zhen XD et al (2014) An-Gong-Niu-Huang Wan protects against cerebral ischemia induced apoptosis in rats: up-regulation of Bcl-2 and down-regulation of Bax and caspase-3. J Ethnopharmacol 154(1):156–162CrossRefGoogle Scholar
  79. 79.
    Allen CL, Bayraktutan U (2009) Oxidative stress and its role in the pathogenesis of ischaemic stroke. Int J Stroke 4(6):461–470CrossRefGoogle Scholar
  80. 80.
    Circu ML, Aw TY (2010) Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med 48(6):749–762PubMedCentralCrossRefPubMedGoogle Scholar
  81. 81.
    Jezek P, Hlavata L (2005) Mitochondria in homeostasis of reactive oxygen species in cell, tissues, and organism. Int J Biochem Cell Biol 37(12):2478–2503CrossRefGoogle Scholar
  82. 82.
    Lee HL, Chen CL, Yeh ST et al (2012) Biphasic modulation of the mitochondrial electron transport chain in myocardial ischemia and reperfusion. Am J Physiol Heart Circ Physiol 302(7):H1410–H1422PubMedCentralCrossRefPubMedGoogle Scholar
  83. 83.
    Crack PJ, Taylor JM (2005) Reactive oxygen species and the modulation of stroke. Free Radic Biol Med 38(11):1433–1444CrossRefGoogle Scholar
  84. 84.
    Chan PH (2001) Reactive oxygen radicals in signaling and damage in the ischemic brain. J Cereb Blood Flow Metab 21(1):2–14CrossRefGoogle Scholar
  85. 85.
    Heo JH, Han SW, Lee SK (2005) Free radicals as triggers of brain edema formation after stroke. Free Radic Biol Med 39(1):51–70CrossRefGoogle Scholar
  86. 86.
    Jian Liu K, Rosenberg GA (2005) Matrix metalloproteinases and free radicals in cerebral ischemia. Free Radic Biol Med 39(1):71–80CrossRefGoogle Scholar
  87. 87.
    Chen XM, Chen HS, Xu MJ et al (2013) Targeting reactive nitrogen species: a promising therapeutic strategy for cerebral ischemia-reperfusion injury. Acta Pharmacol Sin 34(1):67–77CrossRefGoogle Scholar
  88. 88.
    Gyoneva S, Davalos D, Biswas D et al (2014) Systemic inflammation regulates microglial responses to tissue damage in vivo. Glia 62(8):1345–1360PubMedCentralCrossRefPubMedGoogle Scholar
  89. 89.
    Zaleska MM, Mercado ML, Chavez J et al (2009) The development of stroke therapeutics: promising mechanisms and translational challenges. Neuropharmacology 56(2):329–341CrossRefGoogle Scholar
  90. 90.
    Ekdahl CT, Kokaia Z, Lindvall O (2009) Brain inflammation and adult neurogenesis: the dual role of microglia. Neuroscience 158(3):1021–1029CrossRefGoogle Scholar
  91. 91.
    Gleichman AJ, Carmichael ST (2014) Astrocytic therapies for neuronal repair in stroke. Neurosci Lett 565:47–52CrossRefGoogle Scholar
  92. 92.
    Fabian RH, Perez-Polo JR, Kent TA (2000) Electrochemical monitoring of superoxide anion production and cerebral blood flow: effect of interleukin-1 beta pretreatment in a model of focal ischemia and reperfusion. J Neurosci Res 60(6):795–803CrossRefGoogle Scholar
  93. 93.
    Yan YP, Sailor KA, Lang BT et al (2007) Monocyte chemoattractant protein-1 plays a critical role in neuroblast migration after focal cerebral ischemia. J Cereb Blood Flow Metab 27(6):1213–1224CrossRefGoogle Scholar
  94. 94.
    Wasserman JK, Yang H, Schlichter LC (2008) Glial responses, neuron death and lesion resolution after intracerebral hemorrhage in young vs. aged rats. Eur J Neurosci 28(7):1316–1328CrossRefGoogle Scholar
  95. 95.
    Berti R, Williams AJ, Moffett JR et al (2002) Quantitative real-time RT-PCR analysis of inflammatory gene expression associated with ischemia-reperfusion brain injury. J Cereb Blood Flow Metab 22(9):1068–1079CrossRefGoogle Scholar
  96. 96.
    Caso JR, Moro MA, Lorenzo P et al (2007) Involvement of IL-1beta in acute stress-induced worsening of cerebral ischaemia in rats. Eur Neuropsychopharmacol 17(9):600–607CrossRefGoogle Scholar
  97. 97.
    Baird GS (2011) Ionized calcium. Clin Chim Acta 412(9–10):696–701CrossRefGoogle Scholar
  98. 98.
    Zheng J, Zeng X, Wang S (2015) Calcium ion as cellular messenger. Sci China Life Sci 58(1):1–5CrossRefGoogle Scholar
  99. 99.
    Costa C, Martella G, Picconi B et al (2006) Multiple mechanisms underlying the neuroprotective effects of antiepileptic drugs against in vitro ischemia. Stroke 37(5):1319–1326CrossRefGoogle Scholar
  100. 100.
    Zhou X, Fan GC, Ren X et al (2007) Overexpression of histidine-rich Ca-binding protein protects against ischemia/reperfusion-induced cardiac injury. Cardiovasc Res 75(3):487–497CrossRefGoogle Scholar
  101. 101.
    Lopez-Caamal F, Oyarzun DA, Middleton RH et al (2014) Spatial quantification of cytosolic Ca(2)(+) accumulation in nonexcitable cells: an analytical study. IEEE/ACM Trans Comput Biol Bioinform 11(3):592–603CrossRefGoogle Scholar
  102. 102.
    Li LH, Tian XR, Hu ZP (2015) The key target of neuroprotection after the onset of ischemic stroke: secretory pathway Ca(2+)-ATPase 1. Neural Regen Res 10(8):1271–1278PubMedCentralCrossRefPubMedGoogle Scholar
  103. 103.
    Liu HJ, Yang JP, Wang CH et al (2009) Endoplasmic reticulum in the penumbra following middle cerebral artery occlusion in the rabbit. Neurol Sci 30(3):227–232CrossRefGoogle Scholar
  104. 104.
    Butterick TA, Duffy CM, Lee RE et al (2014) Use of a caspase multiplexing assay to determine apoptosis in a hypothalamic cell model. J Vis Exp 16.
  105. 105.
    Wawryk-Gawda E, Chylinska-Wrzos P, Lis-Sochocka M et al (2014) P53 protein in proliferation, repair and apoptosis of cells. Protoplasma 251(3):525–533CrossRefGoogle Scholar
  106. 106.
    Feng L, Balakir R, Precht P et al (1999) Bcl-2 regulates chondrocyte morphology and aggrecan gene expression independent of caspase activation and full apoptosis. J Cell Biochem 74(4):576–586CrossRefGoogle Scholar
  107. 107.
    Daehn IS, Varelias A, Rayner TE (2010) T-lymphocyte-induced, Fas-mediated apoptosis is associated with early keratinocyte differentiation. Exp Dermatol 19(4):372–380CrossRefGoogle Scholar
  108. 108.
    Zhou J, Du T, Li B et al (2015) Crosstalk between MAPK/ERK and PI3K/AKT signal pathways during brain ischemia/reperfusion. ASN Neuro 7(5):175909141560246CrossRefGoogle Scholar
  109. 109.
    Si Y, Bao H, Han L et al (2013) Dexmedetomidine protects against renal ischemia and reperfusion injury by inhibiting the JAK/STAT signaling activation. J Transl Med 11:141PubMedCentralCrossRefPubMedGoogle Scholar
  110. 110.
    Tabassum R, Vaibhav K, Shrivastava P et al (2015) Perillyl alcohol improves functional and histological outcomes against ischemia-reperfusion injury by attenuation of oxidative stress and repression of COX-2, NOS-2 and NF-kappaB in middle cerebral artery occlusion rats. Eur J Pharmacol 747:190–199CrossRefGoogle Scholar
  111. 111.
    Field JM, Hazinski MF, Sayre MR et al (2010) Part 1: executive summary: 2010 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation 122(18 Suppl 3):S640–S656CrossRefGoogle Scholar
  112. 112.
    International Liaison Committee on R (2005) 2005 International consensus on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations. Part 5: acute coronary syndromes. Resuscitation 67(2–3):249–269Google Scholar
  113. 113.
    Hypothermia after Cardiac Arrest Study G (2002) Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med 346(8):549–556CrossRefGoogle Scholar
  114. 114.
    Bernard SA, Gray TW, Buist MD et al (2002) Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med 346(8):557–563CrossRefGoogle Scholar
  115. 115.
    Strbian D, Kovanen PT, Karjalainen-Lindsberg ML et al (2009) An emerging role of mast cells in cerebral ischemia and hemorrhage. Ann Med 41(6):438–450CrossRefGoogle Scholar
  116. 116.
    Polyak E, Ostrovsky J, Peng M et al (2018) N-acetylcysteine and vitamin E rescue animal longevity and cellular oxidative stress in pre-clinical models of mitochondrial complex I disease. Mol Genet Metab 123:449. CrossRefGoogle Scholar
  117. 117.
    Kim JH, Kim YC, Nahm FS et al (2017) The therapeutic effect of vitamin C in an animal model of complex regional pain syndrome produced by prolonged hindpaw ischemia-reperfusion in rats. Int J Med Sci 14(1):97–101PubMedCentralCrossRefPubMedGoogle Scholar
  118. 118.
    Chan SL, Cipolla MJ (2017) Treatment with low dose fasudil for acute ischemic stroke in chronic hypertension. J Cereb Blood Flow Metab 37(9):3262–3270PubMedCentralCrossRefPubMedGoogle Scholar
  119. 119.
    Koinig H, Vornik V, Rueda C et al (2001) Lubeluzole inhibits accumulation of extracellular glutamate in the hippocampus during transient global cerebral ischemia. Brain Res 898(2):297–302CrossRefGoogle Scholar
  120. 120.
    Zhang Y, Jin Y, Behr MJ et al (2005) Behavioral and histological neuroprotection by tamoxifen after reversible focal cerebral ischemia. Exp Neurol 196(1):41–46CrossRefGoogle Scholar
  121. 121.
    Wu PF, Zhang Z, Wang F et al (2010) Natural compounds from traditional medicinal herbs in the treatment of cerebral ischemia/reperfusion injury. Acta Pharmacol Sin 31(12):1523–1531PubMedCentralCrossRefPubMedGoogle Scholar
  122. 122.
    Xia WG, Zheng CJ, Zhang X et al (2017) Effects of “nourishing liver and kidney” acupuncture therapy on expression of brain derived neurotrophic factor and synaptophysin after cerebral ischemia reperfusion in rats. J Huazhong Univ Sci Technolog Med Sci 37(2):271–278CrossRefGoogle Scholar
  123. 123.
    Esteller M (2011) Non-coding RNAs in human disease. Nat Rev Genet 12(12):861–874CrossRefGoogle Scholar
  124. 124.
    Consortium EP (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489(7414):57–74CrossRefGoogle Scholar
  125. 125.
    Patil VS, Zhou R, Rana TM (2014) Gene regulation by non-coding RNAs. Crit Rev Biochem Mol Biol 49(1):16–32CrossRefGoogle Scholar
  126. 126.
    Nigro JM, Cho KR, Fearon ER et al (1991) Scrambled exons. Cell 64(3):607–613PubMedCentralCrossRefPubMedGoogle Scholar
  127. 127.
    Guo JU, Agarwal V, Guo H et al (2014) Expanded identification and characterization of mammalian circular RNAs. Genome Biol 15(7):409PubMedCentralCrossRefPubMedGoogle Scholar
  128. 128.
    Sanger HL, Klotz G, Riesner D et al (1976) Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc Natl Acad Sci U S A 73(11):3852–3856PubMedCentralCrossRefPubMedGoogle Scholar
  129. 129.
    Rong D, Sun H, Li Z et al (2017) An emerging function of circRNA-miRNAs-mRNA axis in human diseases. Oncotarget 8(42):73271–73281PubMedCentralCrossRefPubMedGoogle Scholar
  130. 130.
    Wang PL, Bao Y, Yee MC et al (2014) Circular RNA is expressed across the eukaryotic tree of life. PLoS One 9(6):e90859PubMedCentralCrossRefPubMedGoogle Scholar
  131. 131.
    Salzman J, Chen RE, Olsen MN et al (2013) Cell-type specific features of circular RNA expression. PLoS Genet 9(9):e1003777PubMedCentralCrossRefPubMedGoogle Scholar
  132. 132.
    Jeck WR, Sorrentino JA, Wang K et al (2013) Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 19(2):141–157PubMedCentralCrossRefPubMedGoogle Scholar
  133. 133.
    Ashwal-Fluss R, Meyer M, Pamudurti NR et al (2014) circRNA biogenesis competes with pre-mRNA splicing. Mol Cell 56(1):55–66PubMedCentralCrossRefPubMedGoogle Scholar
  134. 134.
    You X, Vlatkovic I, Babic A et al (2015) Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity. Nat Neurosci 18(4):603–610PubMedCentralCrossRefPubMedGoogle Scholar
  135. 135.
    Memczak S, Jens M, Elefsinioti A et al (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495(7441):333–338PubMedCentralCrossRefPubMedGoogle Scholar
  136. 136.
    Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233PubMedCentralCrossRefPubMedGoogle Scholar
  137. 137.
    Capel B, Swain A, Nicolis S et al (1993) Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell 73(5):1019–1030PubMedCentralCrossRefPubMedGoogle Scholar
  138. 138.
    Hansen TB, Jensen TI, Clausen BH et al (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495(7441):384–388PubMedCentralCrossRefPubMedGoogle Scholar
  139. 139.
    Xu H, Guo S, Li W et al (2015) The circular RNA Cdr1as, via miR-7 and its targets, regulates insulin transcription and secretion in islet cells. Sci Rep 5:12453PubMedCentralCrossRefPubMedGoogle Scholar
  140. 140.
    Zheng Q, Bao C, Guo W et al (2016) Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nat Commun 7:11215PubMedCentralCrossRefPubMedGoogle Scholar
  141. 141.
    Salzman J, Gawad C, Wang PL et al (2012) Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One 7(2):e30733PubMedCentralCrossRefPubMedGoogle Scholar
  142. 142.
    Zhang Y, Zhang XO, Chen T et al (2013) Circular intronic long noncoding RNAs. Mol Cell 51(6):792–806PubMedCentralCrossRefPubMedGoogle Scholar
  143. 143.
    Li Z, Huang C, Bao C et al (2015) Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol 22(3):256–264CrossRefPubMedGoogle Scholar
  144. 144.
    Zhang XO, Wang HB, Zhang Y et al (2014) Complementary sequence-mediated exon circularization. Cell 159(1):134–147PubMedCentralCrossRefPubMedGoogle Scholar
  145. 145.
    Conn VM, Hugouvieux V, Nayak A et al (2017) A circRNA from SEPALLATA3 regulates splicing of its cognate mRNA through R-loop formation. Nat Plants 3:17053CrossRefGoogle Scholar
  146. 146.
    Holdt LM, Stahringer A, Sass K et al (2016) Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans. Nat Commun 7:12429PubMedCentralCrossRefPubMedGoogle Scholar
  147. 147.
    Burd CE, Jeck WR, Liu Y et al (2010) Expression of linear and novel circular forms of an INK4/ARF-associated non-coding RNA correlates with atherosclerosis risk. PLoS Genet 6(12):e1001233PubMedCentralCrossRefPubMedGoogle Scholar
  148. 148.
    Geng HH, Li R, Su YM et al (2016) The circular RNA Cdr1as promotes myocardial infarction by mediating the regulation of miR-7a on its target genes expression. PLoS One 11(3):e0151753PubMedCentralCrossRefPubMedGoogle Scholar
  149. 149.
    Du WW, Yang W, Chen Y et al (2017) Foxo3 circular RNA promotes cardiac senescence by modulating multiple factors associated with stress and senescence responses. Eur Heart J 38(18):1402–1412PubMedGoogle Scholar
  150. 150.
    Wang K, Long B, Liu F et al (2016) A circular RNA protects the heart from pathological hypertrophy and heart failure by targeting miR-223. Eur Heart J 37(33):2602–2611CrossRefPubMedGoogle Scholar
  151. 151.
    Peng L, Yuan XQ, Li GC (2015) The emerging landscape of circular RNA ciRS-7 in cancer (review). Oncol Rep 33(6):2669–2674PubMedCentralCrossRefPubMedGoogle Scholar
  152. 152.
    Hansen TB, Kjems J, Damgaard CK (2013) Circular RNA and miR-7 in cancer. Cancer Res 73(18):5609–5612PubMedCentralCrossRefPubMedGoogle Scholar
  153. 153.
    Wang X, Zhang Y, Huang L et al (2015) Decreased expression of hsa_circ_001988 in colorectal cancer and its clinical significances. Int J Clin Exp Pathol 8(12):16020–16025PubMedCentralPubMedGoogle Scholar
  154. 154.
    Nair AA, Niu N, Tang X et al (2016) Circular RNAs and their associations with breast cancer subtypes. Oncotarget 7(49):80967–80979PubMedCentralCrossRefPubMedGoogle Scholar
  155. 155.
    Qian Y, Lu Y, Rui C et al (2016) Potential significance of circular RNA in human placental tissue for patients with preeclampsia. Cell Physiol Biochem 39(4):1380–1390CrossRefGoogle Scholar
  156. 156.
    Zhang YG, Yang HL, Long Y et al (2016) Circular RNA in blood corpuscles combined with plasma protein factor for early prediction of pre-eclampsia. BJOG 123(13):2113–2118CrossRefGoogle Scholar
  157. 157.
    Lukiw WJ (2013) Circular RNA (circRNA) in Alzheimer’s disease (AD). Front Genet 4:307PubMedCentralPubMedGoogle Scholar
  158. 158.
    Bingol B, Sheng M (2011) Deconstruction for reconstruction: the role of proteolysis in neural plasticity and disease. Neuron 69(1):22–32PubMedCentralCrossRefPubMedGoogle Scholar
  159. 159.
    Junn E, Lee KW, Jeong BS et al (2009) Repression of alpha-synuclein expression and toxicity by microRNA-7. Proc Natl Acad Sci U S A 106(31):13052–13057PubMedCentralCrossRefPubMedGoogle Scholar
  160. 160.
    Danan M, Schwartz S, Edelheit S et al (2012) Transcriptome-wide discovery of circular RNAs in archaea. Nucleic Acids Res 40(7):3131–3142PubMedCentralCrossRefPubMedGoogle Scholar
  161. 161.
    Khoutorsky A, Yanagiya A, Gkogkas CG et al (2013) Control of synaptic plasticity and memory via suppression of poly(A)-binding protein. Neuron 78(2):298–311CrossRefGoogle Scholar
  162. 162.
    Li XQ, Chen FS, Tan WF et al (2017) Elevated microRNA-129-5p level ameliorates neuroinflammation and blood-spinal cord barrier damage after ischemia-reperfusion by inhibiting HMGB1 and the TLR3-cytokine pathway. J Neuroinflammation 14(1):205PubMedCentralCrossRefPubMedGoogle Scholar
  163. 163.
    Zheng Y, Wang L, Chen M et al (2017) Upregulation of miR-130b protects against cerebral ischemic injury by targeting water channel protein aquaporin 4 (AQP4). Am J Transl Res 9(7):3452–3461PubMedCentralPubMedGoogle Scholar
  164. 164.
    Han XR, Wen X, Wang YJ et al (2017) Protective effects of microRNA-431 against cerebral ischemia-reperfusion injury in rats by targeting the Rho/Rho-kinase signaling pathway. J Cell Physiol 233:5895. CrossRefGoogle Scholar
  165. 165.
    Tian F, Yuan C, Hu L et al (2017) MicroRNA-93 inhibits inflammatory responses and cell apoptosis after cerebral ischemia reperfusion by targeting interleukin-1 receptor-associated kinase 4. Exp Ther Med 14(4):2903–2910PubMedCentralCrossRefPubMedGoogle Scholar
  166. 166.
    Zhang X, Tang X, Liu K et al (2017) Long noncoding RNA Malat1 regulates cerebrovascular pathologies in ischemic stroke. J Neurosci 37(7):1797–1806PubMedCentralCrossRefPubMedGoogle Scholar
  167. 167.
    Yan H, Rao J, Yuan J et al (2017) Long non-coding RNA MEG3 functions as a competing endogenous RNA to regulate ischemic neuronal death by targeting miR-21/PDCD4 signaling pathway. Cell Death Dis 8(12):3211PubMedCentralCrossRefPubMedGoogle Scholar
  168. 168.
    Hou XX, Cheng H (2018) Long non-coding RNA RMST silencing protects against middle cerebral artery occlusion (MCAO)-induced ischemic stroke. Biochem Biophys Res Commun 495(4):2602–2608CrossRefGoogle Scholar
  169. 169.
    Wang J, Cao B, Han D et al (2017) Long non-coding RNA H19 induces cerebral ischemia reperfusion injury via activation of autophagy. Aging Dis 8(1):71–84PubMedCentralCrossRefPubMedGoogle Scholar
  170. 170.
    Bai Y, Zhang Y, Han B et al (2018) Circular RNA DLGAP4 ameliorates ischemic stroke outcomes by targeting miR-143 to regulate endothelial-mesenchymal transition associated with blood-brain barrier integrity. J Neurosci 38(1):32–50Google Scholar
  171. 171.
    Mehta SL, Pandi G, Vemuganti R (2017) Circular RNA expression profiles Alter significantly in mouse brain after transient focal ischemia. Stroke 48(9):2541–2548PubMedCentralCrossRefPubMedGoogle Scholar
  172. 172.
    Lin SP, Ye S, Long Y et al (2016) Circular RNA expression alterations are involved in OGD/R-induced neuron injury. Biochem Biophys Res Commun 471(1):52–56CrossRefGoogle Scholar
  173. 173.
    Yamauchi H, Nishii R, Higashi T et al (2011) Silent cortical neuronal damage in atherosclerotic disease of the major cerebral arteries. J Cereb Blood Flow Metab 31(3):953–961CrossRefGoogle Scholar
  174. 174.
    Schaller B, Graf R (2004) Cerebral ischemia and reperfusion: the pathophysiologic concept as a basis for clinical therapy. J Cereb Blood Flow Metab 24(4):351–371CrossRefGoogle Scholar
  175. 175.
    Song CL, Wang JP, Xue X et al (2017) Effect of circular ANRIL on the inflammatory response of vascular endothelial cells in a rat model of coronary atherosclerosis. Cell Physiol Biochem 42(3):1202–1212CrossRefGoogle Scholar
  176. 176.
    Li CY, Ma L, Yu B (2017) Circular RNA hsa_circ_0003575 regulates oxLDL induced vascular endothelial cells proliferation and angiogenesis. Biomed Pharmacother 95:1514–1519PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Jian Yang
    • 1
  • Mengli Chen
    • 2
  • Richard Y. Cao
    • 1
  • Qing Li
    • 1
  • Fu Zhu
    • 1
  1. 1.Zhongshan-Xuhui Hospital, Fudan University/Shanghai Clinical Research Center, Chinese Academy of SciencesShanghaiChina
  2. 2.Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina

Personalised recommendations