Advertisement

Surgical Navigation in Orthopedics: Workflow and System Review

  • Chidozie H. Ewurum
  • Yingying Guo
  • Seang Pagnha
  • Zhao Feng
  • Xiongbiao Luo
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1093)

Abstract

Orthopedic surgery is a widely performed clinical procedure that deals with problems in relation to the bones, joints, and ligaments of the human body, such as musculoskeletal trauma, spine diseases, sports injuries, degenerative diseases, infections, tumors, and congenital disorders. Surgical navigation is generally recognized as the next generation technology of orthopedic surgery. The development of orthopedic navigation systems aims to analyze pre-, intra- and/or postoperative data in multiple modalities and provide an augmented reality 3-D visualization environment to improve clinical outcomes of surgical orthopedic procedures. This chapter investigates surgical navigation techniques and systems that are currently available in orthopedic procedures. In particular, optical tracking, electromagnetic localizers and stereoscopic vision, as well as commercialized orthopedic navigation systems are thoroughly discussed. Moreover, advances and development trends in orthopedic navigation are also discussed in this chapter. While current orthopedic navigation systems enable surgeons to make precise decisions in the operating room by integrating surgical planning, instrument tracking, and intraoperative imaging, it still remains an active research field which provides orthopedists with various technical disciplines, e.g., medical imaging, computer science, sensor technology, and robotics, to further develop current orthopedic navigation methods and systems.

Keywords

Surgical navigation Intelligent orthopedics Workflow and system Review 

References

  1. 1.
    Angibaud LD, Dai Y, Liebelt RA, Gao B, Gulbransen SW, Silver XS (2015) Evaluation of the accuracy and precision of a next generation computer-assisted surgical system. Clin Orthop Surg 7(2):225–233CrossRefPubMedCentralGoogle Scholar
  2. 2.
    Aponte-Tinao LA, Ritacco LE, Milano FE, Ayerza MA, Farfalli GF (2015) Techniques in surgical navigation of extremity tumors: state of the art. Curr Rev Muscoskelet Med 8(4):319–323CrossRefGoogle Scholar
  3. 3.
    Bostel T, Nicolay NH, Grossmann JG, Mohr A, Delorme S, Echner G, Haring P, Debus J, Sterzing, F (2014) Mr-guidance – a clinical study to evaluate a shuttle-based MR-linac connection to provide MR-guided radiotherapy. Radiat Oncol 9:12CrossRefPubMedCentralGoogle Scholar
  4. 4.
    Cho HS, Oh JH, Han I, Kim HS (2009) Joint-preserving limb salvage surgery under navigation guidance. Eur J Surg Oncol 100(3):227–232CrossRefGoogle Scholar
  5. 5.
    Cho HS, Park IH, Jeon IH, Kim YG, Han I, Kim HS (2011) Direct application of MR images to computer-assisted bone tumor surgery. J Orthop Sci 16(2):190–195CrossRefPubMedCentralGoogle Scholar
  6. 6.
    Chowdhary A, Drittenbass L, Dubois-Ferrière V, Stern R, Assal M (2016) Intraoperative 3-dimensional computed tomography and navigation in foot and ankle surgery. Orthopedics 39(5): e1005–e1010CrossRefPubMedCentralGoogle Scholar
  7. 7.
    Conway DJ, Coughlin R, Caldwell A, Shearer D (2017) The institute for global orthopedics and traumatology a model for academic collaboration in orthopedic surgery. Front Public Health 5:Article 146Google Scholar
  8. 8.
    Enchev Y (2009) Neuronavigation: geneology, reality, and prospects. Neurosurg Focus 27(3):E11CrossRefPubMedCentralGoogle Scholar
  9. 9.
    Golby AJ (2015) Image-guided neurosurgery. Elsevier, AmsterdamGoogle Scholar
  10. 10.
    Harijan A, Halvorson EG (2011) Eponymous instruments in plastic surgery. Plast Reconstr Surg 127(1):456–465CrossRefPubMedCentralGoogle Scholar
  11. 11.
    He X, Popovic A, Flexman ML, Thienpharapa P, Noonan DP, Kroon R, Reinstein AL (2017) Shape sensing for orthopedic navigation. US Patent US20170281281A1, 5 Oct 2017Google Scholar
  12. 12.
    Hernandez D, Garimella R, Eltorai AEM, Daniels AH (2017) Computer-assisted orthopaedic surgery. Orthop Surg 9(2):152–158CrossRefPubMedCentralGoogle Scholar
  13. 13.
    Hsu HM, Chang IC, Lai TW (2016) Physicians perspectives of adopting computer-assisted navigation in orthopedic surgery. Int J Med Inform 94(10):207–214CrossRefPubMedCentralGoogle Scholar
  14. 14.
    Hutchinson M (2006) A brief atlas of the human body. Benjamin Cumming, San FranciscoGoogle Scholar
  15. 15.
    Lang JE, Mannava S, Floyd AJ, Goddard MS, Smith BP, Mofidi A, Seyler TM, Jinnah RH (2011) Robotic systems in orthopaedic surgery. Bone Jt J 93(10):1296–1299CrossRefGoogle Scholar
  16. 16.
    Li J, Wang Z, Guo Z, Chen GJ, Yang M, Pei GX (2014) Precise resection and biological reconstruction under navigation guidance for young patients with juxta-articular bone sarcoma in lower extremity: preliminary report. J Pediatr Orthop 34(1):101–108CrossRefPubMedCentralGoogle Scholar
  17. 17.
    Luo X, Wan Y, He X, Mori K (2015) Observation-driven adaptive differential evolution and its application to accurate and smooth bronchoscope three-dimensional motion tracking. Med Image Anal 24(1):282–296CrossRefPubMedCentralGoogle Scholar
  18. 18.
    Luo X, Mori K, Peters T (2018, in press) Advanced endoscopic navigation: surgical big data, methodology, and applications. Annu Rev Biomed Eng 20:221–251CrossRefPubMedCentralGoogle Scholar
  19. 19.
    Marieb EN, Hoehn KN (2015) Human anatomy & physiology. Pearson, HarlowGoogle Scholar
  20. 20.
    Moreland K (2013) A survey of visualization pipelines. IEEE Trans Vis Comput Graph 19(3): 367–378CrossRefPubMedCentralGoogle Scholar
  21. 21.
    Nielson G (2003) On marching cubes. IEEE Trans Vis Comput Graph 9(3):283–297CrossRefGoogle Scholar
  22. 22.
    Resnick D, Kransdorf M (2004) Bone and joint imaging. Elsevier-Saunders, PhiladelphiaGoogle Scholar
  23. 23.
    Roche M, Boillot M, McIntosh J (2015) Orthopedic navigation system with sensorized devices. US Patent US9011448, 21 Apr 2015Google Scholar
  24. 24.
    Shi C, Luo X, Qi P, Li T, Song S, Najdovski Z, Fukuda T, Ren H (2017) Shape sensing techniques for continuum robots in minimally invasive surgery: a survey. IEEE Trans Biomed Eng 64(8):1665–1678CrossRefPubMedCentralGoogle Scholar
  25. 25.
    So TY, Lam YL, Mak KL (2010) Computer-assisted navigation in bone tumor surgery: seamless workflow model and evolution of technique. J Pediatr Orthop 468(11):2985–2991Google Scholar
  26. 26.
    Takao M, Nishii T, Sakai T, Yoshikawa H, Sugano N (2014) Iliosacral screw insertion using CT-3D-fluoroscopy matching navigation. Injury 45(6): 988–994CrossRefPubMedCentralGoogle Scholar
  27. 27.
    Thomas GW, Johns BD, Kho JY, Anderson DD (2015) The validity and reliability of a hybrid reality simulator for wire navigation in orthopedic surgery. IEEE Trans Hum Mach Sys 45(1):119–125CrossRefGoogle Scholar
  28. 28.
    Wiesel SW, Delahay JN (2011) Essentials of orthopedic surgery. Springer, New YorkCrossRefGoogle Scholar
  29. 29.
    Wong KC, Kumta SM (2013) Computer-assisted tumor surgery in malignant bone tumors. Clin Orthop Relat Res 471(3):750–61CrossRefPubMedCentralGoogle Scholar
  30. 30.
    Wong KC, Kumta SM (2014) Use of computer navigation in orthopedic oncology. Curr Surg Rep 2(4):47CrossRefPubMedCentralGoogle Scholar
  31. 31.
    Zheng G, Dong X, Rajamani KT, Zhang X, Styner M, Thoranaghatte RU, Nolte LP, Ballester MAG (2007) Accurate and robust reconstruction of a surface model of the proximal femur from sparse-point data and a dense-point distribution model for surgical navigation. IEEE Trans Biomed Eng 54(12):2109–2122CrossRefPubMedCentralGoogle Scholar
  32. 32.
    Zheng G, Nolte LP (2015) Computer-assisted orthopedic surgery: current state and future perspective. Front Surg 2:66CrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Chidozie H. Ewurum
    • 1
  • Yingying Guo
    • 1
  • Seang Pagnha
    • 1
  • Zhao Feng
    • 1
  • Xiongbiao Luo
    • 1
  1. 1.Department of Computer ScienceXiamen UniversityXiamenChina

Personalised recommendations