3D Printing in Spine Surgery

  • Hong Cai
  • Zhongjun LiuEmail author
  • Feng Wei
  • Miao Yu
  • Nanfang Xu
  • Zihe Li
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1093)


In the past 5 years, the application of 3D printing technology in the field of spine surgery had obtained enormous and substantial progress. Among which, vertebral skeleton model (including lesion model) printing has been widely used in clinical application due to its relatively simple technology and low cost. It shows practical value and becomes popular as the reference of clinical education, auxiliary diagnosis, communication between doctor and patient, and the planning of surgical approaches as well as the reference of more accurate operation in surgery. On the basis of vertebral skeleton model printing, it can be used to design and make navigation template to guide internal fixation screw, which also obtains some remarkable clinical effects. However, 3D printing technology has a more profound influence on spine surgery. The part with full expectation is undoubtedly the clinical application of 3D printing microporous metal implant and personalized implant as well as the clinical application of 3D printing biological materials in the future.


Spine surgery 3D printing Personalized implant Navigation template Developmental trend 


  1. 1.
    Kuklo TR, Lenke LG, O'brien MF et al (2005) Accuracy and efficacy of thoracic pedicle screws in curves more than 90 degrees. Spine 30:222–226CrossRefPubMedCentralGoogle Scholar
  2. 2.
    Samdani AF, Ranade A, Sciubba DM et al (2010) Accuracy of free-hand placement of thoracic pedicle screws in adolescent idiopathic scoliosis: how much of a difference does surgeon experience make? Eur Spine J 19:91–95CrossRefPubMedCentralGoogle Scholar
  3. 3.
    Hicks JM, Singla A, Shen FH et al (2010) Complications of pedicle screw fixation in scoliosis surgery: a systematic review. Spine 35:465–470CrossRefGoogle Scholar
  4. 4.
    D'urso PS, Askin G, Earwaker JS et al (1999) Spinal biomodeling. Spine 24:1247–1251CrossRefPubMedCentralGoogle Scholar
  5. 5.
    D'urso PS, Barker TM, Earwaker WJ et al (1999) Stereolithographic biomodelling in cranio-maxillofacial surgery: a prospective trial. J Craniomaxillofac Surg 27:30–37CrossRefPubMedCentralGoogle Scholar
  6. 6.
    Yang M, Li C, Li Y et al (2015) Application of 3D rapid prototyping technology in posterior corrective surgery for Lenke 1 adolescent idiopathic scoliosis patients. Medicine 94:1–8Google Scholar
  7. 7.
    Madrazo I, Zamorano C, Magallon E et al (2009) Stereolithography in spine pathology: a 2-case report. Surg Neurol 72:272–275 discussion 275CrossRefPubMedCentralGoogle Scholar
  8. 8.
    Guarino J, Tennyson S, Mccain G et al (2007) Rapid prototyping technology for surgeries of the pediatric spine and pelvis: benefits analysis. J Pediatr Orthop 27:955–960CrossRefPubMedCentralGoogle Scholar
  9. 9.
    Hu Y, Yuan ZS, Kepler CK et al (2014) Deviation analysis of atlantoaxial pedicle screws assisted by a drill template. Orthopedics 37:e420–e427CrossRefPubMedCentralGoogle Scholar
  10. 10.
    Sugawara T, Higashiyama N, Kaneyama S et al (2017) Accurate and simple screw insertion procedure with patient-specific screw guide templates for posterior C1-C2 fixation. Spine 42:E340–E346CrossRefPubMedCentralGoogle Scholar
  11. 11.
    Goffin J, Van Brussel K, Martens et al (2001) Three-dimensional computed tomography-based, personalized drill guide for posterior cervical stabilization at C1-C2. Spine 26:1343–1347CrossRefPubMedCentralGoogle Scholar
  12. 12.
    Kaneyama S, Sugawara T, Sumi M (2015) Safe and accurate midcervical pedicle screw insertion procedure with the patient-specific screw guide template system. Spine 40:E341–E348CrossRefPubMedCentralGoogle Scholar
  13. 13.
    Fu M, Lin L, Kong X et al (2013) Construction and accuracy assessment of patient-specific biocompatible drill template for cervical anterior transpedicular screw (ATPS) insertion: an in vitro study. PLoS One 8:e53580. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Ma T, Xu YQ, Cheng YB et al (2012) A novel computer-assisted drill guide template for thoracic pedicle screw placement: a cadaveric study. Arch Orthop Trauma Surg 132:65–72CrossRefPubMedCentralGoogle Scholar
  15. 15.
    Sugawara T, Higashiyama N, Kaneyama S et al (2013) Multistep pedicle screw insertion procedure with patient-specific lamina fit-and-lock templates for the thoracic spine: clinical article. J Neurosurg Spine 19:185–190CrossRefPubMedCentralGoogle Scholar
  16. 16.
    Merc M, Drstvensek I, Vogrin M et al (2013) A multi-level rapid prototyping drill guide template reduces the perforation risk of pedicle screw placement in the lumbar and sacral spine. Arch Orthop Trauma Surg 133:893–899CrossRefPubMedCentralGoogle Scholar
  17. 17.
    Lu S, Zhang YZ, Wang Z et al (2012) Accuracy and efficacy of thoracic pedicle screws in scoliosis with patient-specific drill template. Med Biol Eng Comput 50:751–758CrossRefPubMedCentralGoogle Scholar
  18. 18.
    Putzier M, Strube P, Cecchinato R et al (2017) A new navigational tool for pedicle screw placement in patients with severe scoliosis: a pilot study to prove feasibility, accuracy, and identify operative challenges. Clin Spine Surg 30: E430–E439CrossRefPubMedCentralGoogle Scholar
  19. 19.
    Azimifar F, Hassani K, Saveh AH et al (2017) A medium invasiveness multi-level patient's specific template for pedicle screw placement in the scoliosis surgery. Biomed Eng Online 16:130CrossRefPubMedCentralGoogle Scholar
  20. 20.
    Mirza SK, Wiggins GC, Kuntz CT et al (2003) Accuracy of thoracic vertebral body screw placement using standard fluoroscopy, fluoroscopic image guidance, and computed tomographic image guidance: a cadaver study. Spine 28:402–413PubMedPubMedCentralGoogle Scholar
  21. 21.
    Yang J, Cai H, Lv J et al (2014) In vivo study of a self-stabilizing artificial vertebral body fabricated by electron beam melting. Spine 39:E486–E492CrossRefPubMedCentralGoogle Scholar
  22. 22.
    Mohammad-Shahi MH, Nikolaou VS, Giannitsios D et al (2013) The effect of angular mismatch between vertebral endplate and vertebral body replacement endplate on implant subsidence. J Spinal Disord Tech 26:268–273CrossRefPubMedCentralGoogle Scholar
  23. 23.
    Fengbin Y, Jinhao M, Xinyuan L et al (2013) Evaluation of a new type of titanium mesh cage versus the traditional titanium mesh cage for single-level, anterior cervical corpectomy and fusion. Eur Spine J 22:2891–2896CrossRefPubMedCentralGoogle Scholar
  24. 24.
    Xu N, Wei F, Liu X et al (2016) Reconstruction of the upper cervical spine using a personalized 3D-printed vertebral body in an adolescent with Ewing sarcoma. Spine 41:E50–E54CrossRefPubMedCentralGoogle Scholar
  25. 25.
    Wei F, Liu Z, Liu X et al (2015) An approach to primary tumors of the upper cervical spine with Spondylectomy using a combined approach: our experience with 19 cases. Spine Res Soc 22:2891–2896Google Scholar
  26. 26.
    Lv J, Xiu P, Tan J et al (2015) Enhanced angiogenesis and osteogenesis in critical bone defects by the controlled release of BMP-2 and VEGF: implantation of electron beam melting-fabricated porous Ti6Al4V scaffolds incorporating growth factor-doped fibrin glue. Biomad Mater 10(3):035013. CrossRefGoogle Scholar
  27. 27.
    Kim D, Lim JY, Shim KW et al (2017) Sacral reconstruction with a 3D-printed implant after Hemisacrectomy in a patient with sacral osteosarcoma: 1-year follow-up result. Yonsei Med J 58: 453–457CrossRefPubMedCentralGoogle Scholar
  28. 28.
    Wei R, Guo W, Ji T et al (2017) One-step reconstruction with a 3D-printed, custom-made prosthesis after total en bloc sacrectomy: a technical note. Eur Spine J 26:1902–1909CrossRefPubMedCentralGoogle Scholar
  29. 29.
    Mobbs RJ, Coughlan M, Thompson R et al (2017) The utility of 3D printing for surgical planning and patient-specific implant design for complex spinal pathologies: case report. J Neurosurg Spine 26:513–518CrossRefPubMedCentralGoogle Scholar
  30. 30.
    Choy WJ, Mobbs RJ, Wilcox B et al (2017) Reconstruction of thoracic spine using a personalized 3D-printed vertebral body in adolescent with T9 primary bone tumor. World Neurosurg, 105:1032 e1013–1032 e1017CrossRefPubMedCentralGoogle Scholar
  31. 31.
    Li X, Wang Y, Zhao Y et al (2017) Multilevel 3D printing implant for reconstructing cervical spine with metastatic papillary thyroid carcinoma. Spine 42:E1326–E1330CrossRefPubMedCentralGoogle Scholar
  32. 32.
    Xiu P, Jia Z, Lv J et al (2016) Tailored surface treatment of 3D printed porous Ti6Al4V by microarc oxidation for enhanced Osseointegration via optimized bone in-growth patterns and interlocked bone/implant Interface. ACS Appl Mater Interfaces 8:17964–17975CrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Hong Cai
    • 1
  • Zhongjun Liu
    • 1
    Email author
  • Feng Wei
    • 1
  • Miao Yu
    • 1
  • Nanfang Xu
    • 1
  • Zihe Li
    • 1
  1. 1.Department of OrthopedicsPeking University Third HospitalBeijingChina

Personalised recommendations