Computer Navigation in Orthopaedic Tumour Surgery

  • Kwok-Chuen WongEmail author
  • Xiaohui Niu
  • Hairong Xu
  • Yuan Li
  • Shekhar Kumta
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1093)


In orthopaedic bone tumour surgery, surgeons perform malignant bone tumour resections with tumour-free margin. The bone defects following the resections have to be reconstructed to restore limb function. An inaccurate resection with positive surgical margin increased the risk of local recurrence and compromised patients’ survival. Conventionally, orthopaedic tumour surgeons analyse two-dimensional (2D) imaging information and mentally integrate to formulate a three-dimensional (3D) surgical plan. It is difficult to translate the surgical plan to the operating room in complex cases.

Computer-assisted tumour surgery (CATS) has been developed in orthopaedic oncology for the last decade. The technique may enable surgeons’ 3D surgical planning and image-guided bone resection as planned. The technique may apply to difficult surgery in pelvic or sacral tumours, limited resection in joint-preserving tumour surgery or bone defect reconstruction using CAD prostheses or allograft.

Early results suggested that the technique may help in safe tumour resection and improve surgical accuracy by replicating the preoperative planning. The improved surgical accuracy may offer clinical benefits.

Surgeons have to be aware of the potential errors of the technique that may result in inaccurate bone resections with possible adverse clinical outcomes. Given that bone sarcoma is rare, the published reports from different tumour centres could only analyse relatively small patient population with the heterogeneous histological diagnosis. Multicentre comparative studies with long-term follow-up are necessary to confirm its clinical efficacy.

This chapter provides an overview of computer navigation in orthopaedic tumour surgery over the past decade. It (1) describes the current workflow, (2) reports the clinical indications and results and (3) discusses its limitations and future development.


Computer navigation Computer-assisted tumour surgery (CATS) Image fusion Pelvic tumour Sacral tumour Joint-preserving surgery Surgical accuracy Orthopaedic oncology Surgical planning Image-guided bone resection 


Conflict of Interest

Kwok-Chuen Wong, Xiaohui Niu, Hairong Xu, Yuan Li and Shekhar Kumta declared no conflict of interest. The Stryker, Materialise and Stanmore Implants Limited and companies did not fund or sponsor this research.


  1. 1.
    Fuchs B, Hoekzema N, Larson DR, Inwards CY, Sim FH (2009) Osteosarcoma of the pelvis: outcome analysis of surgical treatment. Clin Orthop Relat Res 467:510–518CrossRefPubMedCentralGoogle Scholar
  2. 2.
    Bertrand TE, Cruz A, Binitie O, Cheong D, Letson GD (2016 Mar) Do surgical margins affect local recurrence and survival in extremity, nonmetastatic, high-grade osteosarcoma? Clin Orthop Relat Res 474(3):677–683CrossRefPubMedCentralGoogle Scholar
  3. 3.
    He F, Zhang W, Shen Y, Yu P, Bao Q, Wen J, Hu C, Qiu S (2016) Effects of resection margins on local recurrence of osteosarcoma in extremity and pelvis: Systematic review and meta-analysis. Int J Surg 36(Pt A):283–292CrossRefPubMedCentralGoogle Scholar
  4. 4.
    Cartiaux O, Docquier PL, Paul L, Francq BG, Cornu OH, Delloye C et al (2008) Surgical inaccuracy of tumor resection and reconstruction within the pelvis: an experimental study. Acta Orthop 79(5):695–702CrossRefPubMedCentralGoogle Scholar
  5. 5.
    Sugano N (2003) Computer-assisted orthopedic surgery. J Orthop Sci 8(3):442–448CrossRefPubMedCentralGoogle Scholar
  6. 6.
    Laine T, Lund T, Ylikoski M, Lohikoshi J, Schlenzja D (2000) Accuracy of pedicle screw insertion with and without computer assistance: a randomized controlled clinical study in 100 consecutive patients. Eur Spine J 9:235–240CrossRefPubMedCentralGoogle Scholar
  7. 7.
    Anderson KC, Buehler KC, Markel DC (2005) Computer assisted navigation in total knee arthroplasty: comparison with conventional methods. J Arthroplast 20(Suppl 3):132–138CrossRefGoogle Scholar
  8. 8.
    Grutzner PA, Suhm N (2004) Computer aided long bone fracture treatment. Injury 35(Suppl 1):S-A57–S-A64CrossRefGoogle Scholar
  9. 9.
    Gebhard F, Weidner A, Liener UC, Stockle U, Arand M (2004) Navigation at the spine. Injury 35(Suppl 1):S-A35–S-A45CrossRefGoogle Scholar
  10. 10.
    Chauhan SK, Scott RG, Breidahl W, Beaver RJ (2004) Computer-assisted knee arthroplasty versus a conventional jig-based technique. A randomised, prospective trial. J Bone Joint Surg 86:372–377CrossRefGoogle Scholar
  11. 11.
    Wixson RL, MacDonald MA (2005) Total hip arthroplasty through a minimal posterior approach using imageless computer-assisted hip navigation. J Arthroplast 20(Suppl 3):51–56CrossRefGoogle Scholar
  12. 12.
    Krettek C, Geerling J, Bastian L, Citak M, Rucker F, Kendoff D, Hufner T (2004) Computer aided tumor resection in the pelvis. Injury 35(Suppl 1):S-A79–S-A83CrossRefGoogle Scholar
  13. 13.
    Hűfner T, Kfuri M Jr, Galanski M, Bastian L, Loss M, Pohlemann T, Krettek C (2004) New indications for computer-assisted surgery: tumor resection in the pelvis. Clin Orthop Relat Res 426:219–225CrossRefGoogle Scholar
  14. 14.
    Wong KC, Kumta SM (2014) Use of computer navigation in orthopaedic oncology. Curr Surg Rep 2:47CrossRefPubMedCentralGoogle Scholar
  15. 15.
    Wong KC, Kumta SM, Chiu KH et al (2007) Precision tumour resection and reconstruction using image-guided computer navigation. J Bone Joint Surg Br 89:943–947CrossRefPubMedCentralGoogle Scholar
  16. 16.
    Wong KC, Kumta SM, Chiu KH, Cheung KW, Leung KS, Unwin P, Wong MC (2007) Computer assisted pelvic tumor resection and reconstruction with a custom-made prosthesis using an innovative adaptation and its validation. Comput Aided Surg 12(4):225–232CrossRefPubMedCentralGoogle Scholar
  17. 17.
    Aponte-Tinao LA, Ritacco LE, Ayerza MA, Muscolo DL, Farfalli GL (2013) Multiplanar osteotomies guided by navigation in chondrosarcoma of the knee. Orthopedics 36(3):e325–e330CrossRefPubMedCentralGoogle Scholar
  18. 18.
    Ritacco LE, Milano FE, Farfalli GL, Ayerza MA, Muscolo DL, Aponte-Tinao LA (2013) Accuracy of 3-D planning and navigation in bone tumor resection. Orthopedics 36(7):e942–e950CrossRefPubMedCentralGoogle Scholar
  19. 19.
    Wong KC, Kumta SM, Antonio GE, Tse LF (2008) Image fusion for computer-assisted bone tumor surgery. Clin Orthop Relat Res 466: 2533–2541CrossRefPubMedCentralGoogle Scholar
  20. 20.
    Wong KC, Kumta SM, Leung KS, Ng KW, Ng EW, Lee KS (2010) Integration of CAD/CAM planning into computer assisted orthopaedic surgery. Comput Aided Surg 15:65–74CrossRefPubMedCentralGoogle Scholar
  21. 21.
    Ozaki T, Flege S, Kevric M et al (2003) Osteosarcoma of the pelvis: experience of the cooperative osteosarcoma study group. J Clin Oncol 21: 334–341CrossRefPubMedCentralGoogle Scholar
  22. 22.
    Cho HS, Oh JH, Han I, Kim HS (2012) The outcomes of navigation assisted bone tumour surgery: minimum three-year follow-up. J Bone Joint Surg Br 94(10):1414–1420CrossRefPubMedCentralGoogle Scholar
  23. 23.
    Wong KC, Kumta SM (2013) Computer-assisted tumor surgery in malignant bone tumors. Clin Orthop Relat Res 471(3):750–761CrossRefPubMedCentralGoogle Scholar
  24. 24.
    Jeys L, Matharu GS, Nandra RS, Grimer RJ (2013) Can computer navigation-assisted surgery reduce the risk of an intralesional margin and reduce the rate of local recurrence in patients with a tumour of the pelvis or sacrum? Bone Joint J 95-B(10):1417–1424CrossRefPubMedCentralGoogle Scholar
  25. 25.
    Laitinen MK, Parry MC, Albergo JI, Grimer RJ, Jeys LM (2017) Is computer navigation when used in the surgery of iliosacral pelvic bone tumours safer for the patient? Bone Joint J Feb 99-B(2):261–266CrossRefGoogle Scholar
  26. 26.
    Cho HS, Oh JH, Han I, Kim HS (2009) Joint-preserving limb salvage surgery under navigation guidance. J Surg Oncol 100(3):227–232CrossRefPubMedCentralGoogle Scholar
  27. 27.
    Li J, Wang Z, Guo Z, Chen GJ, Yang M, Pei GX (2012) Irregular osteotomy in limb salvage for juxta-articular osteosarcoma under computer-assisted navigation. J Surg Oncol 106(4):411–416CrossRefPubMedCentralGoogle Scholar
  28. 28.
    Wong KC, Kumta SM (2013) Joint-preserving tumor resection and reconstruction using image-guided computer navigation. Clin Orthop Relat Res 471(3):762–773CrossRefPubMedCentralGoogle Scholar
  29. 29.
    Farfalli GL, Albergo JI, Ritacco LE, Ayerza MA, Milano FE, Aponte-Tinao LA (2017 Mar) What is the expected learning curve in computer-assisted navigation for bone tumor resection? Clin Orthop Relat Res 475(3):668–675CrossRefPubMedCentralGoogle Scholar
  30. 30.
    Gouin F, Paul L, Odri GA, Cartiaux O (2014) Computer-assisted planning and patient-specific instruments for bone tumor resection within the pelvis: a series of 11 patients. Sarcoma, Article ID 842709, 9 pagesGoogle Scholar
  31. 31.
    Wong KC, Kumta SM, Geel NV, Demol J (2015) One-step reconstruction with a 3D-printed, biomechanically evaluated custom implant after complex pelvic tumor resection. Comput Aided Surg 20(1):14e23CrossRefGoogle Scholar
  32. 32.
    Wong KC, Sze KY, Wong IO, Wong CM, Kumta SM (2016) Patient specific instrument can achieve same accuracy with less resection time than navigation assistance in periacetabular pelvic tumor surgery: a cadaveric study. Int J Comput Assist Radiol Surg 11(2):307e316CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Kwok-Chuen Wong
    • 1
    Email author
  • Xiaohui Niu
    • 2
  • Hairong Xu
    • 2
  • Yuan Li
    • 2
  • Shekhar Kumta
    • 1
  1. 1.Orthopaedic Oncology, Prince of Wales HospitalThe Chinese University of Hong KongHong KongChina
  2. 2.Orthopaedic OncologyJishuitan HospitalBeijingChina

Personalised recommendations