Advertisement

Clinical Application of Navigation in the Surgical Treatment of a Pelvic Ring Injury and Acetabular Fracture

  • Masaki Takao
  • Hidetoshi Hamada
  • Takashi Sakai
  • Nobuhiko Sugano
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1093)

Abstract

The purpose of this chapter is to review current evidence on indications, techniques, and outcomes of computer-navigated surgical treatment of pelvic ring injuries and acetabular fractures, particularly computer-navigated screw fixation.

Iliosacral screw fixation of pelvic ring injury using navigation is attracting attention because the biomechanical stabilization of posterior pelvic ring disruption is of primary importance and is widely indicated because it does not require complete reduction of the fracture site. A cadaver study with a simulated zone II sacral fracture demonstrated a substantial compromise in the space available for iliosacral screws with displacements greater than 10 mm. It is possible to reduce the fracture fragment prior to intraoperative imaging in 2D or 3D fluoroscopic navigation. The use of 3D fluoroscopic navigation reportedly results in lower rates of iliosacral screw malpositioning than the use of the conventional technique or 2D fluoroscopic navigation. Moreover, compared with the conventional technique, it reduces radiation exposure and lowers revision rates. However, the malposition rate associated with 3D fluoroscopic navigation ranges from 0% to 31%, demonstrating that there is still room to improve the navigation performance.

Conversely, complete articular surface reduction is required when treating a displaced acetabular fracture to prevent residual hip pain and subsequent osteoarthritic changes. Treating a severely displaced acetabular fracture by screw fixation is very challenging, even with the use of 3D fluoroscopic navigation, because of the difficulty in performing closed anatomical reduction. The indication for percutaneous screw fixation is limited to cases with a small articular displacement. Using 3D fluoroscopic navigation for open surgeries reportedly improves the quality of radiographic fracture reduction, limits the need for an extended approach, and lowers the complication rate.

In conclusion, percutaneous screw fixation for pelvic ring injuries is widely indicated, and navigation makes these procedures safe and reliable. The indication for percutaneous screw fixation of acetabular fractures is limited to cases with a small articular displacement. Using 3D fluoroscopic navigation when performing open surgeries is reported to be useful in evaluating fracture reduction and screw position.

Keywords

Pelvic ring injury Acetabular fracture 2D fluoroscopic navigation 3D fluoroscopic navigation CT-based navigation Iliosacral screw Anterior column screw Posterior column screw Supraacetabular screw 

References

  1. 1.
    Hauschild O, Strohm PC, Culemann U, Pohlemann T, Suedkamp NP, Koestler W, Schmal H (2008) Mortality in patients with pelvic fractures: results from the German pelvic injury register. J Trauma 64(2): 449–455CrossRefPubMedCentralGoogle Scholar
  2. 2.
    Rommens PM, Hofmann A (2013) Comprehensive classification of fragility fractures of the pelvic ring: recommendations for surgical treatment. Injury 44(12):1733–1744CrossRefPubMedCentralGoogle Scholar
  3. 3.
    Wagner D, Ossendorf C, Gruszka D, Hofmann A, Rommens PM (2015) Fragility fractures of the sacrum: how to identify and when to treat surgically? Eur J Trauma Emerg Surg 41(4):349–362CrossRefPubMedCentralGoogle Scholar
  4. 4.
    Arand M, Kinzl L, Gebhard F (2004) Computer-guidance in percutaneous screw stabilization of the iliosacral joint. Clin Orthop Relat Res 422:201–207CrossRefGoogle Scholar
  5. 5.
    Briem D, Linhart W, Lehmann W, Begemann PG, Adam G, Schumacher U, Cullinane DM, Rueger JM, Windolf J (2006) Computer-assisted screw insertion into the first sacral vertebra using a three-dimensional image intensifier: results of a controlled experimental investigation. Eur Spine J 15(6):757–763CrossRefPubMedCentralGoogle Scholar
  6. 6.
    Peng KT, Li YY, Hsu WH, Wu MH, Yang JT, Hsu CH, Huang TJ (2013) Intraoperative computed tomography with integrated navigation in percutaneous iliosacral screwing. Injury 44(2):203–208CrossRefPubMedCentralGoogle Scholar
  7. 7.
    Gras F, Marintschev I, Wilharm A, Klos K, Muckley T, Hofmann GO (2010) 2D-fluoroscopic navigated percutaneous screw fixation of pelvic ring injuries--a case series. BMC Musculoskelet Disord 11:153CrossRefPubMedCentralGoogle Scholar
  8. 8.
    Behrendt D, Mutze M, Steinke H, Koestler M, Josten C, Bohme J (2012) Evaluation of 2D and 3D navigation for iliosacral screw fixation. Int J Comput Assist Radiol Surg 7(2):249–255CrossRefPubMedCentralGoogle Scholar
  9. 9.
    Grossterlinden L, Rueger J, Catala-Lehnen P, Rupprecht M, Lehmann W, Rucker A, Briem D (2011) Factors influencing the accuracy of iliosacral screw placement in trauma patients. Int Orthop 35(9): 1391–1396CrossRefPubMedCentralGoogle Scholar
  10. 10.
    Collinge C, Coons D, Tornetta P, Aschenbrenner J (2005) Standard multiplanar fluoroscopy versus a fluoroscopically based navigation system for the percutaneous insertion of iliosacral screws: a cadaver model. J Orthop Trauma 19(4):254–258CrossRefPubMedCentralGoogle Scholar
  11. 11.
    Hinsche AF, Giannoudis PV, Smith RM (2002) Fluoroscopy-based multiplanar image guidance for insertion of sacroiliac screws. Clin Orthop Relat Res 395:135–144CrossRefGoogle Scholar
  12. 12.
    Gras F, Marintschev I, Klos K, Muckley T, Hofmann GO, Kahler DM (2012) Screw placement for acetabular fractures: which navigation modality (2-dimensional vs. 3-dimensional) should be used? An experimental study. J Orthop Trauma 26(8):466–473CrossRefPubMedCentralGoogle Scholar
  13. 13.
    Ochs BG, Gonser C, Shiozawa T, Badke A, Weise K, Rolauffs B, Stuby FM (2010) Computer-assisted periacetabular screw placement: comparison of different fluoroscopy-based navigation procedures with conventional technique. Injury 41(12):1297–1305CrossRefPubMedCentralGoogle Scholar
  14. 14.
    Smith HE, Yuan PS, Sasso R, Papadopolous S, Vaccaro AR (2006) An evaluation of image-guided technologies in the placement of percutaneous iliosacral screws. Spine (Phila Pa 1976) 31(2):234–238CrossRefGoogle Scholar
  15. 15.
    Crowl AC, Kahler DM (2002) Closed reduction and percutaneous fixation of anterior column acetabular fractures. Comput Aided Surg 7(3):169–178CrossRefPubMedCentralGoogle Scholar
  16. 16.
    Mosheiff R, Khoury A, Weil Y, Liebergall M (2004) First generation computerized fluoroscopic navigation in percutaneous pelvic surgery. J Orthop Trauma 18(2):106–111CrossRefPubMedCentralGoogle Scholar
  17. 17.
    Hong G, Cong-Feng L, Cheng-Fang H, Chang-Qing Z, Bing-Fang Z (2010) Percutaneous screw fixation of acetabular fractures with 2D fluoroscopy-based computerized navigation. Arch Orthop Trauma Surg 130(9):1177–1183CrossRefPubMedCentralGoogle Scholar
  18. 18.
    Zwingmann J, Konrad G, Kotter E, Sudkamp NP, Oberst M (2009) Computer-navigated iliosacral screw insertion reduces malposition rate and radiation exposure. Clin Orthop Relat Res 467(7): 1833–1838CrossRefPubMedCentralGoogle Scholar
  19. 19.
    Zwingmann J, Konrad G, Mehlhorn AT, Sudkamp NP, Oberst M (2010) Percutaneous iliosacral screw insertion: malpositioning and revision rate of screws with regards to application technique (navigated vs. conventional). J Trauma 69(6):1501–1506CrossRefPubMedCentralGoogle Scholar
  20. 20.
    Grossterlinden L, Nuechtern J, Begemann PG, Fuhrhop I, Petersen JP, Ruecker A, Rupprecht M, Lehmann W, Schumacher U, Rueger JM, Briem D (2011) Computer-assisted surgery and intraoperative three-dimensional imaging for screw placement in different pelvic regions. J Trauma 71(4):926–932CrossRefPubMedCentralGoogle Scholar
  21. 21.
    Matta JM (1996) Fractures of the acetabulum: accuracy of reduction and clinical results in patients managed operatively within three weeks after the injury. J Bone Joint Surg Am 78(11):1632–1645CrossRefPubMedCentralGoogle Scholar
  22. 22.
    Schwabe P, Altintas B, Schaser KD, Druschel C, Kleber C, Haas NP, Maerdian S (2014) Three-dimensional fluoroscopy-navigated percutaneous screw fixation of acetabular fractures. J Orthop Trauma 28(12):700–706 discussion 706CrossRefPubMedCentralGoogle Scholar
  23. 23.
    He J, Tan G, Zhou D, Sun L, Li Q, Yang Y, Liu P (2016) Comparison of Isocentric C-arm 3-dimensional navigation and conventional fluoroscopy for percutaneous retrograde screwing for anterior column fracture of acetabulum: an observational study. Medicine (Baltimore) 95(2):e2470CrossRefGoogle Scholar
  24. 24.
    Zwingmann J, Hauschild O, Bode G, Sudkamp NP, Schmal H (2013) Malposition and revision rates of different imaging modalities for percutaneous iliosacral screw fixation following pelvic fractures: a systematic review and meta-analysis. Arch Orthop Trauma Surg 133(9):1257–1265CrossRefPubMedCentralGoogle Scholar
  25. 25.
    Zwingmann J, Sudkamp NP, Konig B, Culemann U, Pohlemann T, Aghayev E, Schmal H (2013) Intra- and postoperative complications of navigated and conventional techniques in percutaneous iliosacral screw fixation after pelvic fractures: results from the German pelvic trauma registry. Injury 44(12): 1765–1772CrossRefPubMedCentralGoogle Scholar
  26. 26.
    Takao M, Nishii T, Sakai T, Sugano N (2014) Navigation-aided visualization of lumbosacral nerves for anterior sacroiliac plate fixation: a case report. Int J Med Robot 10(2):230–236CrossRefPubMedCentralGoogle Scholar
  27. 27.
    Oberst M, Hauschild O, Konstantinidis L, Suedkamp NP, Schmal H (2012) Effects of three-dimensional navigation on intraoperative management and early postoperative outcome after open reduction and internal fixation of displaced acetabular fractures. J Trauma Acute Care Surg 73(4):950–956CrossRefPubMedCentralGoogle Scholar
  28. 28.
    Eckardt H, Lind D, Toendevold E (2015) Open reduction and internal fixation aided by intraoperative 3-dimensional imaging improved the articular reduction in 72 displaced acetabular fractures. Acta Orthop 86(6):684–689CrossRefPubMedCentralGoogle Scholar
  29. 29.
    Vanderschot PM, Broens PM, Vermeire JI, Broos PL (1999) Trans iliac-sacral-iliac bar stabilization to treat bilateral sacroiliac joint disruptions. Injury 30(9):637–640CrossRefPubMedCentralGoogle Scholar
  30. 30.
    Matta JM, Saucedo T (1989) Internal fixation of pelvic ring fractures. Clin Orthop Relat Res 242: 83–97Google Scholar
  31. 31.
    Routt ML Jr, Kregor PJ, Simonian PT, Mayo KA (1995) Early results of percutaneous iliosacral screws placed with the patient in the supine position. J Orthop Trauma 9(3):207–214CrossRefPubMedCentralGoogle Scholar
  32. 32.
    Shuler TE, Boone DC, Gruen GS, Peitzman AB (1995) Percutaneous iliosacral screw fixation: early treatment for unstable posterior pelvic ring disruptions. J Trauma 38(3):453–458CrossRefPubMedCentralGoogle Scholar
  33. 33.
    Templeman D, Goulet J, Duwelius PJ, Olson S, Davidson M (1996) Internal fixation of displaced fractures of the sacrum. Clin Orthop Relat Res 329:180–185CrossRefGoogle Scholar
  34. 34.
    Gardner MJ, Morshed S, Nork SE, Ricci WM, Chip Routt ML Jr (2010) Quantification of the upper and second sacral segment safe zones in normal and dysmorphic sacra. J Orthop Trauma 24(10):622–629CrossRefPubMedCentralGoogle Scholar
  35. 35.
    Templeman D, Schmidt A, Freese J, Weisman I (1996) Proximity of iliosacral screws to neurovascular structures after internal fixation. Clin Orthop Relat Res 329:194–198CrossRefGoogle Scholar
  36. 36.
    Ziran BH, Wasan AD, Marks DM, Olson SA, Chapman MW (2007) Fluoroscopic imaging guides of the posterior pelvis pertaining to iliosacral screw placement. J Trauma 62(2):347–356 discussion 356CrossRefPubMedCentralGoogle Scholar
  37. 37.
    Sagi HC, Lindvall EM (2005) Inadvertent intraforaminal iliosacral screw placement despite apparent appropriate positioning on intraoperative fluoroscopy. J Orthop Trauma 19(2):130–133CrossRefPubMedCentralGoogle Scholar
  38. 38.
    van den Bosch EW, van Zwienen CM, van Vugt AB (2002) Fluoroscopic positioning of sacroiliac screws in 88 patients. J Trauma 53(1):44–48CrossRefPubMedCentralGoogle Scholar
  39. 39.
    Routt ML Jr, Simonian PT, Mills WJ (1997) Iliosacral screw fixation: early complications of the percutaneous technique. J Orthop Trauma 11(8): 584–589CrossRefPubMedCentralGoogle Scholar
  40. 40.
    Takao M, Nishii T, Sakai T, Sugano N (2013) CT-3D-fluoroscopy matching navigation can reduce the malposition rate of iliosacral screw insertion for less-experienced surgeons. J Orthop Trauma 27(12): 716–721CrossRefPubMedCentralGoogle Scholar
  41. 41.
    Beck M, Krober M, Mittlmeier T (2010) Intraoperative three-dimensional fluoroscopy assessment of iliosacral screws and lumbopelvic implants stabilizing fractures of the os sacrum. Arch Orthop Trauma Surg 130(11):1363–1369CrossRefPubMedCentralGoogle Scholar
  42. 42.
    Kim JW, Oh CW, Oh JK, Lee HJ, Min WK, Kyung HS, Yoon SH, Mun JU (2013) Percutaneous iliosacral screwing in pelvic ring injury using three-dimensional fluoroscopy. J Orthop Sci 18(1):87–92CrossRefPubMedCentralGoogle Scholar
  43. 43.
    Reilly MC, Bono CM, Litkouhi B, Sirkin M, Behrens FF (2003) The effect of sacral fracture malreduction on the safe placement of iliosacral screws. J Orthop Trauma 17(2):88–94CrossRefPubMedCentralGoogle Scholar
  44. 44.
    Matityahu A, Kahler D, Krettek C, Stockle U, Grutzner PA, Messmer P, Ljungqvist J, Gebhard F (2014) Three-dimensional navigation is more accurate than two-dimensional navigation or conventional fluoroscopy for percutaneous sacroiliac screw fixation in the dysmorphic sacrum: a randomized multicenter study. J Orthop Trauma 28(12): 707–710CrossRefPubMedCentralGoogle Scholar
  45. 45.
    Thakkar SC, Thakkar RS, Sirisreetreerux N, Carrino JA, Shafiq B, Hasenboehler EA (2017) 2D versus 3D fluoroscopy-based navigation in posterior pelvic fixation: review of the literature on current technology. Int J Comput Assist Radiol Surg 12(1): 69–76CrossRefPubMedCentralGoogle Scholar
  46. 46.
    Richter PH, Gebhard F, Dehner C, Scola A (2016) Accuracy of computer-assisted iliosacral screw placement using a hybrid operating room. Injury 47(2):402–407CrossRefPubMedCentralGoogle Scholar
  47. 47.
    Takao M, Nishii T, Sakai T, Yoshikawa H, Sugano N (2014) Iliosacral screw insertion using CT-3D-fluoroscopy matching navigation. Injury 45(6): 988–994CrossRefPubMedCentralGoogle Scholar
  48. 48.
    Takao M, Yabuta K, Nishii T, Sakai T, Sugano N (2011) Accuracy of a 3D fluoroscopic navigation system using a flat-panel detector-equipped C-arm. Comput Aided Surg 16(5):234–239CrossRefPubMedCentralGoogle Scholar
  49. 49.
    Takao M, Nishii T, Sakai T, Sugano N (2012) Application of a CT-3D fluoroscopy matching navigation system to the pelvic and femoral regions. Comput Aided Surg 17(2):69–76CrossRefPubMedCentralGoogle Scholar
  50. 50.
    Wagner D, Kamer L, Sawaguchi T, Richards RG, Noser H, Rommens PM (2016) Sacral bone mass distribution assessed by averaged three-dimensional CT models: implications for pathogenesis and treatment of fragility fractures of the sacrum. J Bone Joint Surg Am 98(7):584–590CrossRefPubMedCentralGoogle Scholar
  51. 51.
    Giannoudis PV, Grotz MR, Papakostidis C, Dinopoulos H (2005) Operative treatment of displaced fractures of the acetabulum. A meta-analysis. J Bone Joint Surg Br 87(1):2–9CrossRefPubMedCentralGoogle Scholar
  52. 52.
    Mears DC, Velyvis JH, Chang CP (2003) Displaced acetabular fractures managed operatively: indicators of outcome. Clin Orthop Relat Res 407:173–186CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Masaki Takao
    • 1
  • Hidetoshi Hamada
    • 2
  • Takashi Sakai
    • 2
  • Nobuhiko Sugano
    • 1
  1. 1.Department of Orthopaedic Medical EngineeringOsaka University Graduate School of MedicineSuitaJapan
  2. 2.Department of Orthopaedic SurgeryOsaka University Graduate School of MedicineSuitaJapan

Personalised recommendations