Patient-Specific Surgical Guidance System for Intelligent Orthopaedics

  • Manuela KunzEmail author
  • John F. Rudan
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1093)


Clinical benefits for image-guided orthopaedic surgical systems are often measured in improved accuracy and precision of tool trajectories, prosthesis component positions and/or reduction of revision rate. However, with an ever-increasing demand for orthopaedic procedures, especially joint replacements, the ability to increase the number of surgeries, as well as lowering the costs per surgery, is generating a similar interest in the evaluation of image-guided orthopaedic systems. Patient-specific instrument guidance has recently gained popularity in various orthopaedic applications. Studies have shown that these guides are comparable to traditional image-guided systems with respect to accuracy and precision of the navigation of tool trajectories and/or prosthesis component positioning. Additionally, reports have shown that these single-use instruments also improve operating room management and reduce surgical time and costs. In this chapter, we discuss how patient-specific instrument guidance provides benefits to patients as well as to the health-care community for various orthopaedic applications.


Patient-specific instrument guidance Total knee arthroplasty (TKA) Computer-assisted surgery (CAS) Cartilage defect repair Planning 


  1. 1.
    Toledo-Pereyra LH (2009) X-rays surgical revolution. J Investig Surg 22(5):327–332CrossRefGoogle Scholar
  2. 2.
    Hagy M (2004) “Keeping up with the Joneses”–the story of Sir Robert Jones and Sir Reginald Watson-Jones. Iowa Orthop J 24:133–137PubMedPubMedCentralGoogle Scholar
  3. 3.
    Azagury DE, Dua MM, Barrese JC, Henderson JM, Buchs NC, Ris F, Cloyd JM, Martinie JB, Razzaque S, Nicolau S, Soler L, Marescaux J, Visser BC (2015) Image-guided surgery. Curr Probl Surg 52(12):476–520. Epub 2015 Oct 1022CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Radermacher K, Portheine F, Anton M, Zimolong A, Kaspers G, Rau G, Staudte HW (1998) Computer assisted orthopaedic surgery with image based individual templates. Clin Orthop Relat Res 354:28–38CrossRefGoogle Scholar
  5. 5.
    Conner BP, Manogharan GP, Martof AN, Rodomsky LM, Rodomsky CM Jordan DC. Limperos JW 1-4:64. CrossRefGoogle Scholar
  6. 6.
    Kurtz SM, Ong KL, Lau E, Bozic KJ (2014) Impact of the economic downturn on total joint replacement demand in the United States: updated projections to 2021. J Bone Joint Surg Am 96(8):624–630. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Nemes S, Rolfson O, Annette WD, Garellick G, Sundberg M, Karrholm J, Robertsson O (2015) Historical view and future demand for knee arthroplasty in Sweden. Acta Orthop 86(4):426–431. 608 Epub 17452015 Mar 17453625CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Patel A, Pavlou G, Mujica-Mota RE, Toms AD (2015) The epidemiology of revision total knee and hip arthroplasty in England and Wales: a comparative analysis with projections for the United States. A study using the National Joint Registry dataset. Bone Joint J 97-B(8):1076–1081. 70 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Fang DM, Ritter MA, Davis KE (2009) Coronal alignment in total knee arthroplasty: just how important is it? J Arthroplasty 24(Suppl 6):39–43. Epub 2009 Jun 1024CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Delp SL, Stulberg SD, Davies B, Picard F, Leitner F (1998) Computer assisted knee replacement. Clin Orthop Relat Res 354:49–56CrossRefGoogle Scholar
  11. 11.
  12. 12.
    Kwon OR, Kang KT, Son J, Suh DS, Heo DB, Koh YG (2017) Patient-specific instrumentation development in TKA: 1st and 2nd generation designs in comparison with conventional instrumentation. Arch Orthop Trauma Surg 137(1):111–118. Epub 02016 Dec 00422CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Renson L, Poilvache P, Van den Wyngaert H (2014) Improved alignment and operating room efficiency with patient-specific instrumentation for TKA. Knee 21(6):1216–1220. Epub 2014 Oct 1230CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Anderl W, Pauzenberger L, Kolblinger R, Kiesselbach G, Brandl G, Laky B, Kriegleder B, Heuberer P, Schwameis E (2016) Patient-specific instrumentation improved mechanical alignment, while early clinical outcome was comparable to conventional instrumentation in TKA. Knee Surg Sports Traumatol Arthrosc 24(1):102–111. Epub 02014 Oct 00119CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Pfitzner T, Abdel MP, von Roth P, Perka C, Hommel H (2014) Small improvements in mechanical axis alignment achieved with MRI versus CT-based patient-specific instruments in TKA: a randomized clinical trial. Clin Orthop Relat Res 472(10):2913–2922. Epub 12014 Jul 11915CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Ivie CB, Probst PJ, Bal AK, Stannard JT, Crist BD, Sonny Bal B (2014) Improved radiographic outcomes with patient-specific total knee arthroplasty. J Arthroplasty 29(11):2100–2103. Epub 2014 Jun 2128CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Noble JW Jr, Moore CA, Liu N (2012) The value of patient-matched instrumentation in total knee arthroplasty. J Arthroplasty 27(1):153–155. Epub 2011 Sep 1019CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Zhu M, Chen JY, Chong HC, Yew AKS, Foo LSS, Chia SL, Lo NN, Yeo SJ (2017) Outcomes following total knee arthroplasty with CT-based patient-specific instrumentation. Knee Surg Sports Traumatol Arthrosc 25(8):2567–2572. Epub 02015 Sep 00126CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Sharareh B, Schwarzkopf R (2015) Review article: patient-specific versus standard instrumentation for total knee arthroplasty. J Orthop Surg (Hong Kong) 23(1):100–106. CrossRefGoogle Scholar
  20. 20.
    Mannan A, Smith TO, Sagar C, London NJ, Molitor PJ (2015) No demonstrable benefit for coronal alignment outcomes in PSI knee arthroplasty: a systematic review and meta-analysis. Orthop Traumatol Surg Res 101(4):461–468. Epub 2015 Mar 1020CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Shen C, Tang ZH, Hu JZ, Zou GY, Xiao RC, Yan DX (2015) Patient-specific instrumentation does not improve accuracy in total knee arthroplasty. Orthopedics 38 (3):e178-e188. 54
  22. 22.
    Nam D, Park A, Stambough JB, Johnson SR, Nunley RM, Barrack RL (2016) The mark Coventry award: custom cutting guides do not improve Total knee arthroplasty clinical outcomes at 2 years Followup. Clin Orthop Relat Res 474(1):40–46. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Fu H, Wang J, Zhou S, Cheng T, Zhang W, Wang Q, Zhang X (2015) No difference in mechanical alignment and femoral component placement between patient-specific instrumentation and conventional instrumentation in TKA. Knee Surg Sports Traumatol Arthrosc 23(11):3288–3295. Epub 02014 Jun 00111CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Nunley RM, Ellison BS, Ruh EL, Williams BM, Foreman K, Ford AD, Barrack RL (2012) Are patient-specific cutting blocks cost-effective for total knee arthroplasty? Clin Orthop Relat Res 470(3):889–894. Epub 12011 Dec 11920CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Ng CTJ, Newman S, Harris S, Clarke S, Cobb J (2017) Patient-specific instrumentation improves alignment of lateral unicompartmental knee replacements by novice surgeons. Int Orthop 41(7):1379–1385. Epub 02017 May 00213CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Mannan A, Smith TO (2016) Favourable rotational alignment outcomes in PSI knee arthroplasty: a level 1 systematic review and meta-analysis. Knee 23(2):186–190. Epub 2016 Jan 1015CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Heyse TJ, Tibesku CO (2014) Improved femoral component rotation in TKA using patient-specific instrumentation. Knee 21(1):268–271. Epub 2012 Nov 1018CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Kosse NM, Heesterbeek PJC, Schimmel JJP, van Hellemondt GG, Wymenga AB, Defoort KC (2017) Stability and alignment do not improve by using patient-specific instrumentation in total knee arthroplasty: a randomized controlled trial. Knee Surg Sports Traumatol Arthrosc 26:4792–4793Google Scholar
  29. 29.
    Huijbregts HJ, Khan RJ, Sorensen E, Fick DP, Haebich S (2016) Patient-specific instrumentation does not improve radiographic alignment or clinical outcomes after total knee arthroplasty. Acta Orthop 87(4):386–394. 17452016.11193799 Epub 17452016 Jun 17453671CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Zhang QM, Chen JY, Li H, Chai W, Ni M, Zhang ZD, Yang F (2015) No evidence of superiority in reducing outliers of component alignment for patient-specific instrumentation for total knee arthroplasty: a systematic review. Orthop Surg 7(1):19–25. CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Heyse TJ, Tibesku CO (2015) Improved tibial component rotation in TKA using patient-specific instrumentation. Arch Orthop Trauma Surg 135(5):697–701. Epub 02015 Apr 00401CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Silva A, Sampaio R, Pinto E (2014) Patient-specific instrumentation improves tibial component rotation in TKA. Knee Surg Sports Traumatol Arthrosc 22(3):636–642. Epub 02013 Aug 00129CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Nabavi A, Olwill CM (2015) Early outcome after total knee replacement using computed tomography-based patient-specific cutting blocks versus standard instrumentation. J Orthop Surg (Hong Kong) 23(2):182–184. CrossRefGoogle Scholar
  34. 34.
    Leon VJ, Lengua MA, Calvo V, Lison AJ (2017) Use of patient-specific cutting blocks reduces blood loss after total knee arthroplasty. Eur J Orthop Surg Traumatol 27(2):273–277. Epub 02016 Dec 00520CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Vide J, Freitas TP, Ramos A, Cruz H, Sousa JP (2017) Patient-specific instrumentation in total knee arthroplasty: simpler, faster and more accurate than standard instrumentation-a randomized controlled trial. Knee Surg Sports Traumatol Arthrosc 25(8):2616–2621. Epub 02015 Nov 00119CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Rathod PA, Deshmukh AJ, Cushner FD (2015) Reducing blood loss in bilateral total knee arthroplasty with patient-specific instrumentation. Orthop Clin North Am 46(3):343–350CrossRefPubMedCentralGoogle Scholar
  37. 37.
    Wu XD, Xiang BY, Schotanus MGM, Liu ZH, Chen Y, Huang W (2017) CT- versus MRI-based patient-specific instrumentation for total knee arthroplasty: a systematic review and meta-analysis. Surgeon 15(6):336–348. Epub 2017 Jul 1026CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    DeHaan AM, Adams JR, DeHart ML, Huff TW (2014) Patient-specific versus conventional instrumentation for total knee arthroplasty: peri-operative and cost differences. J Arthroplasty 29(11):2065–2069. Epub 2014 Jun 2028CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Chan WC, Pinder E, Loeffler M (2016) Patient-specific instrumentation versus conventional instrumentation in total knee arthroplasty. J Orthop Surg (Hong Kong) 24(2):175–178. CrossRefGoogle Scholar
  40. 40.
    Chareancholvanich K, Narkbunnam R, Pornrattanamaneewong C (2013) A prospective randomised controlled study of patient-specific cutting guides compared with conventional instrumentation in total knee replacement. Bone Joint J 95-B(3):354–359. 03 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Boonen B, Schotanus MG, Kerens B, van der Weegen W, van Drumpt RA, Kort NP (2013) Intra-operative results and radiological outcome of conventional and patient-specific surgery in total knee arthroplasty: a multicentre, randomised controlled trial. Knee Surg Sports Traumatol Arthrosc 21(10):2206–2212. Epub 02013 Aug 00169CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Hamilton WG, Parks NL (2014) Patient-specific instrumentation does not shorten surgical time: a prospective, randomized trial. J Arthroplasty 29(7):1508–1509. Epub 2014 Jan 1530CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Tibesku CO, Hofer P, Portegies W, Ruys CJ, Fennema P (2013) Benefits of using customized instrumentation in total knee arthroplasty: results from an activity-based costing model. Arch Orthop Trauma Surg 133(3):405–411. Epub 02012 Dec 00415CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Bhadra AK, Kwiecien GJ, Harwin SF, Johnson AJ, Mont MA, Malkani AL (2012) Procedure simplification: the role of single-use instruments in total knee arthroplasty. Surg Technol Int 22:326–330PubMedPubMedCentralGoogle Scholar
  45. 45.
    Siu J, Hill AG, MacCormick AD (2017) Systematic review of reusable versus disposable laparoscopic instruments: costs and safety. ANZ J Surg 87(1–2):28–33. Epub 12016 Nov 13823 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Litrico S, Recanati G, Gennari A, Maillot C, Saffarini M, Le Huec JC (2016) Single-use instrumentation in posterior lumbar fusion could decrease incidence of surgical site infection: a prospective bi-centric study. Eur J Orthop Surg Traumatol 26(1):21–26. Epub 02015 Sep 00591CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Osmon DR, Berbari EF, Berendt AR, Lew D, Zimmerli W, Steckelberg JM, Rao N, Hanssen A, Wilson WR (2013) Executive summary: diagnosis and management of prosthetic joint infection: clinical practice guidelines by the Infectious Diseases Society of America. Clin Infect Dis 56(1):1–10. CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Horas U, Pelinkovic D, Herr G, Aigner T, Schnettler R (2003) Autologous chondrocyte implantation and osteochondral cylinder transplantation in cartilage repair of the knee joint. A prospective, comparative trial. J Bone Joint Surg Am 85-A(2):185–192CrossRefPubMedCentralGoogle Scholar
  49. 49.
    Sherman SL, Thyssen E, Nuelle CW (2017) Osteochondral autologous transplantation. Clin Sports Med 36(3):489–500. Epub 2017 Apr 1026CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Pearce SG, Hurtig MB, Clarnette R, Kalra M, Cowan B, Miniaci A (2001) An investigation of 2 techniques for optimizing joint surface congruency using multiple cylindrical osteochondral autografts. Arthroscopy 17(1):50–55. CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Koh JL, Wirsing K, Lautenschlager E, Zhang LO (2004) The effect of graft height mismatch on contact pressure following osteochondral grafting: a biomechanical study. Am J Sports Med 32(2):317–320. CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Inoue J, Kunz M, Hurtig MB, Waldman SD, Stewart AJ (2011) Automated planning of computer assisted mosaic arthroplasty. In: Fichtinger G, Martel A, Peters T (eds) Medical image computing and computer-assisted intervention – MICCAI 2011: 14th international conference, Toronto, Canada, September 18–22, 2011, proceedings, Part I. Springer, Berlin/Heidelberg, pp 267–274. CrossRefGoogle Scholar
  53. 53.
    Sebastyan S, Kunz M, Stewart AJ, Bardana DD (2016) Image-guided techniques improve accuracy of mosaic arthroplasty. Int J Comput Assist Radiol Surg 11(2):261–269. Epub 12015 Jul 11547CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Kunz M, Devlin SM, Hurtig MB, Waldman SD, Rudan JF, Bardana DD, Stewart AJ (2013) Image-guided techniques improve the short-term outcome of autologous osteochondral cartilage repair surgeries: an animal trial. Cartilage 4(2):153–164. CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Siebel T, Maubach S, Morlock MM (2006) Lessons learned from early clinical experience and results of 300 ASR hip resurfacing implantations. Proc Inst Mech Eng H 220(2):345–353. CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Kunz M, Rudan JF, Xenoyannis GL, Ellis RE (2010) Computer-assisted hip resurfacing using individualized drill templates. J Arthroplasty 25(4):600–606. Epub 2009 May 1022CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Kunz M, Rudan JF, Wood GC, Ellis RE (2011) Registration stability of physical templates in hip surgery. Stud Health Technol Inform 163:283–289PubMedPubMedCentralGoogle Scholar
  58. 58.
    Du H, Tian XX, Li TS, Yang JS, Li KH, Pei GX, Xie L (2013) Use of patient-specific templates in hip resurfacing arthroplasty: experience from sixteen cases. Int Orthop 37(5):777–782. Epub 02013 Mar 00262CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Zhang YZ, Lu S, Yang Y, Xu YQ, Li YB, Pei GX (2011) Design and primary application of computer-assisted, patient-specific navigational templates in metal-on-metal hip resurfacing arthroplasty. J Arthroplasty 26(7):1083–1087. Epub 2010 Oct 1086CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Kitada M, Sakai T, Murase T, Hanada T, Nakamura N, Sugano N (2013) Validation of the femoral component placement during hip resurfacing: a comparison between the conventional jig, patient-specific template, and CT-based navigation. Int J Med Robot 9(2):223–229. Epub 2013 Mar 1005CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Buller L, Smith T, Bryan J, Klika A, Barsoum W, Iannotti JP (2013) The use of patient-specific instrumentation improves the accuracy of acetabular component placement. J Arthroplasty 28(4):631–636. CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Zhang YZ, Chen B, Lu S, Yang Y, Zhao JM, Liu R, Li YB, Pei GX (2011) Preliminary application of computer-assisted patient-specific acetabular navigational template for total hip arthroplasty in adult single development dysplasia of the hip. Int J Med Robot 7(4):469–474. Epub 2011 Oct 1007CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Schwarzkopf R, Schnaser E, Nozaki T, Kaneko Y, Gillman MJ (2016) Novel, patient-specific instruments for acetabular preparation and cup placement. Surg Technol Int XXIX:309–313Google Scholar
  64. 64.
    Spencer-Gardner L, Pierrepont J, Topham M, Bare J, McMahon S, Shimmin AJ (2016) Patient-specific instrumentation improves the accuracy of acetabular component placement in total hip arthroplasty. Bone Joint J 98-B(10):1342– 1346. 10.37808 CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Small T, Krebs V, Molloy R, Bryan J, Klika AK, Barsoum WK (2014) Comparison of acetabular shell position using patient specific instruments vs. standard surgical instruments: a randomized clinical trial. J Arthroplasty 29 (5):1030–1037. doi: 10 Epub 2013 Oct 1016
  66. 66.
    Sakai T, Hamada H, Takao M, Murase T, Yoshikawa H, Sugano N (2017) Validation of patient-specific surgical guides for femoral neck cutting in total hip arthroplasty through the anterolateral approach. Int J Med Robot 13(3). Epub 2017 May 1008CrossRefGoogle Scholar
  67. 67.
    Ito H, Tanaka S, Tanaka T, Oshima H, Tanaka S (2017) A patient-specific instrument for femoral stem placement during Total hip arthroplasty. Orthopedics 40(2):e374–e377. 01477447-20161108-01477406 Epub 01472016 Nov 01477414CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Lau SC, Keith PPA (2018) Patient-specific instrumentation for total shoulder arthroplasty: not as accurate as it would seem. J Shoulder Elb Surg 27(1):90–95. Epub 2017 Sep 1015CrossRefGoogle Scholar
  69. 69.
    Gomes NS (2016) Patient-specific instrumentation for total shoulder arthroplasty. EFORT Open Rev 1(5):177–182. eCollection 002016 MayCrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Gauci MO, Boileau P, Baba M, Chaoui J, Walch G (2016) Patient-specific glenoid guides provide accuracy and reproducibility in total shoulder arthroplasty. Bone Joint J 98-B(8):1080–1085. 257 CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Dallalana RJ, McMahon RA, East B, Geraghty L (2016) Accuracy of patient-specific instrumentation in anatomic and reverse total shoulder arthroplasty. Int J Shoulder Surg 10(2):59–66. CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Berlet GC, Penner MJ, Lancianese S, Stemniski PM, Obert RM (2014) Total ankle arthroplasty accuracy and reproducibility using preoperative CT scan-derived, Patient-Specific Guides. Foot Ankle Int 35(7):665–676. Epub 1071100714532014 Apr 1071100714531239CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Zdravkovic V, Bilic R (1990) Computer-assisted preoperative planning (CAPP) in orthopaedic surgery. Comput Methods Prog Biomed 32(2):141–146CrossRefGoogle Scholar
  74. 74.
    Munier M, Donnez M, Ollivier M, Flecher X, Chabrand P, Argenson JN, Parratte S (2017) Can three-dimensional patient-specific cutting guides be used to achieve optimal correction for high tibial osteotomy? Pilot study. Orthop Traumatol Surg Res 103(2):245–250. Epub 2017 Jan 1027CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Hoekstra H, Rosseels W, Sermon A, Nijs S (2016) Corrective limb osteotomy using patient specific 3D-printed guides: a technical note. Injury 47(10):2375–2380. Epub 2016 Jul 2321CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Arnal-Burro J, Perez-Mananes R, Gallo-Del-Valle E, Igualada-Blazquez C, Cuervas-Mons M, Vaquero-Martin J (2017) Three dimensional-printed patient-specific cutting guides for femoral varization osteotomy: do it yourself. Knee 24(6):1359–1368. Epub 2017 Oct 1351CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Ranalletta M, Bertona A, Rios JM, Rossi LA, Tanoira I, Maignon GD, Sancineto CF (2017) Corrective osteotomy for malunion of proximal humerus using a custom-made surgical guide based on three-dimensional computer planning: case report. J Shoulder Elbow Surg 26(11):e357–e363. CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Bauer AS, Storelli DAR, Sibbel SE, McCarroll HR, Lattanza LL (2017) Preoperative computer simulation and patient-specific guides are safe and effective to correct forearm deformity in children. J Pediatr Orthop 37(7):504–510. CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Vlachopoulos L, Schweizer A, Graf M, Nagy L, Furnstahl P (2015) Three-dimensional postoperative accuracy of extra-articular forearm osteotomies using CT-scan based patient-specific surgical guides. BMC Musculoskelet Disord 16:336. CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Kunz M, Ma B, Rudan JF, Ellis RE, Pichora DR (2013) Image-guided distal radius osteotomy using patient-specific instrument guides. J Hand Surg Am 38(8):1618–1624. CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Hirsiger S, Schweizer A, Miyake J, Nagy L, Furnstahl P (2017) Corrective osteotomies of phalangeal and metacarpal Malunions using patient-specific guides: CT-based evaluation of the reduction accuracy. Hand 1(1558944717726135):1558944717726135Google Scholar
  82. 82.
    Weigelt L, Furnstahl P, Hirsiger S, Vlachopoulos L, Espinosa N, Wirth SH (2017) Three-dimensional correction of complex ankle deformities with computer-assisted planning and patient-specific surgical guides. J Foot Ankle Surg 56(6):1158–1164. Epub 2017 Jun 1128CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Zhou Y, Kang X, Li C, Xu X, Li R, Wang J, Li W, Luo H, Lu S (2016) Application of a 3-dimensional printed navigation template in Bernese periacetabular osteotomies: a cadaveric study. Medicine (Baltimore) 95(50):e5557. CrossRefGoogle Scholar
  84. 84.
    Schweizer A, Mauler F, Vlachopoulos L, Nagy L, Furnstahl P (2016) Computer-assisted 3-dimensional reconstructions of scaphoid fractures and nonunions with and without the use of patient-specific guides: early clinical outcomes and postoperative assessments of reconstruction accuracy. J Hand Surg Am 41(1):59–69. CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Schweizer A, Furnstahl P, Nagy L (2013) Three-dimensional correction of distal radius intra-articular malunions using patient-specific drill guides. J Hand Surg Am 38(12):2339–2347. Epub 2013 Nov 2331CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Sallent A, Vicente M, Reverte MM, Lopez A, Rodriguez-Baeza A, Perez-Dominguez M, Velez R (2017) How 3D patient-specific instruments improve accuracy of pelvic bone tumour resection in a cadaveric study. Bone Joint Res 6(10):577–583. 0094.R1301 CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Jentzsch T, Vlachopoulos L, Furnstahl P, Muller DA, Fuchs B (2016) Tumor resection at the pelvis using three-dimensional planning and patient-specific instruments: a case series. World J Surg Oncol 14(1):249. CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Chen X, Xu L, Wang Y, Hao Y, Wang L (2016) Image-guided installation of 3D-printed patient-specific implant and its application in pelvic tumor resection and reconstruction surgery. Comput Methods Programs Biomed 125:66–78. Epub 2015 Dec 1012CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Roner S, Vlachopoulos L, Nagy L, Schweizer A, Furnstahl P (2017) Accuracy and early clinical outcome of 3-dimensional planned and guided single-cut osteotomies of Malunited forearm bones. J Hand Surg Am 42(12):1031.e1031–1031.e1038. Epub 2017 Sep 1036CrossRefGoogle Scholar
  90. 90.
    Turmezei TD, Poole KE (2011) Computed tomography of subchondral bone and osteophytes in hip osteoarthritis: the shape of things to come? Front Endocrinol (Lausanne) 2:97. eCollection 02011CrossRefGoogle Scholar
  91. 91.
    Gelse K, Soder S, Eger W, Diemtar T, Aigner T (2003) Osteophyte development--molecular characterization of differentiation stages. Osteoarthr Cartil 11(2):141–148CrossRefPubMedCentralGoogle Scholar
  92. 92.
    Seon JK, Park HW, Yoo SH, Song EK (2014) Assessing the accuracy of patient-specific guides for total knee arthroplasty. Knee Surg. Sports Traumatol. Arthrosc 24:3678. CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Kunz M, Balaketheeswaran S, Ellis RE, Rudan JF (2015) The influence of osteophyte depiction in CT for patient-specific guided hip resurfacing procedures. Int J Comput Assist Radiol Surg 10(6):717–726. Epub 12015 Apr 11511CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Sassoon A, Nam D, Nunley R, Barrack R (2015) Systematic review of patient-specific instrumentation in total knee arthroplasty: new but not improved. Clin Orthop Relat Res 473(1):151–158. CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Cerveri P, Sacco C, Olgiati G, Manzotti A, Baroni G (2017) 2D/3D reconstruction of the distal femur using statistical shape models addressing personalized surgical instruments in knee arthroplasty: a feasibility analysis. Int J Med Robot 13(4). Epub 2017 Apr 1007CrossRefGoogle Scholar
  96. 96.
    Okada Y, Teramoto A, Suzuki T, Kii Y, Watanabe K, Yamashita T (2017) Preoperative corrections are required for planning of patient-specific instrumentation in total knee arthroplasty. Knee 24(6):1492–1497. Epub 2017 Oct 1416CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Pietsch M, Djahani O, Hochegger M, Plattner F, Hofmann S (2013) Patient-specific total knee arthroplasty: the importance of planning by the surgeon. Knee Surg Sports Traumatol Arthrosc 21(10):2220–2226. Epub 2013 Aug 00113CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Goyal N, Stulberg SD (2015) Evaluating the precision of preoperative planning in patient specific instrumentation: can a single MRI yield different preoperative plans? J Arthroplasty 30(7):1250–1253. Epub 15 Feb 1226CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Van den Broeck J, Wirix-Speetjens R, Vander Sloten J (2015) Preoperative analysis of the stability of fit of a patient-specific surgical guide. Comput Methods Biomech Bomed Eng 18(1):38–47. 83 Epub 10252013 Apr 10255829CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of SurgeryQueen’s UniversityKingstonCanada

Personalised recommendations