Advertisement

Intelligent HMI in Orthopedic Navigation

  • Guangzhi Wang
  • Liang Li
  • Shuwei Xing
  • Hui Ding
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1093)

Abstract

The human-machine interface (HMI) is an essential part of image-guided orthopedic navigation systems. HMI provides a primary platform to merge surgically relevant pre- and intraoperative images from different modalities and 3D models including anatomical structures and implants to support surgical planning and navigation. With the various input-output techniques of HMI, surgeons can intuitively manipulate anatomical models generated from medical images and/or implant models for surgical planning. Furthermore, HMI recreates sight, sound, and touch feedback for the guidance of surgery operations which helps surgeons to sense more relevant information, e.g., anatomical structures and surrounding tissue, the mechanical axis of limbs, and even the mechanical properties of tissue. Thus, with the help of interactive HMI, precision operations, such as cutting, drilling, and implantation, can be performed more easily and safely.

Classic HMI is based on 2D displays and standard input devices of computers. In contrast, modern visual reality (VR) and augmented reality (AR) techniques allow the showing more information for surgical navigation. Various attempts have been applied to image-guided orthopedic therapy. In order to realize rapid image-based modeling and to create effective interaction and feedback, intelligent algorithms have been developed. Intelligent algorithms can realize fast registration of image to image and image to patients, and the algorithms to compensate the visual offset in AR display have been investigated. In order to accomplish more effective human-computer interaction, various input methods and force sensing/force reflecting methods have been developed. This chapter reviews related human-machine interface techniques for image-guided orthopedic navigation, analyzes several examples of clinical applications, and discusses the trend of intelligent HMI in orthopedic navigation.

Keywords

Intelligent human-machine interface Visual reality (VR) Augmented reality (AR) Orthopedic navigation 

References

  1. 1.
    Song J, Ding H, Han W et al (2016) A motion compensation method for bi-plane robot-assisted internal fixation surgery of a femur neck fracture. Proc Inst Mech Eng H J Eng Med 230(10):942–948.  https://doi.org/10.1177/0954411916663582 CrossRefGoogle Scholar
  2. 2.
    Hacihaliloglu I, Wilson DR, Gilbart M et al (2013) Non-iterative partial view 3D ultrasound to CT registration in ultrasound-guided computer-assisted orthopedic surgery. Int J Comput Assist Radiol Surg 8(2):157–168.  https://doi.org/10.1007/s11548-012-0747-9 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Wong KC (2016) Image fusion for computer-assisted bone tumor surgery. In: Zheng G, Li S (eds) Computational radiology for Orthopaedic interventions. Springer, Cham, pp 217–230.  https://doi.org/10.1007/978-3-319-23482-3_11 CrossRefGoogle Scholar
  4. 4.
    Lonner JH (2015) Robotically assisted unicompartmental knee arthroplasty with a handheld image-free sculpting tool. Orthop Clin North Am 25(2):104–113.  https://doi.org/10.1016/j.ocl.2015.08.024 CrossRefGoogle Scholar
  5. 5.
    Kovler I, Joskowicz L, Weil YA et al (2015) Haptic computer-assisted patient-specific preoperative planning for orthopedic fractures surgery. Int J Comput Assist Radiol Surg 10(10):1535–1546.  https://doi.org/10.1007/s11548-015-1162-9 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Hettig J, Saalfeld P, Luz M et al (2017) Comparison of gesture and conventional interaction techniques for interventional neuroradiology. Int J Comput Assist Radiol Surg 12(9):1643–1653.  https://doi.org/10.1007/s11548-017-1523-7 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Stefanou MA, Pasparakis D, Mastrokalos D et al (2014) Radiographic assessment of lower limb lengthening in achondroplastic patients, using the ilizarov frame: a 5-19 year follow up study. Int J Orthop 1(4):140–145.  https://doi.org/10.6051/j.issn.2311-5106.2014.01.33 CrossRefGoogle Scholar
  8. 8.
    Wang GY, Huang WJ, Song Q et al (2016) Computer-assisted virtual preoperative planning in orthopedic surgery for acetabular fractures based on actual computed tomography data. Comput Assist Surg 21(1):160–165.  https://doi.org/10.1080/24699322.2016.1240235 CrossRefGoogle Scholar
  9. 9.
    Dagnino G, Georgilas I, Morad S et al (2017) Image-guided surgical robotic system for percutaneous reduction of joint fractures. Ann Biomed Eng 45(11):2648–2662.  https://doi.org/10.1007/s10439-017-1901-x CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Lonner JH, Smith JR, Picard F et al (2015) High degree of accuracy of a novel image-free handheld robot for unicondylar knee arthroplasty in a cadaveric study. Clin Orthop Relat Res 473(1):206–212.  https://doi.org/10.1007/s11999-014-3764-x CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Marien A, Al DCA, Desai M et al (2015) Three-dimensional navigation system integrating position-tracking technology with movable tablet display for percutaneous targeting. BJU Int 115(4):659–665.  https://doi.org/10.1111/bju.12948 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Zeng BW, Meng FL, Ding H et al (2017) A surgical robot with augmented reality visualization for stereoelectroencephalography electrode implantation. Int J Comput Assist Radiol Surg 12(8):1355–1368.  https://doi.org/10.1007/s11548-017-1634-1 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Zhang XR, Chen GW, Liao HG (2017) High-quality see-through surgical guidance system using enhanced 3-d autostereoscopic augmented reality. IEEE Trans Biomed Eng 64(8):1815–1825.  https://doi.org/10.1109/tbme.2016.2624632 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Golab MR, Breedon PJ, Vloeberghs M (2016) A wearable headset for monitoring electromyography responses within spinal surgery. Eur Spine J 25(10):3214–3219.  https://doi.org/10.1007/s00586-016-4626-x CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Perkins SL, Lin MA, Srinivasan S et al (2017) A mixed-reality system for breast surgical planning. In: 2017 IEEE International Symposium on Mixed and Augmented Reality (ISMAR-Adjunct) Proceedings pp 269–274.  https://doi.org/10.1109/ISMAR-Adjunct.2017.92
  16. 16.
    Tepper OM, Rudy HL, Lefkowitz A et al (2017) Mixed reality with HoloLens: where virtual reality meets augmented reality in the operating room. Plast Reconstr Surg 140(5):1066–1070.  https://doi.org/10.1097/prs.0000000000003802 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Vavra P, Roman J, Zonca P et al (2017) Recent development of augmented reality in surgery: a review. J Healthc Eng 9.  https://doi.org/10.1155/2017/4574172 CrossRefGoogle Scholar
  18. 18.
    Lopes DS, Parreira PDD, Paulo SF et al (2017) On the utility of 3D hand cursors to explore medical volume datasets with a touchless interface. J Biomed Inform 72(2017):140–149.  https://doi.org/10.1016/j.jbi.2017.07.009 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Mewes A, Saalfeld P, Riabikin O et al (2016) A gesture-controlled projection display for CT-guided interventions. Int J Comput Assist Radiol Surg 11(1):157–164.  https://doi.org/10.1007/s11548-015-1215-0 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Phil (2014) See the Myo armband in surgery. http://blog.thalmic.com/myo-armband-surgery/. Accessed 5 Feb 2018
  21. 21.
    Mewes A, Hensen B, Wacker F et al (2017) Touchless interaction with software in interventional radiology and surgery: a systematic literature review. Int J Comput Assist Radiol Surg 12(2):291–305. https://doi.org/10.1007/s11548-016- 1480-6 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Boiadjiev T, Boiadjiev G, Delchev K et al (2017) Far cortex automatic detection aimed for partial or full bone drilling by a robot system in orthopaedic surgery. Biotechnol Biotechnol Equip 31(1):200–205.  https://doi.org/10.1080/13102818.2016.1234947 CrossRefGoogle Scholar
  23. 23.
    Boiadjiev T, Boiadjiev G, Delchev K et al (2015) Eliminating of far pedicle cortex perforation by automatic spine drilling. Appl Mech Mater 799-800:505–508. https://doi.org/10.4028/www.scientific.net/AMM. 799-800.505 CrossRefGoogle Scholar
  24. 24.
    Boiadjiev T, Zagurski K, Boiadjiev G et al (2011) Identification of bone structure during automatic drilling in orthopedic surgery. Mech Based Des Struc 39(2):285–302.  https://doi.org/10.1080/15397734.2011.550863 CrossRefGoogle Scholar
  25. 25.
    Boiadjiev G, Kastelov R, Boiadjiev T et al (2013) Design and performance study of an orthopaedic surgery robotized module for automatic bone drilling. Int J Med Robot Comput 9(4):455–463.  https://doi.org/10.1002/rcs.1479 CrossRefGoogle Scholar
  26. 26.
    Jin HY, Hu Y, Deng Z et al (2014) Model-based state recognition of bone drilling with robotic orthopedic surgery system. In: 2014 IEEE International Conference on Robotics and Automation ICRA, Hong Kong, China, 31 May–7 June 2014. IEEE International Conference on Robotics and Automation ICRA. IEEE, pp 3538–3543.  https://doi.org/10.1109/ICRA.2014.6907369
  27. 27.
    Hu Y, Jin HY, Zhang LW et al (2014) State recognition of pedicle drilling with force sensing in a robotic spinal surgical system. IEEE/ASME Trans Mechatronics 19(1):357–365.  https://doi.org/10.1109/tmech.2012.2237179 CrossRefGoogle Scholar
  28. 28.
    Tian W, Han XG, Liu B et al (2014) A robot-assisted surgical system using a force-image control method for pedicle screw insertion. PLoS One 9(1):9.  https://doi.org/10.1371/journal.pone.0086346 CrossRefGoogle Scholar
  29. 29.
    Dai Y, Xue Y, Zhang JX (2016) Milling state identification based on vibration sense of a robotic surgical system. IEEE Trans Ind Electron 63(10):6184–6193.  https://doi.org/10.1109/tie.2016.2574981 CrossRefGoogle Scholar
  30. 30.
    Jin HY, Hu Y, Gao P et al (2014) Intraoperative control for robotic spinal surgical system with audio and torque sensing. In: Processing of 2014 International conference on multisensor fusion and information integration for intelligent systems (Mfi), Beijing, China, 28–29 Sept. 2014 2014. IEEE, p 6.  https://doi.org/10.1109/MFI.2014.6997711
  31. 31.
    Sun Y, Jin HY, Hu Y et al (2014) State recognition of bone drilling with audio signal in robotic orthopedics surgery system. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, IL, USA, 14–18 Sept. 2014. IEEE International Conference on Intelligent Robots and Systems. IEEE, pp 3503–3508.  https://doi.org/10.1109/IROS.2014.6943051
  32. 32.
    Cho B, Oka M, Matsumoto N et al (2013) Warning navigation system using real-time safe region monitoring for otologic surgery. Int J Comput Assist Radiol Surg 8(3):395–405.  https://doi.org/10.1007/s11548-012-0797-z CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Cho B, Matsumoto N, Komune S et al (2014) A surgical navigation system for guiding exact cochleostomy using auditory feedback: a clinical feasibility study. Biomed Res Int 2014(3):769659.  https://doi.org/10.1155/2014/769659 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Dixon BJ, Daly MJ, Chan H et al (2014) Augmented real-time navigation with critical structure proximity alerts for endoscopic skull base surgery. Laryngoscope 124(4):853–859.  https://doi.org/10.1002/lary.24385 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Woerdeman PA, Willems PW, Noordmans HJ et al (2009) Auditory feedback during frameless image-guided surgery in a phantom model and initial clinical experience. J Neurosurg 110(2):257–262.  https://doi.org/10.3171/2008.3.17431 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Vaughan N, Dubey VN, Wainwright TW et al (2016) A review of virtual reality based training simulators for orthopaedic surgery. Med Eng Phys 38(2):59–71.  https://doi.org/10.1016/j.medengphy.2015.11.021 CrossRefPubMedGoogle Scholar
  37. 37.
    Vankipuram M, Kahol K, McLaren A et al (2010) A virtual reality simulator for orthopedic basic skills: a design and validation study. J Biomed Inform 43(5):661–668.  https://doi.org/10.1016/j.jbi.2010.05.016 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Cecil J, Gupta A, Pirela-Cruz M (2018) An advanced simulator for orthopedic surgical training. Int J Comput Assist Radiol Surg 13(2):305–319.  https://doi.org/10.1007/s11548-017-1688-0 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Shen F, Chen B, Guo Q et al (2013) Augmented reality patient-specific reconstruction plate design for pelvic and acetabular fracture surgery. Int J Comput Assist Radiol Surg 8(2):169–179.  https://doi.org/10.1007/s11548-012-0775-5 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    MedGadget (2017) CAE Healthcare announces first mixed reality ultrasound simulation solution with Microsoft HoloLens. https://www.medgadget.com/2017/01/cae-healthcare-announces-first-mixed-reality-ultrasound-simulation-solution-with-microsoft-hololens.html. Accessed 10 Feb 2018
  41. 41.
    Enayati N, De ME, Ferrigno G (2016) Haptics in robot-assisted surgery: challenges and benefits. IEEE Rev Biomed Eng 9:49–65.  https://doi.org/10.1109/RBME.2016.2538080 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Jacobs S, Holzhey D, Strauss G et al (2007) The impact of haptic learning in telemanipulator-assisted surgery. Surg Laparosc Endosc Percutan Tech 17(5):402–406.  https://doi.org/10.1097/SLE.0b013e3180f60c23 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Tholey G, Desai JP, Castellanos AE (2005) Force feedback plays a significant role in minimally invasive surgery: results and analysis. Ann Surg 241(1):102–109.  https://doi.org/10.1097/01.sla.0000149301.60553.1e CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    van der Meijden OAJ, Schijven MP (2009) The value of haptic feedback in conventional and robot-assisted minimal invasive surgery and virtual reality training: a current review. Surg Endosc 23(6):1180–1190.  https://doi.org/10.1007/s00464-008-0298-x CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Luciano CJ, Banerjee PP, Bellotte B et al (2011) Learning retention of thoracic pedicle screw placement using a high-resolution augmented reality simulator with haptic feedback. Oper Neurosurg 69(suppl_1):14–19.  https://doi.org/10.1227/NEU.0b013e31821954ed CrossRefGoogle Scholar
  46. 46.
    Indraccolo C, Paolis LT (2017) Augmented reality and MYO for a touchless interaction with virtual organs. Paper presented at the augmented reality, virtual reality and computer graphics. In: 4th international conference, AVR 2017, Ugento, Italy, 12–15 June 2017Google Scholar
  47. 47.
    Mentis HM, O’Hara K, Gonzalez G et al (2015) Voice or gesture in the operating room. In: ACM Conference Extended Abstracts on Human Factors in Computing Systems, Seoul, Republic of Korea, 18–23 April 2015. pp 773–780.  https://doi.org/10.1145/2702613.2702963
  48. 48.
    Hotker AM, Pitton MB, Mildenberger P et al (2013) Speech and motion control for interventional radiology: requirements and feasibility. Int J Comput Assist Radiol Surg 8(6):997–1002.  https://doi.org/10.1007/s11548-013-0841-7 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Mylonas GP, Kwok KW, James DRC et al (2012) Gaze-contingent motor Channelling, haptic constraints and associated cognitive demand for robotic MIS. Med Image Anal 16(3):612–631.  https://doi.org/10.1016/j.media.2010.07.007 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Ding H, Yang X, Zheng N et al (2017) Tri-co robot: a Chinese robotic research initiative for enhanced robot interaction capabilities. Natl Sci Rev 0(0):1–3.  https://doi.org/10.1093/nsr/nwx148 CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Guangzhi Wang
    • 1
  • Liang Li
    • 1
  • Shuwei Xing
    • 1
  • Hui Ding
    • 1
  1. 1.Department of Biomedical Engineering, School of MedicineTsinghua UniversityBeijingPeople’s Republic of China

Personalised recommendations