Biomechanical Guidance System for Periacetabular Osteotomy

  • Mehran ArmandEmail author
  • Robert Grupp
  • Ryan Murphy
  • Rachel Hegman
  • Robert Armiger
  • Russell Taylor
  • Benjamin McArthur
  • Jyri Lepisto
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1093)


This chapter presents a biomechanical guidance navigation system for performing periacetabular osteotomy (PAO) to treat developmental dysplasia of the hip. The main motivation of the biomechanical guidance system (BGS) is to plan and track the osteotomized fragment in real time during PAO while simplifying this challenging procedure. The BGS computes the three-dimensional position of the osteotomized fragment in terms of conventional anatomical angles and simulates biomechanical states of the joint. This chapter describes the BGS structure and its application using two different navigation approaches including optical tracking of the fragment and x-ray-based navigation. Both cadaver studies and preliminary clinical studies showed that the biomechanical planning is consistent with traditional PAO planning techniques and that the additional information provided by accurate 3D positioning of the fragment does not adversely impact the surgery.


Developmental dysplasia of the hip (DDH) Periacetabular osteotomy (PAO) Biomechanical guidance system X-ray-based navigation 



The human subject research and cadaver studies were approved by Johns Hopkins Medicine JHM IRB NA_00001257 and JHM IRB1 #05-09-02-01.The study was supported by grant number R01 EB60389 and R21 EB020113 from the National Institute for Biomedical Imaging and Bioengineering (NIH/NIBIB) and two JHU/APL graduate student scholarships.


  1. 1.
    Wiberg G (1939) Studies on dysplastic acetabula and congenital subluxation of the hip joint with special reference to the complication of osteoarthritis. Acta Chir Scand 83Google Scholar
  2. 2.
    Cooperman DR, Wallensten R, Stulberg SD (1983) Acetabular dysplasia in the adult. Clin Orthop Relat Res:79–85Google Scholar
  3. 3.
    Matta JM, Stover MD, Siebenrock K (1999) Periacetabular osteotomy through the smith-Petersen approach. Clin Orthop Relat Res:21–32Google Scholar
  4. 4.
    Siebenrock KA, Scholl E, Lottenbach M, Ganz R (1999) Bernese periacetabular osteotomy. Clin Orthop Relat Res:9–20Google Scholar
  5. 5.
    Trumble SJ, Mayo KA, Mast JW (1999) The periacetabular osteotomy. Minimum 2 year followup in more than 100 hips. Clin Orthop Relat Res:54–63CrossRefGoogle Scholar
  6. 6.
    Davey JP, Santore RF (1999) Complications of periacetabular osteotomy. Clin Orthop Relat Res:33–37CrossRefGoogle Scholar
  7. 7.
    Hussell JG, Rodriguez JA, Ganz R (1999) Technical complications of the Bernese periacetabular osteotomy. Clin Orthop Relat Res:81–92Google Scholar
  8. 8.
    Trousdale RT, Cabanela ME (2003) Lessons learned after more than 250 periacetabular osteotomies. Acta Orthop Scand 74:119–126CrossRefPubMedCentralGoogle Scholar
  9. 9.
    Ganz R, Klaue K, Vinh TS, Mast JW (1988) A new periacetabular osteotomy for the treatment of hip dysplasias. Technique and preliminary results. Clin Orthop Relat Res:26–36Google Scholar
  10. 10.
    Troelsen A (2009) Surgical advances in periacetabular osteotomy for treatment of hip dysplasia in adults. Acta Orthop Suppl 80:1–33CrossRefPubMedCentralGoogle Scholar
  11. 11.
    Albers CE, Steppacher SD, Ganz R, Tannast M, Siebenrock KA (2013) Impingement adversely affects 10-year survivorship after periacetabular osteotomy for DDH. Clin Orthop Relat Res 471: 1602–1614CrossRefPubMedCentralGoogle Scholar
  12. 12.
    Troelsen A, Elmengaard B, Soballe K (2009) Medium-term outcome of periacetabular osteotomy and predictors of conversion to total hip replacement. J Bone Joint Surg Am 91:2169–2179CrossRefPubMedCentralGoogle Scholar
  13. 13.
    Langlotz F, Stucki M, Bachler R, Scheer C, Ganz R, Berlemann U et al (1997) The first twelve cases of computer assisted periacetabular osteotomy. Comput Aided Surg 2:317–326CrossRefPubMedCentralGoogle Scholar
  14. 14.
    Mayman DJ, Rudan J, Yach J, Ellis R (2002) The Kingston periacetabular osteotomy utilizing computer enhancement: a new technique. Comput Aided Surg 7:179–186CrossRefPubMedCentralGoogle Scholar
  15. 15.
    Akiyama H, Goto K, So K, Nakamura T (2010) Computed tomography-based navigation for curved periacetabular osteotomy. J Orthop Sci 15:829–833CrossRefPubMedCentralGoogle Scholar
  16. 16.
    Hsieh PH, Chang YH, Shih CH (2006) Image-guided periacetabular osteotomy: computer-assisted navigation compared with the conventional technique: a randomized study of 36 patients followed for 2 years. Acta Orthop 77:591–597CrossRefPubMedCentralGoogle Scholar
  17. 17.
    Armand M, Lepisto J, Tallroth K, Elias J, Chao E (2005) Outcome of periacetabular osteotomy: joint contact pressure calculation using standing AP radiographs, 12 patients followed for average 2 years. Acta Orthop 76:303–313CrossRefPubMedCentralGoogle Scholar
  18. 18.
    Armiger RS, Armand M, Tallroth K, Lepisto J, Mears SC (2009) Three-dimensional mechanical evaluation of joint contact pressure in 12 periacetabular osteotomy patients with 10-year follow-up. Acta Orthop 80:155–161CrossRefPubMedCentralGoogle Scholar
  19. 19.
    Hipp JA, Sugano N, Millis MB, Murphy SB (1999) Planning acetabular redirection osteotomies based on joint contact pressures. Clin Orthop Relat Res 364:134–143CrossRefGoogle Scholar
  20. 20.
    Tsumura H, Kaku N, Ikeda S, Torisu T (2005) A computer simulation of rotational acetabular osteotomy for dysplastic hip joint: does the optimal transposition of the acetabular fragment exist? J Orthop Sci 10:145–151CrossRefPubMedCentralGoogle Scholar
  21. 21.
    Armand M, Armiger R, Waites M, Mears S, Lepisto J, Minhas D, et al (2006) A guidance system for intraoperatively updating surgical-plans during Periacetabular osteotomy: development and cadaver tests. In: CAOS, Montreal, Canada, 2006Google Scholar
  22. 22.
    Armiger RS, Armand M, Lepisto J, Minhas D, Tallroth K, Mears SC et al (2007) Evaluation of a computerized measurement technique for joint alignment before and during periacetabular osteotomy. Comput Aided Surg 12:215–224CrossRefPubMedCentralGoogle Scholar
  23. 23.
    Armand M, Lepistö J, Merkle A, Tallroth K, Liu X, Taylor R et al (2004) Computer-aided Orthopaedic surgery with near real-time biomechanical feedback. APL Tech Dig 25:242–252Google Scholar
  24. 24.
    Lepisto J, Armand M, Armiger R (2008) Periacetabular osteotomy in adult hip dysplasia - developing a computer aided real-time biomechanical guiding system (BGS). Suomen Ortopedia ja Traumatologia 31:186–190PubMedPubMedCentralGoogle Scholar
  25. 25.
    Niknafs N, Murphy RJ, Armiger RS, Lepisto J, Armand M (2013) Biomechanical factors in planning of periacetabular osteotomy. Frontiers in bioengineering and biotechnology, vol 1Google Scholar
  26. 26.
    Chintalapani G, Murphy R, Armiger R, Lepisto J, Otake Y, Sugano N, et al (2010) Statistical Atlas based extrapolation of Ct data. In: SPIE medcial imaging: visualization, image-guided procedures, and modeling, vol 7625Google Scholar
  27. 27.
    Otake Y, Murphy R, Grupp R, Sato Y, Taylor R, Armand M (2015) Comparison of optimization strategy and similarity metric in atlas-to-subject registration using statistical deformation model. In: SPIE medical imaging, Orlando, pp 94150Q-94150Q-6Google Scholar
  28. 29.
    Grupp R, Otake Y, Murphy R, Parvizi J, Armand M, Taylor R (2016) Pelvis surface estimation from partial CT for computer-aided pelvic osteotomies. Bone Joint J 98:55–55CrossRefGoogle Scholar
  29. 30.
    Murphy RJ, Armiger RS, Lepisto J, Mears SC, Taylor RH, Armand M (Apr 2015) Development of a biomechanical guidance system for periacetabular osteotomy. Int J Comput Assist Radiol Surg 10: 497–508CrossRefPubMedCentralGoogle Scholar
  30. 31.
    Murphy R, Otake Y, Lepisto J, Armand M (2013) Computer-assisted x-ray image-based navigation of periacetabular osteotomy with fiducial based 3D acetabular fragment tracking. In: Proceedings of 13th annual meeting of the international society for computer assited orthopaedic surgery, Orlando, pp 59–61Google Scholar
  31. 32.
    Sierra RJ, Trousdale RT, Ganz R, Leunig M (Dec 2008) Hip disease in the young, active patient: evaluation and nonarthroplasty surgical options. J Am Acad Orthop Surg 16:689–703CrossRefPubMedCentralGoogle Scholar
  32. 33.
    Chintalapani G, Ellingsen LM, Sadowsky O, Prince JL, Taylor RH (2007) Statistical atlases of bone anatomy: construction, iterative improvement and validation. Med Image Comput Comput Assist Interv 10:499–506PubMedPubMedCentralGoogle Scholar
  33. 34.
    Yao J, Taylor RH (2003) Non-rigid registration and correspondence finding in medical image analysis using multiple-layer flexible mesh template matching. Int J Pattern Recognit Artif Intell 17(7):1145–1165CrossRefGoogle Scholar
  34. 35.
    Sadowsky O, Cohen JD, Taylor RH (2006 July) Projected tetrahedra revisited: a barycentric formulation applied to digital radiograph reconstruction using higher-order attenuation functions. IEEE Trans Vis Comput Graph 12:461–473CrossRefPubMedCentralGoogle Scholar
  35. 36.
    Grupp R, Chiang H, Otake Y, Murphy R, Gordon C, Armand M, et al (2015) Smooth extrapolation of unknown anatomy via statistical shape models. In SPIE medical imaging, Orlando, pp 941524–941524-10Google Scholar
  36. 37.
    Volokh KY, Chao EY, Armand M (Jun 2007) On foundations of discrete element analysis of contact in diarthrodial joints. Mol Cell Biomech 4:67–73PubMedPubMedCentralGoogle Scholar
  37. 38.
    Heller M, Bergmann G, Deuretzbacher G, Durselen L, Pohl M, Claes L et al (2001) Musculo-skeletal loading conditions at the hip during walking and stair climbing. J Biomech 34:883–893CrossRefPubMedCentralGoogle Scholar
  38. 39.
    Besl PJ, McKay ND (1992) A method for registration of 3-D shapes. In: IEEE Trans Pattern Anal Mach Intell 14:239–256CrossRefGoogle Scholar
  39. 40.
    Moghari MH, Abolmaesumi P (2005) A novel incremental technique for ultrasound to CT bone surface registration using unscented Kalman filtering. Med Image Comput Comput Assist Interv 8:197–204PubMedPubMedCentralGoogle Scholar
  40. 41.
    Troelsen A, Elmengaard B, Soballe K (Mar 2008) A new minimally invasive transsartorial approach for periacetabular osteotomy. J Bone Joint Surg Am 90:493–498CrossRefPubMedCentralGoogle Scholar
  41. 42.
    Otake Y, Armand M, Armiger R, Kutzer M, Basafa E, Kazanzides P et al (2012) Intraoperative image-based multi-view 2D/3D registration for image-guided Orthopaedic surgery: incorporation of fiducial-based C-arm tracking and GPU-acceleration. IEEE Trans Med Imaging 31:948–962CrossRefPubMedCentralGoogle Scholar
  42. 43.
    Kang X, Armand M, Yoshito O, YAU W, Cheung P, Hu Y et al (2014) Robustness and accuracy of feature-based single image 2D-3D registration without correspondences for image-guided intervention. IEEE Trans Biomed Eng 61:149–161CrossRefGoogle Scholar
  43. 44.
    Murphy RJ, Armiger RS, Lepistö J, Armand M (2016) Clinical evaluation of a biomechanical guidance system for periacetabular osteotomy. J Orthop Surg Res 11:36CrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Mehran Armand
    • 1
    • 2
    • 3
    Email author
  • Robert Grupp
    • 4
  • Ryan Murphy
    • 1
  • Rachel Hegman
    • 1
    • 4
  • Robert Armiger
    • 1
  • Russell Taylor
    • 4
  • Benjamin McArthur
    • 5
  • Jyri Lepisto
    • 6
  1. 1.Johns Hopkins University Applied Physics laboratoryLaurelUSA
  2. 2.Department of Mechanical EngineeringJohns Hopkins UniversityBaltimoreUSA
  3. 3.Department of Orthopaedic SurgeryJohns Hopkins UniversityBaltimoreUSA
  4. 4.Department of Computer ScienceJohns Hopkins UniversityBaltimoreUSA
  5. 5.Dell Medical School at the University of TexasAustinUSA
  6. 6.Orton Orthopaedic HospitalHelsinkiFinland

Personalised recommendations