3D Ultrasound for Orthopedic Interventions

  • Ilker HacihalilogluEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1093)


Ultrasound is a real-time, non-radiation-based imaging modality with an ability to acquire two-dimensional (2D) and three-dimensional (3D) data. Due to these capabilities, research has been carried out in order to incorporate it as an intraoperative imaging modality for various orthopedic surgery procedures. However, high levels of noise, different imaging artifacts, and bone surfaces appearing blurred with several mm in thickness have prohibited the widespread use of ultrasound as a standard of care imaging modality in orthopedics. In this chapter, we provided a detailed overview of numerous applications of 3D ultrasound in the domain of orthopedic surgery. Specifically, we discuss the advantages and disadvantages of methods proposed for segmentation and enhancement of bone ultrasound data and the successful application of these methods in clinical domain. Finally, a number of challenges are identified which need to be overcome in order for ultrasound to become a preferred imaging modality in orthopedics.


3D ultrasound Orthopedic interventions Segmentation Enhancement Machine learning Validation 


  1. 1.
    Amin DV, Kanade T, Digioia AM, Jaramaz B (2003) Ultrasound registration of the bone surface for surgical navigation. Comput Aided Surg 8(1): 1–16CrossRefPubMedCentralGoogle Scholar
  2. 2.
    Amiot LP, Lang K, Putzier M, Zippel H, Labelle H (2000) Comparative results between conventional and computer-assisted pedicle screw installation in the thoracic, lumbar, and sacral spine. Spine 25(5):606–614CrossRefPubMedCentralGoogle Scholar
  3. 3.
    Anas EMA, Seitel A, Rasoulian A, John PS, Pichora D, Darras K, Wilson D, Lessoway VA, Hacihaliloglu I, Mousavi P, Rohling R, Abolmaesumi P (2015) Bone enhancement in ultrasound using local spectrum variations for guiding percutaneous scaphoid fracture fixation procedures. Int J Comput Assist Radiol Surg 10(6):959–969CrossRefPubMedCentralGoogle Scholar
  4. 4.
    Anas EMA, Seitel A, Rasoulian A, John PS, Ungi T, Lasso A, Darras K, Wilson D, Lessoway VA, Fichtinger G, Rohling R, Abolmaesumi P (2016) Bone enhancement in ultrasound based on 3D local spectrum variation for percutaneous scaphoid fracture fixation. In: International conference on medical image computing and computer-assisted intervention. Springer, Cham, pp 465–473Google Scholar
  5. 5.
    Azhari H (2010) Basics of biomedical ultrasound for engineers. Wiley, HobokenCrossRefGoogle Scholar
  6. 6.
    Baka N, Leenstra S, van Walsum T (2017) Random forest-based bone segmentation in ultrasound. Ultrasound Med Biol 43(10):2426–2437CrossRefPubMedCentralGoogle Scholar
  7. 7.
    Baka N, Leenstra S, van Walsum T (2017) Ultrasound aided vertebral level localization for lumbar surgery. IEEE Trans Med Imaging 36(10):2138–2147CrossRefPubMedCentralGoogle Scholar
  8. 8.
    Barratt DC, Penney GP, Chan CS, Slomczykowski M, Carter TJ, Edwards PJ, Hawkes DJ (2006) Self-calibrating 3D-ultrasound-based bone registration for minimally invasive orthopedic surgery. IEEE Trans Med Imaging 25(3):312–323CrossRefPubMedCentralGoogle Scholar
  9. 9.
    Bäthis H, Perlick L, Tingart M, Lüring C, Zurakowski D, Grifka J (2004) Alignment in total knee arthroplasty. Bone Joint J 86(5):682–687Google Scholar
  10. 10.
    Beek M, Abolmaesumi P, Luenam S, Ellis RE, Sellens RW, Pichora DR (2008) Validation of a new surgical procedure for percutaneous scaphoid fixation using intra-operative ultrasound. Med Image Anal 12(2):152–162CrossRefPubMedCentralGoogle Scholar
  11. 11.
    Beitzel J, Ahmadi SA, Karamalis A, Wein W, Navab N (2012) Ultrasound bone detection using patient-specific ct prior. In: Proceedings of the 2012 annual international conference on the IEEE engineering in medicine and biology society. IEEE, Piscataway, pp 2664–2667CrossRefGoogle Scholar
  12. 12.
    Berton F, Cheriet F, Miron MC, Laporte C (2016) Segmentation of the spinous process and its acoustic shadow in vertebral ultrasound images. Comput Biol Med 72:201–211CrossRefPubMedCentralGoogle Scholar
  13. 13.
    Boukerroui D, Noble JA, Brady M (2004) On the choice of band-pass quadrature filters. J Math Imaging Vis 21(1–2):53–80CrossRefGoogle Scholar
  14. 14.
    Brendel B, Winter S, Rick A, Stockheim M, Ermert H (2002) Registration of 3D CT and ultrasound datasets of the spine using bone structures. Comput Aided Surg 7(3):146–155CrossRefPubMedCentralGoogle Scholar
  15. 15.
    Brudfors M, Seitel A, Rasoulian A, Lasso A, Lessoway VA, Osborn J, Maki A, Rohling RN, Abolmaesumi P (2015) Towards real-time, tracker-less 3D ultrasound guidance for spine anaesthesia. Int J Comput Assist Radiol Surg 10(6):855–865CrossRefPubMedCentralGoogle Scholar
  16. 16.
    Carrat L, Tonetti J, Merloz P, Troccaza J (2000) Percutaneous computer assisted iliosacral screwing: clinical validation. In: Proceedings of the Medical image computing and computer-assisted intervention–MICCAI 2000. Springer, Berlin/Heidelberg, pp 97–140Google Scholar
  17. 17.
    Chen TK, Abolmaesumi P, Pichora DR, Ellis RE (2005) A system for ultrasound-guided computer-assisted orthopaedic surgery. Comput Aided Surg 10(5–6):281–292CrossRefPubMedCentralGoogle Scholar
  18. 18.
    Daanen V, Tonetti J, Troccaz J (2004) A fully automated method for the delineation of osseous interface in ultrasound images. In: Proceedings of the international conference on medical image computing and computer-assisted intervention. Springer, Berlin/Heidelberg, pp 549–557Google Scholar
  19. 19.
    Ecker TM, Tannast M, Murphy SB (2007) Computed tomography-based surgical navigation for hip arthroplasty. Clin Orthop Relat Res 465:100–105PubMedPubMedCentralGoogle Scholar
  20. 20.
    Felsberg M, Sommer G (2001) The monogenic signal. IEEE Trans Signal Process 49(12):3136–3144CrossRefGoogle Scholar
  21. 21.
    Fenster A, Downey DB, Cardinal HN (2001) Three-dimensional ultrasound imaging. Phys Med Biolo 46(5):R67CrossRefGoogle Scholar
  22. 22.
    Foroughi P, Boctor E, Swartz MJ, Taylor RH, Fichtinger G (2007) P6d-2 ultrasound bone segmentation using dynamic programming. In: Ultrasonics Symposium. IEEE, Piscataway, pp 2523–2526Google Scholar
  23. 23.
    Foroughi P, Song D, Chintalapani G, Taylor RH, Fichtinger G (2008) Localization of pelvic anatomical coordinate system using us/atlas registration for total hip replacement. In: Proceedings of the international conference on medical image computing and computer-assisted intervention. Springer, Berlin, pp 871–879Google Scholar
  24. 24.
    Ganz R, Parvizi J, Beck M, Leunig M, Nötzli H, Siebenrock KA (2003) Femoroacetabular impingement: a cause for osteoarthritis of the hip. Clin Orthop Relat Res 417:112–120Google Scholar
  25. 25.
    Grau V, Becher H, Noble JA (2007) Registration of multiview real-time 3-D echocardiographic sequences. IEEE Trans Med Imaging 26(9):1154–1165CrossRefPubMedCentralGoogle Scholar
  26. 26.
    Hacihaliloglu I (2017) Enhancement of bone shadow region using local phase-based ultrasound transmission maps. Int J Comput Assist Radiol Surg 12(6):951–960CrossRefPubMedCentralGoogle Scholar
  27. 27.
    Hacihaliloglu I (2017) Ultrasound imaging and segmentation of bone surfaces: a review. Technology 50(02):74–80CrossRefGoogle Scholar
  28. 28.
    Hacihaliloglu I (2018) Localization of bone surfaces from ultrasound data using local phase information and signal transmission maps. In: Computational methods and clinical applications in musculoskeletal imaging. Springer, Cham, pp 1–11Google Scholar
  29. 29.
    Hacihaliloglu I, Abugharbieh R, Hodgson AJ, Rohling RN (2009) Bone surface localization in ultrasound using image phase based feature. Ultrasound Med Biol 35(9):1475–1487CrossRefPubMedCentralGoogle Scholar
  30. 30.
    Hacihaliloglu I, Abugharbieh R, Hodgson AJ, Rohling RN (2011) Automatic adaptive parameterization in local phase feature-based bone segmentation in ultrasound. Ultrasound Med Biol 37(10):1689–1703PubMedPubMedCentralGoogle Scholar
  31. 31.
    Hacihaliloglu I, Abugharbieh R, Hodgson AJ, Rohling RN, Guy P (2012) Automatic bone localization and fracture detection from volumetric ultrasound images using 3-D local phase features. Ultrasound Med Biol 38(1):128–144CrossRefPubMedCentralGoogle Scholar
  32. 32.
    Hacihaliloglu I, Guy P, Hodgson AJ, Abugharbieh R (2015) Automatic extraction of bone surfaces from 3D ultrasound images in orthopaedic trauma cases. Int J Comput Assist Radiol Surg 10(8):1279–1287CrossRefPubMedCentralGoogle Scholar
  33. 33.
    Hacihaliloglu I, Rasoulian A, Rohling RN, Abolmaesumi P (2014) Local phase tensor features for 3-D ultrasound to statistical shape+ pose spine model registration. IEEE Trans Med Imaging 33(11):2167–2179CrossRefPubMedCentralGoogle Scholar
  34. 34.
    Herscovici D Jr, Sanders RW (2000) The effects, risks, and guidelines for radiation use in orthopaedic surgery. Clin Orthop Relat Res 375:126–132CrossRefGoogle Scholar
  35. 35.
    Hodge KK, McNeal JE, Terris MK, Stamey TA (1989) Random systematic versus directed ultrasound guided transrectal core biopsies of the prostate. J Urol 142(1):71–74CrossRefPubMedCentralGoogle Scholar
  36. 36.
    Hott JS, Deshmukh VR, Klopfenstein JD, Sonntag VK, Dickman CA, Spetzler RF, Papadopoulos SM (2004) Intraoperative Iso-C C-Arm navigation in craniospinal surgery: the first 60 cases. Neurosurgery 54(5):1131–1137CrossRefPubMedCentralGoogle Scholar
  37. 37.
    Hussain MA, Hodgson AJ, Abugharbieh R (2017) Strain-initialized robust bone surface detection in 3-D ultrasound. Ultrasound Med Biol 43(3):648–661CrossRefPubMedCentralGoogle Scholar
  38. 38.
    Ionescu G, Lavallée S, Demongeot J (1999) Automated registration of ultrasound with CT images: application to computer assisted prostate radiotherapy and orthopedics. In: Proceedings of the international conference on medical image computing and computer-assisted intervention. Springer, Berlin, pp 768–777Google Scholar
  39. 39.
    Jain AK, Taylor RH (2004) Understanding bone responses in B-mode ultrasound images and automatic bone surface extraction using a Bayesian probabilistic framework. In: Medical imaging 2004: ultrasonic imaging and signal processing, vol 5373. International Society for Optics and Photonics, pp 131–143, 28 Apr 2004Google Scholar
  40. 40.
    Jia R, Mellon SJ, Hansjee S, Monk A, Murray D, Noble JA (2016) Automatic bone segmentation in ultrasound images using local phase features and dynamic programming. In: 2016 IEEE 13th international symposium on biomedical imaging (ISBI). IEEE, Piscataway, pp 1005–1008CrossRefGoogle Scholar
  41. 41.
    Joskowicz L, Milgrom C, Simkin A, Tockus L, Yaniv Z (1998) Fracas: a system for computer-aided image-guided long bone fracture surgery. Comput Aided Surg 3(6):271–288CrossRefPubMedCentralGoogle Scholar
  42. 42.
    Karamalis A, Wein W, Klein T, Navab N: Ultrasound confidence maps using random walks. Med Image Anal 16(6):1101–1112 (2012)CrossRefPubMedCentralGoogle Scholar
  43. 43.
    Koivukangas T, Katisko JP, Koivukangas JP (2013) Technical accuracy of optical and the electromagnetic tracking systems. SpringerPlus 2(1):90CrossRefPubMedCentralGoogle Scholar
  44. 44.
    Kowal J, Amstutz C, Langlotz F, Talib H, Ballester MG (2007) Automated bone contour detection in ultrasound b-mode images for minimally invasive registration in computer-assisted surgery an in vitro evaluation. Int J Med Rob Comput Assist Surg 3(4):341–348CrossRefGoogle Scholar
  45. 45.
    Learmonth ID, Young C, Rorabeck C (2007) The operation of the century: total hip replacement. Lancet 370(9597):1508–1519CrossRefPubMedCentralGoogle Scholar
  46. 46.
    Linsenmaier U, Rock C, Euler E, Wirth S, Brandl R, Kotsianos D, Mutschler W, Pfeifer KJ (2002) Three-dimensional CT with a modified c-arm image intensifier: feasibility 1. Radiology 224(1):286–292CrossRefPubMedCentralGoogle Scholar
  47. 47.
    Macé E, Montaldo G, Cohen I, Baulac M, Fink M, Tanter M (2011) Functional ultrasound imaging of the brain. Nat Methods 8(8):662CrossRefPubMedCentralGoogle Scholar
  48. 48.
    Masson-Sibut A, Nakib A, Petit E, Leitner F (2011) Computer-assisted intramedullary nailing using real-time bone detection in 2D ultrasound images. In: International workshop on machine learning in medical imaging. Springer, Berlin/Heidelberg, pp 18–25, 18 Sept 2011CrossRefGoogle Scholar
  49. 49.
    Mercier L, Langø T, Lindseth F, Collins LD (2005) A review of calibration techniques for freehand 3-D ultrasound systems. Ultrasound Med Biol 31(2):143–165CrossRefPubMedCentralGoogle Scholar
  50. 50.
    Moiyadi AV, Unsgård G (2016) Navigable ultrasound, 3D ultrasound and fusion imaging in neurosurgery. In: Intraoperative ultrasound (IOUS) in neurosurgery. Springer, Cham, pp 135–145 (2016)CrossRefGoogle Scholar
  51. 51.
    Mulet-Parada M, Noble JA (2000) 2d+ t acoustic boundary detection in echocardiography. Med Image Anal 4(1):21–30CrossRefPubMedCentralGoogle Scholar
  52. 52.
    Noble JA, Boukerroui D (2006) Ultrasound image segmentation: a survey. IEEE Trans Med Imaging 25(8):987–1010CrossRefPubMedCentralGoogle Scholar
  53. 53.
    Nyland TG, Mattoon JS, Herrgesell EJ, Wisner ER (2002) Ultrasound-guided biopsy. Small Anim diagn Ultrasound 2:30–48CrossRefGoogle Scholar
  54. 54.
    Ozdemir F, Ozkan E, Goksel O (2016) Graphical modeling of ultrasound propagation in tissue for automatic bone segmentation. In: Proceedings of the international conference on medical image computing and computer-assisted intervention. Springer, Cham, pp 256–264Google Scholar
  55. 55.
    Parmar BJ, Yang X, Chaudhry A, Shajudeen PS, Nair SP, Weiner BK, Tasciotti E, Krouskop TA, Righetti R (2015) Ultrasound elastography assessment of bone/soft tissue interface. Phys Med Biol 61(1):131CrossRefPubMedCentralGoogle Scholar
  56. 56.
    Penney GP, Barratt DC, Chan CS, Slomczykowski M, Carter TJ, Edwards PJ, Hawkes DJ (2006) Cadaver validation of intensity-based ultrasound to ct registration. Med Image Anal 10(3): 385–395CrossRefPubMedCentralGoogle Scholar
  57. 57.
    Peters T, Cleary K (2008) Image-guided interventions: technology and applications. Springer, New YorkCrossRefGoogle Scholar
  58. 58.
    Quader N, Hodgson A, Abugharbieh R (2014) Confidence weighted local phase features for robust bone surface segmentation in ultrasound. In: Proceedings of the workshop on clinical image-based procedures. Springer, Cham, pp 76–83Google Scholar
  59. 59.
    Rasoulian A, Abolmaesumi P, Mousavi P (2012) Feature-based multibody rigid registration of CT and ultrasound images of lumbar spine. Med Phys 39(6):3154–3166CrossRefPubMedCentralGoogle Scholar
  60. 60.
    Rasoulian A, Seitel A, Osborn J, Sojoudi S, Nouranian S, Lessoway, VA, Rohling RN, Abolmaesumi P (2015) Ultrasound-guided spinal injections: a feasibility study of a guidance system. Int J Comput Assist Radiol Surg 10(9):1417–1425CrossRefPubMedCentralGoogle Scholar
  61. 61.
    Riley GM, McWalter EJ, Stevens KJ, Safran MR, Lattanzi R, Gold GE (2015) MRI of the hip for the evaluation of femoroacetabular impingement; past, present, and future. J Magn Reson Imaging 41(3):558–572CrossRefPubMedCentralGoogle Scholar
  62. 62.
    Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: Proceedings of the international conference on medical image computing and computer-assisted intervention. Springer, Cham, pp 234–241Google Scholar
  63. 63.
    Rose JL, Goldberg BB (1979) Basic physics in diagnostic ultrasound. Wiley, New YorkGoogle Scholar
  64. 64.
    Salehi M, Prevost R, Moctezuma JL, Navab N, Wein W (2017) Precise ultrasound bone registration with learning-based segmentation and speed of sound calibration. In: Proceedings of the international conference on medical image computing and computer-assisted intervention. Springer, Cham, pp 682–690Google Scholar
  65. 65.
    Sanders R, Fortin P, DiPasquale T, Walling A (1993) Operative treatment in 120 displaced intraarticular calcaneal fractures results using a prognostic computed tomography scan classification. Clin Orthop Relat Res 290:87–95Google Scholar
  66. 66.
    Schep NWL, Broeders I, van der Werken C (2003) Computer assisted orthopaedic and trauma surgery: state of the art and future perspectives. Injury 34(4):299–306CrossRefPubMedCentralGoogle Scholar
  67. 67.
    Schumann S (2016) State of the art of ultrasound-based registration in computer assisted orthopedic interventions. In: Proceedings of the computational radiology for orthopaedic interventions. Springer, Cham, pp 271–297CrossRefGoogle Scholar
  68. 68.
    Slomczykowski MA, Hofstetter R, Sati M, Krettek C, Nolte LP (2001) Novel computer-assisted fluoroscopy system for intraoperative guidance: feasibility study for distal locking of femoral nails. J Orthop Trauma 15(2):122–131CrossRefPubMedCentralGoogle Scholar
  69. 69.
    Solberg OV, Lindseth F, Torp H, Blake RE, Hernes TAN (2007) Freehand 3D ultrasound reconstruction algorithms a review. Ultrasound Med Biol 33(7):991–1009CrossRefPubMedCentralGoogle Scholar
  70. 70.
    Stulberg SD, Loan P, Sarin V (2002) Computer-assisted navigation in total knee replacement: results of an initial experience in thirty-five patients. JBJS 84(suppl_2):S90–S98CrossRefPubMedCentralGoogle Scholar
  71. 71.
    Suetens P (2017) Fundamentals of medical imaging. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  72. 72.
    Suri JS (2008) Advances in diagnostic and therapeutic ultrasound imaging. Artech House, Boston/LondonGoogle Scholar
  73. 73.
    Talib H, Peterhans M, Garcia J, Styner M, Ballester MAG (2011) Information filtering for ultrasound-based real-time registration. IEEE Trans Biomed Eng 58(3):531–540CrossRefPubMedCentralGoogle Scholar
  74. 74.
    Tonetti J, Carrat L, Blendea S, Merloz P, Troccaz J, Lavallée S, Chirossel JP (2001) Clinical results of percutaneous pelvic surgery. Computer assisted surgery using ultrasound compared to standard fluoroscopy. Comput Aided Surg 6(4): 204–211CrossRefPubMedCentralGoogle Scholar
  75. 75.
    Turnbull DH, Foster FS (1992) Fabrication and characterization of transducer elements in two-dimensional arrays for medical ultrasound imaging. IEEE Trans Ultrason Ferroelectr Freq Control 39(4):464–475CrossRefPubMedCentralGoogle Scholar
  76. 76.
    Tyryshkin K, Mousavi P, Beek M, Ellis R, Pichora D, Abolmaesumi P (2007) A navigation system for shoulder arthroscopic surgery. Proc Inst Mech Eng Part H J Eng Med 221(7):801–812CrossRefGoogle Scholar
  77. 77.
    Unsgaard G, Rygh O, Selbekk T, Müller T, Kolstad F, Lindseth F, Hernes TN (2006) Intra-operative 3d ultrasound in neurosurgery. Acta Neurochir 148(3):235–253CrossRefPubMedCentralGoogle Scholar
  78. 78.
    Wagner N, Eldar YC, Friedman Z (2012) Compressed beamforming in ultrasound imaging. IEEE Trans Signal Process 60(9):4643–4657CrossRefGoogle Scholar
  79. 79.
    Wein W, Karamalis A, Baumgartner A, Navab N (2015) Automatic bone detection and soft tissue aware ultrasound–ct registration for computer-aided orthopedic surgery. Int J Comput Assist Radiol Surg 10(6):971–979CrossRefPubMedCentralGoogle Scholar
  80. 80.
    Wen X, Salcudean S (2007) Enhancement of bone surface visualization using ultrasound radio-frequency signals. In: IEEE Ultra. Symp, vol 1051, pp 2535–2538Google Scholar
  81. 81.
    Wendl K, Von Recum J, Wentzensen A, Grützner P (2003) Iso-C (3D0-assisted) navigated implantation of pedicle screws in thoracic lumbar vertebrae. Unfallchirurg 106(11):907–913CrossRefPubMedCentralGoogle Scholar
  82. 82.
    Yaniv Z, Cleary K (2006) Image-guided procedures: A review. Comput Aided Interv Med Robot 3: 1–63Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringRutgers UniversityPiscatawayUSA
  2. 2.Department of RadiologyRutgers Robert Wood Johnson Medical SchoolNew BrunswickUSA

Personalised recommendations