Advertisement

Aluminum-Induced Neural Cell Death

  • Qinli Zhang
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1091)

Abstract

Aluminum (Al), an abundant element in the earth’s crust, is well-known for its neurotoxicity. Nonetheless, its causal role in neurodegenerative diseases, particularly in Alzheimer’s disease (AD), is still in debate. Ample studies have shown that neural cell death and cognitive deficits induced by Al are similar to those in AD. In the present chapter, we demonstrate separately the Al-induced cell death in neuron, neuroglia cells, and co-cultured neural cells from newborn rats to illustrate the neurotoxic effects. Moreover, we not only examine the classic cell death pathways of apoptosis and necrosis but also compare with autophagy and a newly discovered cell death pathway known as necroptosis, which demonstrates its crucial roles in Al-induced neural cell death. Finally, we verify the cell death pathways attributed to the neural cell death in Al-induced AD-like mice model. The series research could provide an underlined mechanism and potential therapeutic agents to Al-induced neurodegenerative diseases.

Keywords

Aluminum Neural cells Cell death Apoptosis Autophagy Necroptosis 

Notes

Acknowledgments

This research was supported by a grant from the National Natural Scientific Foundation of China (30371203, 30671777, 30740032, 81673142) and Shanxi Provincial Natural Science Foundation (2009011054-1).

References

  1. 1.
    Caito S, Aschner M (2015) Neurotoxicity of metals. Handb Clin Neurol 131:169–189.  https://doi.org/10.1016/B978-0-444-62627-1.00011-1 CrossRefPubMedGoogle Scholar
  2. 2.
    Fulgenzi A, Vietti D, Ferrero ME (2014) Aluminium involvement in neurotoxicity. Biomed Res Int 2014:758323.  https://doi.org/10.1155/2014/758323 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Kandimalla R, Vallamkondu J, Corgiat EB, Gill KD (2016) Understanding aspects of aluminum exposure in Alzheimer’s disease development. Brain Pathol 26(2):139–154.  https://doi.org/10.1111/bpa.12333 CrossRefPubMedGoogle Scholar
  4. 4.
    Solfrizzi V, Colacicco AM, D’Introno A, Capurso C, Parigi AD, Capurso SA et al (2006) Macronutrients, aluminium from drinking water and foods, and other metals in cognitive decline and dementia. J Alzheimers Dis 10(2–3):303–330CrossRefGoogle Scholar
  5. 5.
    Santibanez M, Bolumar F, Garcia AM (2007) Occupational risk factors in Alzheimer’s disease: a review assessing the quality of published epidemiological studies. Occup Environ Med 64(11):723–732.  https://doi.org/10.1136/oem.2006.028209 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Yasui M, Kihira T, Ota K (1992) Calcium, magnesium and aluminum concentrations in Parkinson’s disease. Neurotoxicology 13(3):593–600PubMedGoogle Scholar
  7. 7.
    Forbes WF, Gentleman JF, Maxwell CJ (1995) Concerning the role of aluminum in causing dementia. Exp Gerontol 30(1):23–32CrossRefGoogle Scholar
  8. 8.
    Saxena S, Caroni P (2011) Selective neuronal vulnerability in neurodegenerative diseases: from stressor thresholds to degeneration. Neuron 71(1):35–48.  https://doi.org/10.1016/j.neuron.2011.06.031 CrossRefPubMedGoogle Scholar
  9. 9.
    Rodella L, Rezzani R, Lanzi R, Bianchi R (2001) Chronic exposure to aluminium decreases NADPH-diaphorase positive neurons in the rat cerebral cortex. Brain Res 889(1–2):229–233CrossRefGoogle Scholar
  10. 10.
    Fu HJ, Hu QS, Lin ZN, Ren TL, Song H, Cai CK et al (2003) Aluminum-induced apoptosis in cultured cortical neurons and its effect on SAPK/JNK signal transduction pathway. Brain Res 980(1):11–23CrossRefGoogle Scholar
  11. 11.
    Suarez-Fernandez MB, Soldado AB, Sanz-Medel A, Vega JA, Novelli A, Fernandez-Sanchez MT (1999) Aluminum-induced degeneration of astrocytes occurs via apoptosis and results in neuronal death. Brain Res 835(2):125–136CrossRefGoogle Scholar
  12. 12.
    Brenner S (2002) Aluminum neurotoxicity is reduced by dantrolene and dimethyl sulfoxide in cultured rat hippocampal neurons. Biol Trace Elem Res 86(1):85–89.  https://doi.org/10.1385/BTER:86:1:85 CrossRefPubMedGoogle Scholar
  13. 13.
    Ghribi O, DeWitt DA, Forbes MS, Herman MM, Savory J (2001) Co-involvement of mitochondria and endoplasmic reticulum in regulation of apoptosis: changes in cytochrome c, Bcl-2 and Bax in the hippocampus of aluminum-treated rabbits. Brain Res 903(1–2):66–73CrossRefGoogle Scholar
  14. 14.
    Guo GW, Liang YX (2001) Aluminum-induced apoptosis in cultured astrocytes and its effect on calcium homeostasis. Brain Res 888(2):221–226CrossRefGoogle Scholar
  15. 15.
    Aremu DA, Meshitsuka S (2005) Accumulation of aluminum by primary cultured astrocytes from aluminum amino acid complex and its apoptotic effect. Brain Res 1031(2):284–296.  https://doi.org/10.1016/j.brainres.2004.06.090 CrossRefPubMedGoogle Scholar
  16. 16.
    Lankoff A, Banasik A, Duma A, Ochniak E, Lisowska H, Kuszewski T et al (2006) A comet assay study reveals that aluminium induces DNA damage and inhibits the repair of radiation-induced lesions in human peripheral blood lymphocytes. Toxicol Lett 161(1):27–36.  https://doi.org/10.1016/j.toxlet.2005.07.012 CrossRefPubMedGoogle Scholar
  17. 17.
    Zhang QL, Boscolo P, Niu PY, Wang F, Shi YT, Zhang L, Wang LP, Wang J, Di Gioacchino M, Conti P, Li QY, Niu Q (2008) How do rat cortical cells cultured with aluminum die: necrosis or apoptosis? Int J Immunopathol Pharmacol 21(1):107–115CrossRefGoogle Scholar
  18. 18.
    Prakash A, Dhaliwal GK, Kumar P, Majeed AB (2017) Brain biometals and Alzheimer’s disease – boon or bane? Int J Neurosci 127(2):99–108.  https://doi.org/10.3109/00207454.2016.1174118 CrossRefPubMedGoogle Scholar
  19. 19.
    Wang Z, Wei X, Yang J, Suo J, Chen J, Liu X et al (2016) Chronic exposure to aluminum and risk of Alzheimer’s disease: a meta-analysis. Neurosci Lett 610:200–206.  https://doi.org/10.1016/j.neulet.2015.11.014 CrossRefPubMedGoogle Scholar
  20. 20.
    Savory J, Herman MM, Ghribi O (2003) Intracellular mechanisms underlying aluminum-induced apoptosis in rabbit brain. J Inorg Biochem 97(1):151–154CrossRefGoogle Scholar
  21. 21.
    Gupta VB, Anitha S, Hegde ML, Zecca L, Garruto RM, Ravid R et al (2005) Aluminium in Alzheimer’s disease: are we still at a crossroad? Cell Mol Life Sci 62(2):143–158.  https://doi.org/10.1007/s00018-004-4317-3 CrossRefPubMedGoogle Scholar
  22. 22.
    Turgut S, Bor-Kucukatay M, Emmungil G, Atsak P, Turgut G (2007) The effects of low dose aluminum on hemorheological and hematological parameters in rats. Arch Toxicol 81(1):11–17.  https://doi.org/10.1007/s00204-006-0119-8 CrossRefPubMedGoogle Scholar
  23. 23.
    Martinez CS, Alterman CD, Pecanha FM, Vassallo DV, Mello-Carpes PB, Miguel M et al (2017) Aluminum exposure at human dietary levels for 60 days reaches a threshold sufficient to promote memory impairment in rats. Neurotox Res 31(1):20–30.  https://doi.org/10.1007/s12640-016-9656-y CrossRefPubMedGoogle Scholar
  24. 24.
    Kawahara M (2005) Effects of aluminum on the nervous system and its possible link with neurodegenerative diseases. J Alzheimers Dis 8(2):171–182; discussion 209–15CrossRefGoogle Scholar
  25. 25.
    Tuneva J, Chittur S, Boldyrev AA, Birman I, Carpenter DO (2006) Cerebellar granule cell death induced by aluminum. Neurotox Res 9(4):297–304CrossRefGoogle Scholar
  26. 26.
    Okouchi M, Ekshyyan O, Maracine M, Aw TY (2007) Neuronal apoptosis in neurodegeneration. Antioxid Redox Signal 9(8):1059–1096.  https://doi.org/10.1089/ars.2007.1511. CrossRefPubMedGoogle Scholar
  27. 27.
    Savory J, Herman MM, Ghribi O (2006) Mechanisms of aluminum-induced neurodegeneration in animals: implications for Alzheimer’s disease. J Alzheimers Dis 10(2–3):135–144CrossRefGoogle Scholar
  28. 28.
    Zilkova M, Koson P, Zilka N (2006) The hunt for dying neurons: insight into the neuronal loss in Alzheimer’s disease. Bratisl Lek Listy 107(9–10):366–373PubMedGoogle Scholar
  29. 29.
    Golstein P, Kroemer G (2007) Cell death by necrosis: towards a molecular definition. Trends Biochem Sci 32(1):37–43.  https://doi.org/10.1016/j.tibs.2006.11.001 CrossRefGoogle Scholar
  30. 30.
    Degterev A, Huang Z, Boyce M, Li Y, Jagtap P, Mizushima N et al (2005) Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 1(2):112–119.  https://doi.org/10.1038/nchembio711 CrossRefPubMedGoogle Scholar
  31. 31.
    Jagtap PG, Degterev A, Choi S, Keys H, Yuan J, Cuny GD (2007) Structure-activity relationship study of tricyclic necroptosis inhibitors. J Med Chem 50(8):1886–1895.  https://doi.org/10.1021/jm061016o CrossRefPubMedGoogle Scholar
  32. 32.
    Zhang QL, Niu Q, Ji XL, Conti P, Boscolo P (2008) Is necroptosis a death pathway in aluminum-induced neuroblastoma cell demise? Int J Immunopathol Pharmacol 21(4):787–796.  https://doi.org/10.1177/039463200802100403. CrossRefPubMedGoogle Scholar
  33. 33.
    Xu X, Chua CC, Kong J, Kostrzewa RM, Kumaraguru U, Hamdy RC et al (2007) Necrostatin-1 protects against glutamate-induced glutathione depletion and caspase-independent cell death in HT-22 cells. J Neurochem 103(5):2004–2014.  https://doi.org/10.1111/j.1471-4159.2007.04884.x CrossRefPubMedGoogle Scholar
  34. 34.
    Smith CC, Davidson SM, Lim SY, Simpkin JC, Hothersall JS, Yellon DM (2007) Necrostatin: a potentially novel cardioprotective agent? Cardiovasc Drugs Ther 21(4):227–233.  https://doi.org/10.1007/s10557-007-6035-1 CrossRefGoogle Scholar
  35. 35.
    Hu X, Xuan Y (2008) Bypassing cancer drug resistance by activating multiple death pathways – a proposal from the study of circumventing cancer drug resistance by induction of necroptosis. Cancer Lett 259(2):127–137.  https://doi.org/10.1016/j.canlet.2007.11.007 CrossRefPubMedGoogle Scholar
  36. 36.
    Han W, Li L, Qiu S, Lu Q, Pan Q, Gu Y et al (2007) Shikonin circumvents cancer drug resistance by induction of a necroptotic death. Mol Cancer Ther 6(5):1641–1649.  https://doi.org/10.1158/1535-7163.MCT-06-0511 CrossRefPubMedGoogle Scholar
  37. 37.
    Han W, Xie J, Li L, Liu Z, Hu X (2009) Necrostatin-1 reverts shikonin-induced necroptosis to apoptosis. Apoptosis 14(5):674–686.  https://doi.org/10.1007/s10495-009-0334-x. CrossRefPubMedGoogle Scholar
  38. 38.
    Rosenbaum DM, Degterev A, David J, Rosenbaum PS, Roth S, Grotta JC et al (2010) Necroptosis, a novel form of caspase-independent cell death, contributes to neuronal damage in a retinal ischemia-reperfusion injury model. J Neurosci Res 88(7):1569–1576.  https://doi.org/10.1002/jnr.22314. CrossRefPubMedGoogle Scholar
  39. 39.
    Xu X, Chua CC, Zhang M, Geng D, Liu CF, Hamdy RC et al (2010) The role of PARP activation in glutamate-induced necroptosis in HT-22 cells. Brain Res 1343:206–212.  https://doi.org/10.1016/j.brainres.2010.04.080 CrossRefPubMedGoogle Scholar
  40. 40.
    Crapper DR, Krishnan SS, Dalton AJ (1973) Brain aluminum distribution in Alzheimer’s disease and experimental neurofibrillary degeneration. Science 180(4085):511–513CrossRefGoogle Scholar
  41. 41.
    House E, Esiri M, Forster G, Ince PG, Exley C (2012) Aluminium, iron and copper in human brain tissues donated to the Medical Research Council’s cognitive function and ageing study. Metallomics 4(1):56–65.  https://doi.org/10.1039/c1mt00139f CrossRefPubMedGoogle Scholar
  42. 42.
    Kawahara M, Kato-Negishi M (2011) Link between aluminum and the pathogenesis of Alzheimer’s disease: the integration of the aluminum and amyloid Cascade hypotheses. Int J Alzheimers Dis 2011:276393.  https://doi.org/10.4061/2011/276393 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Bharathi, Shamasundar NM, Sathyanarayana Rao TS, Dhanunjaya Naidu M, Ravid R, Rao KS (2006) A new insight on Al-maltolate-treated aged rabbit as Alzheimer’s animal model. Brain Res Rev 52(2):275–292.  https://doi.org/10.1016/j.brainresrev.2006.04.003. CrossRefPubMedGoogle Scholar
  44. 44.
    Obulesu M, Rao DM (2010) Animal models of Alzheimer’s disease: an understanding of pathology and therapeutic avenues. Int J Neurosci 120(8):531–537.  https://doi.org/10.3109/00207451003760080 CrossRefPubMedGoogle Scholar
  45. 45.
    Walton JR (2007) An aluminum-based rat model for Alzheimer’s disease exhibits oxidative damage, inhibition of PP2A activity, hyperphosphorylated tau, and granulovacuolar degeneration. J Inorg Biochem 101(9):1275–1284.  https://doi.org/10.1016/j.jinorgbio.2007.06.001 CrossRefPubMedGoogle Scholar
  46. 46.
    Miu AC, Aluminum BO (2006) Alzheimer’s disease: a new look. J Alzheimers Dis 10(2–3):179–201CrossRefGoogle Scholar
  47. 47.
    Qinli Z, Meiqing L, Xia J, Li X, Weili G, Xiuliang J, Junwei J, Hailan Y, Ce Z, Qiao N (2013) Necrostatin-1 inhibits the degeneration of neural cells induced by aluminum exposure. Restor Neurol Neurosci 31(5):543–555Google Scholar
  48. 48.
    Mehta SL, Manhas N, Raghubir R (2007) Molecular targets in cerebral ischemia for developing novel therapeutics. Brain Res Rev 54(1):34–66.  https://doi.org/10.1016/j.brainresrev.2006.11.003 CrossRefPubMedGoogle Scholar
  49. 49.
    Christofferson DE, Yuan J (2010) Necroptosis as an alternative form of programmed cell death. Curr Opin Cell Biol 22(2):263–268.  https://doi.org/10.1016/j.ceb.2009.12.003 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Motani K, Kushiyama H, Imamura R, Kinoshita T, Nishiuchi T, Suda T (2011) Caspase-1 protein induces apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC)-mediated necrosis independently of its catalytic activity. J Biol Chem 286(39):33963–33972.  https://doi.org/10.1074/jbc.M111.286823 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Smith CC, Yellon DM (2011) Necroptosis, necrostatins and tissue injury. J Cell Mol Med 15(9):1797–1806.  https://doi.org/10.1111/j.1582-4934.2011.01341.x CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Bruno V, Battaglia G, Copani A, D’Onofrio M, Di Iorio P, De Blasi A et al (2001) Metabotropic glutamate receptor subtypes as targets for neuroprotective drugs. J Cereb Blood Flow Metab 21(9):1013–1033.  https://doi.org/10.1097/00004647-200109000-00001 CrossRefPubMedGoogle Scholar
  53. 53.
    Caraci F, Molinaro G, Battaglia G, Giuffrida ML, Riozzi B, Traficante A et al (2011) Targeting group II metabotropic glutamate (mGlu) receptors for the treatment of psychosis associated with Alzheimer’s disease: selective activation of mGlu2 receptors amplifies beta-amyloid toxicity in cultured neurons, whereas dual activation of mGlu2 and mGlu3 receptors is neuroprotective. Mol Pharmacol 79(3):618–626.  https://doi.org/10.1124/mol.110.067488 CrossRefPubMedGoogle Scholar
  54. 54.
    Buee L, Bussiere T, Buee-Scherrer V, Delacourte A, Hof PR (2000) Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res Brain Res Rev 33(1):95–130CrossRefGoogle Scholar
  55. 55.
    Ballatore C, Lee VM, Trojanowski JQ (2007) Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nat Rev Neurosci 8(9):663–672.  https://doi.org/10.1038/nrn2194 CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Qinli Zhang
    • 1
    • 2
  1. 1.Shanxi Medical UniversityTaiyuanChina
  2. 2.University of Mississippi Medical CenterJacksonUSA

Personalised recommendations