Advertisement

Animal Model of Aluminum-Induced Alzheimer’s Disease

  • Jing Song
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1091)

Abstract

Lack of a satisfactory animal model for Alzheimer’s disease (AD) has limited the reach progress of the pathogenesis of the disease and of therapeutic agents aiming to important pathophysiological points. In this chapter, we analyzed the research status of animal model of aluminum-induced Alzheimer’s disease. Compared with other animal models, Al-maltolate-treated aged rabbits is a more reliable and efficient system in sharing a common mechanism with the development of neurodegeneration in Alzheimer’s disease.

Keywords

Aluminum Alzheimer’s disease Animal model Rabbits 

References

  1. 1.
    Xie J, Wang H, Lin T (2017) Microglia-synapse pathways: promising therapeutic strategy for Alzheimer’s disease. Biomed Res Int 2017:2986460PubMedPubMedCentralGoogle Scholar
  2. 2.
    Obulesu M, Rao DM (2010) Animal models of Alzheimer’s disease: an understanding of pathology and therapeutic avenues. Int J Neurosci 120(8):531–537CrossRefGoogle Scholar
  3. 3.
    McLaughlin AI, Kazantzis G, King E, Teared PRJ, Owen R (1962) Pulmonary fibrosis and encephalopathy associated with the inhalation of aluminium dust. Br J Ind Med 19:253–263PubMedPubMedCentralGoogle Scholar
  4. 4.
    Klatzo I, Wisniewski H, Streicher E (1965) Experimental production of neurofibrillary degeneration. I. Light microscopic observations. J Neuropathol Exp Neurol 24(2):187–199CrossRefGoogle Scholar
  5. 5.
    Crapper DR, Krishnan SS, Dalton AJ (1973) Brain aluminum distribution in Alzheimer’s disease and experimental neurofibrillary degeneration. Science (New York, NY) 180(4085):511–513CrossRefGoogle Scholar
  6. 6.
    Priest ND (2004) The biological behaviour and bioavailability of aluminium in man, with special reference to studies employing aluminium-26 as a tracer: review and study update. J Environ Monit 6(5):375–403CrossRefGoogle Scholar
  7. 7.
    Yumoto S, Nagai H, Matsuzaki H, Matsumura H, Tada W, Nagatsuma E et al (2001) Aluminium incorporation into the brain of rat fetuses and sucklings. Brain Res Bull 55(2):229–234CrossRefGoogle Scholar
  8. 8.
    Wills MR, Savory J (1983) Aluminium poisoning: dialysis encephalopathy, osteomalacia, and anaemia. Lancet (London, England) 2(8340):29–34CrossRefGoogle Scholar
  9. 9.
    Uemura E (1984) Intranuclear aluminum accumulation in chronic animals with experimental neurofibrillary changes. Exp Neurol 85(1):10–18CrossRefGoogle Scholar
  10. 10.
    Wisniewski HM, Sturman JA, Shek JW, Iqbal K (1985) Aluminum and the central nervous system. J Environ Pathol Toxicol Oncol: Off Organ Int Soc Environ Toxicol Cancer 6(1):1–8Google Scholar
  11. 11.
    Savory J, Herman MM, Ghribi O (2003) Intracellular mechanisms underlying aluminum-induced apoptosis in rabbit brain. J Inorg Biochem 97(1):151–154CrossRefGoogle Scholar
  12. 12.
    Jagannatha R, Anitha S, Latha S (2000) Aluminium-induced neurodegeneration in the hippocampus of aged rabbits mimics Alzheimer’s disease, 83–8 pGoogle Scholar
  13. 13.
    Finnegan MM, Rettig SJ, Orvig C (1986) ChemInform abstract: a neutral water-soluble aluminum complex of neurological interest. J Am Chem Soc 17:50Google Scholar
  14. 14.
    Vasudevaraju P, Govindaraju M, Palanisamy AP, Sambamurti K, Rao KS (2008) Molecular toxicity of aluminium in relation to neurodegeneration. Indian J Med Res 128(4):545–556PubMedGoogle Scholar
  15. 15.
    Garruto RM, Yanagihara R, Shankar SK, Wolff A, Salazar AM, Amyx HL (2009) Experimental models of metal-induced neurofibrillary degeneration. Amyotroph Lateral Scler:41–50Google Scholar
  16. 16.
    Kaneko N, Yasui H, Takada J, Suzuki K, Sakurai H (2004) Orally administrated aluminum-maltolate complex enhances oxidative stress in the organs of mice. J Inorg Biochem 98(12):2022–2031CrossRefGoogle Scholar
  17. 17.
    Maccioni RB, Cambiazo V (1995) Role of microtubule-associated proteins in the control of microtubule assembly. Physiol Rev 75(4):835–864CrossRefGoogle Scholar
  18. 18.
    Geula C, Wu CK, Saroff D, Lorenzo A, Yuan M, Yankner BA (1998) Aging renders the brain vulnerable to 26 β-protein neurotoxicity. Nat Med 4(7):827–831CrossRefGoogle Scholar
  19. 19.
    Rao KSJ, Anitha S, Latha KS (2000) Aluminium-induced neurodegeneration in the hippocampus of aged rabbits mimics Alzheimer’s disease. Alzheimer’s Rep 3(2):83–88Google Scholar
  20. 20.
    Nicholls DM, Speares GM, Miller ACM, Math J, Bianco GD (1991) Brain protein synthesis in rabbits following low level aluminium exposure. Int J Biochem 23(7–8):737–741CrossRefGoogle Scholar
  21. 21.
    Song J, Liu Y, Zhang HF, Zhang QL, Niu Q (2014) Effects of exposure to aluminum on long-term potentiation and AMPA receptor subunits in rats in vivo. Biom Environ Sci 27(2):77–84Google Scholar
  22. 22.
    Song J, Liu Y, Zhang HF, Niu Q (2016) The RAS/PI3K pathway is involved in the impairment of long-term potentiation induced by acute aluminum treatment in rats. Biomed Environ Sci 29(11):782–789PubMedGoogle Scholar
  23. 23.
    Savory J, Rao JKS, Huang Y, Letada PR, Herman MM (1999) Age-related hippocampal changes in Bcl-2:Bax ratio, oxidative stress, redox-active iron and apoptosis associated with aluminum-induced neurodegeneration: increased susceptibility with aging. Neurotoxicology 20(5):805–818PubMedGoogle Scholar
  24. 24.
    Markesbery WR (1997) Oxidative stress hypothesis in Alzheimer’s disease. Free Radic Biol Med 23(1):134–147CrossRefGoogle Scholar
  25. 25.
    Lovell MA, Ehmann WD, Markesbery WR (1993) Laser microprobe analysis of brain aluminum in Alzheimer’ disease. Ann Neurol 33(1):36–42CrossRefGoogle Scholar
  26. 26.
    Katsetos CD, Savory J, Herman MM, Carpenter RM, Frankfurter A, Hewitt CD et al (1990) Neuronal cytoskeletal lesions induced in the CNS by intraventricular and intravenous aluminium maltol in rabbits. Neuropathol Appl Neurobiol 16(6):511–528CrossRefGoogle Scholar
  27. 27.
    Savory J, Huang Y, Herman MM, Reyes MR, Wills MR (1995) Tau immunoreactivity associated with aluminum maltolate-induced neurofibrillary degeneration in rabbits. Brain Res 669(2):325–329CrossRefGoogle Scholar
  28. 28.
    Savory J, Huang Y, Herman MM, Wills MR (1996) Quantitative image analysis of temporal changes in tau and neurofilament proteins during the course of acute experimental neurofibrillary degeneration; non-phosphorylated epitopes precede phosphorylation. Brain Res 707(2):272–281CrossRefGoogle Scholar
  29. 29.
    Savory J, Ghribi O, Forbes MS, Herman MM (2001) Aluminium and neuronal cell injury: inter-relationships between neurofilamentous arrays and apoptosis. J Inorg Biochem 87(1):15–19CrossRefGoogle Scholar
  30. 30.
    Savory J, Herman MM, Erasmus RT, Boyd JC, Wills MR (1994) Partial reversal of aluminium-induced neurofibrillary degeneration by desferrioxamine in adult male rabbits. Neuropathol Appl Neurobiol 20(1):31–37CrossRefGoogle Scholar
  31. 31.
    Garruto RM, Fukatsu R, Yanagihara R, Gajdusek DC, Hook G, Fiori CE (1984) Imaging of calcium and aluminum in neurofibrillary tangle-bearing neurons in parkinsonism-dementia of Guam. Proc Natl Acad Sci U S A 81(6 I):1875–1879CrossRefGoogle Scholar
  32. 32.
    Savory J, Herman MM, Ghribi O (2006) Mechanisms of aluminum-induced neurodegeneration in animals: implications for Alzheimer’s disease. J Alzheimers Dis 10(2–3):135–144CrossRefGoogle Scholar
  33. 33.
    Rao JKS, Katsetos CD, Herman MM, Savory J (1998) Experimental aluminum encephalomyelopathy: relationship to human neurodegenerative disease. Clin Lab Med 18(4):687–698CrossRefGoogle Scholar
  34. 34.
    Kowall NW, Pendlebury WW, Kessler JB, Perl DP, Beal MF (1989) Aluminum-induced neurofibrillary degeneration affects a subset of neurons in rabbit cerebral cortex, basal forebrain and upper brainstem. Neuroscience 29(2):329–337CrossRefGoogle Scholar
  35. 35.
    Wisniewski H, Harrington C, Wischik C, McArthur F, Taylor G, Edwardson J et al (1994) Aluminium, tau protein, and Alzheimer’s disease. Lancet 344(8916):204–205CrossRefGoogle Scholar
  36. 36.
    Hof PR, Bouras C, Buée L, Delacourte A, Perl DP, Morrison JH (1992) Differential distribution of neurofibrillary tangles in the cerebral cortex of dementia pugilistica and Alzheimer’s disease cases. Acta Neuropathol 85(1):23–30CrossRefGoogle Scholar
  37. 37.
    Wisniewski H, Sturman JA, Shek JW (1982) Chronic model of neurofibrillary changes in dendrites. Acta Neuropathol (Berlin) 63:190–197CrossRefGoogle Scholar
  38. 38.
    Wisniewski HM, Sturman JA, Shek JW (1982) Chronic model of neurofibrillary changes induced in mature rabbits by metallic aluminum. Neurobiol Aging 3(1):11–22CrossRefGoogle Scholar
  39. 39.
    Bharathi, Shamasundar NM, Sathyanarayana Rao TS, Dhanunjaya Naidu M, Ravid R (2006) Rao KS. A new insight on Al-maltolate-treated aged rabbit as Alzheimer’s animal model. Brain Res Rev 52(2):275–292CrossRefGoogle Scholar
  40. 40.
    Smith MA, Siedlak SL, Richey PL, Nagaraj RH, Elhammer A, Perry G (1996) Quantitative solubilization and analysis of insoluble paired helical filaments from Alzheimer disease. Brain Res 717(1–2):99–108CrossRefGoogle Scholar
  41. 41.
    Smith MA, Perry G, Richey PL, Sayre LM, Anderson VE, Beal MF et al (1996) Oxidative damage in Alzheimer’s [6]. Nature 382(6587):120–121CrossRefGoogle Scholar
  42. 42.
    Smith MA, Nunomura A, Lee HG, Zhu X, Moreira PI, Avila J et al (2005) Chronological primacy of oxidative stress in Alzheimer disease. Neurobiol Aging 26(5):579–580CrossRefGoogle Scholar
  43. 43.
    Yokel RA, O’Callaghan JP (1998) An aluminum-induced increase in GFAP is attenuated by some chelators. Neurotoxicol Teratol 20(1):55–60CrossRefGoogle Scholar
  44. 44.
    Good PF, Perl DP, Bierer LM, Schmeidler J (1992) Selective accumulation of aluminum and iron in the neurofibrillary tangles of Alzheimer’s disease: a laser microprobe (LAMMA) study. Ann Neurol 31(3):286–292CrossRefGoogle Scholar
  45. 45.
    Good PF, Werner P, Hsu A, Olanow CW, Perl DP (1996) Evidence for neuronal oxidative damage in Alzheimer’s disease. Am J Pathol 140:621–628Google Scholar
  46. 46.
    Kitamura Y, Shimohama S, Kamoshima W, Ota T, Matsuoka Y, Nomura Y et al (1998) Alteration of proteins regulating apoptosis, Bcl-2, Bcl-x, Bax, Bak, Bad, ICH-1 and CPP32, in Alzheimer’s disease. Brain Res 780(2):260–269CrossRefGoogle Scholar
  47. 47.
    Smith MA, Kutty RK, Richey PL, Yan SD, Stern D, Chader GJ et al (1994) Heme oxygenase-1 is associated with the neurofibrillary pathology of Alzheimer’s disease. Am J Pathol 145(1):42–47PubMedPubMedCentralGoogle Scholar
  48. 48.
    Szutowicz A, Bielarczyk H, Kisielevski Y, Jankowska A, Madziar B, Tomaszewicz M (1998) Effects of aluminum and calcium on acetyl-CoA metabolism in rat brain mitochondria. J Neurochem 71(6):2447–2453CrossRefGoogle Scholar
  49. 49.
    Adams JM, Cory S (1998) The Bcl-2 protein family: arbiters of cell survival. Science (New York, NY) 281(5381):1322–1326CrossRefGoogle Scholar
  50. 50.
    Griffioen KJS, Ghribi O, Fox N, Savory J, Dewitt DA (2004) Aluminum maltolate-induced toxicity in NT2 cells occurs through apoptosis and includes cytochrome c release. Neurotoxicology 25(5):859–867CrossRefGoogle Scholar
  51. 51.
    Ghribi O, Dewitt DA, Forbes MS, Herman MM, Savory J (2001) Involvement of mitochondria and endoplasmic reticulum in regulation of apoptosis: changes in cytochrome-c, Bcl-2 and Bax in the hippocampus of Aluminium treated rabbits. Brain Res 8:764–773Google Scholar
  52. 52.
    Ghribi O, Herman MM, DeWitt DA, Forbes MS, Savory J (2001) Aβ(1-42) and aluminum induce stress in the endoplasmic reticulum in rabbit hippocampus, involving nuclear translocation of gadd 153 and NF-κB. Mol Brain Res 96(1–2):30–38CrossRefGoogle Scholar
  53. 53.
    Ghribi O, DeWitt DA, Forbes MS, Herman MM, Savory J (2001) Co-involvement of mitochondria and endoplasmic reticulum in regulation of apoptosis: changes in cytochrome c, Bcl-2 and Bax in the hippocampus of aluminum-treated rabbits. Brain Res 903(1–2):66–73CrossRefGoogle Scholar
  54. 54.
    Mecocci P, Beal MF, Cecchetti R, Polidori MC, Cherubini A, Chionne F et al (1997) Mitochondrial membrane fluidity and oxidative damage to mitochondrial DNA in aged and AD human brain. Mol Chem Neuropathol 31(1):53–64CrossRefGoogle Scholar
  55. 55.
    Mecocci P, MacGarvey U, Beal MF (1994) Oxidative damage to mitochondrial DNA is increased in Alzheimer’s disease. Ann Neurol 36(5):747–751CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Jing Song
    • 1
  1. 1.Republic Health SchoolShanxi Medical UniversityTaiyuanChina

Personalised recommendations