Advertisement

Introduction

  • Shenglin Zhao
  • Michael R. Lyu
  • Irwin King
Chapter
Part of the SpringerBriefs in Computer Science book series (BRIEFSCOMPUTER)

Abstract

This chapter provides an overview of POI recommendation in LBSNs, including backgrounds, related work, and organizations of this book.

Keywords

POI recommendation Spatio-temporal data Location-based services 

References

  1. 1.
    Bhargava, P., Phan, T., Zhou, J., Lee, J.: Who, What, When, and Where: multi-dimensional collaborative recommendations using tensor factorization on sparse user-generated data. In: Proceedings of the 24th International Conference on World Wide Web, pp. 130–140. ACM (2015)Google Scholar
  2. 2.
    Brockmann, D., Hufnagel, L., Geisel, T.: The scaling laws of human travel. Nature 439(7075), 462–465 (2006)Google Scholar
  3. 3.
    Cheng, C., Yang, H., King, I., Lyu, M.R.: Fused matrix factorization with geographical and social influence in location-based social networks. In: Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence, pp. 17–23. AAAI Press (2012)Google Scholar
  4. 4.
    Cheng, C., Yang, H., Lyu, M.R., King, I.: Where you like to go next: successive point-of-interest recommendation. In: Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence, pp. 2605–2611. AAAI Press (2013)Google Scholar
  5. 5.
    Cheng, Z., Caverlee, J., Lee, K., Sui, D.Z.: Exploring millions of footprints in location sharing services. In: Fifth International AAAI Conference on Weblogs and Social Media, pp. 81–88. AAAI Press (2011)Google Scholar
  6. 6.
    Cho, E., Myers, S.A., Leskovec, J.: Friendship and mobility: user movement in location-based social networks. In: Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 1082–1090. ACM (2011)Google Scholar
  7. 7.
    Feng, S., Li, X., Zeng, Y., Cong, G., Chee, Y.M., Yuan, Q.: Personalized ranking metric embedding for next new POI recommendation. In: Proceedings of the 24th International Conference on Artificial Intelligence, pp. 2069–2075. AAAI Press (2015)Google Scholar
  8. 8.
    Ference, G., Ye, M., Lee, W.C.: Location recommendation for out-of-town users in location-based social networks. In: Proceedings of the 22nd ACM International Conference on Information and Knowledge Management, pp. 721–726. ACM (2013)Google Scholar
  9. 9.
    Gao, H., Tang, J., Hu, X., Liu, H.: Exploring temporal effects for location recommendation on location-based social networks. In: Proceedings of the 7th ACM Conference on Recommender Systems, pp. 93–100. ACM (2013)Google Scholar
  10. 10.
    Gao, H., Tang, J., Hu, X., Liu, H.: Content-aware point-of-interest recommendation on location-based social networks. In: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, pp. 1721–1727. AAAI Press (2015)Google Scholar
  11. 11.
    Gao, H., Tang, J., Liu, H.: Exploring social-historical ties on location-based social networks. In: Sixth International AAAI Conference on Weblogs and Social Media. AAAI Press (2012)Google Scholar
  12. 12.
    Gao, H., Tang, J., Liu, H.: gSCorr: modeling geo-social correlations for new check-ins on location-based social networks. In: Proceedings of the 21st ACM International Conference on Information and Knowledge Management, pp. 1582–1586. ACM (2012)Google Scholar
  13. 13.
    Gao, H., Tang, J., Liu, H.: Addressing the cold-start problem in location recommendation using geo-social correlations. Data Min. Knowl. Discov. 29(2), 299–323 (2015)Google Scholar
  14. 14.
    Gonzalez, M.C., Hidalgo, C.A., Barabasi, A.L.: Understanding individual human mobility patterns. Nature 453(7196), 779–782 (2008)Google Scholar
  15. 15.
    Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016)Google Scholar
  16. 16.
    He, J., Li, X., Liao, L., Song, D., Cheung, W.K.: Inferring a personalized next point-of-interest recommendation model with latent behavior patterns. In: Thirtieth AAAI Conference on Artificial Intelligence, pp. 137–143 (2016)Google Scholar
  17. 17.
    Hu, B., Ester, M.: Social topic modeling for point-of-interest recommendation in location-based social networks. In: 2014 IEEE International Conference on Data Mining, pp. 845–850. IEEE (2014)Google Scholar
  18. 18.
    Hu, Y., Koren, Y., Volinsky, C.: Collaborative filtering for implicit feedback datasets. In: 2008 Eighth IEEE International Conference on Data Mining, pp. 263–272. IEEE (2008)Google Scholar
  19. 19.
    Jamali, M., Ester, M.: Trustwalker: a random walk model for combining trust-based and item-based recommendation. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 397–406. ACM (2009)Google Scholar
  20. 20.
    Jamali, M., Ester, M.: A matrix factorization technique with trust propagation for recommendation in social networks. In: Proceedings of the Fourth ACM Conference on Recommender Systems, pp. 135–142. ACM (2010)Google Scholar
  21. 21.
    Kurashima, T., Iwata, T., Hoshide, T., Takaya, N., Fujimura, K.: Geo topic model: joint modeling of user’s activity area and interests for location recommendation. In: Proceedings of the Sixth ACM International Conference on Web Search and Data Mining, pp. 375–384. ACM (2013)Google Scholar
  22. 22.
    Li, H., Ge, Y., Hong, R., Zhu, H.: Point-of-interest recommendations: learning potential check-ins from friends. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 975–984. ACM (2016)Google Scholar
  23. 23.
    Lian, D., Ge, Y., Zhang, F., Yuan, N.J., Xie, X., Zhou, T., Rui, Y.: Content-aware collaborative filtering for location recommendation based on human mobility data. In: 2015 IEEE International Conference on Data Mining (ICDM), pp. 261–270. IEEE (2015)Google Scholar
  24. 24.
    Lian, D., Zhao, C., Xie, X., Sun, G., Chen, E., Rui, Y.: GeoMF: Joint geographical modeling and matrix factorization for point-of-interest recommendation. In: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 831–840. ACM (2014)Google Scholar
  25. 25.
    Liu, B., Fu, Y., Yao, Z., Xiong, H.: Learning geographical preferences for point-of-interest recommendation. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1043–1051. ACM (2013)Google Scholar
  26. 26.
    Liu, B., Xiong, H.: Point-of-interest recommendation in location based social networks with topic and location awareness. In: Siam International Conference on Data Mining, pp. 396–404. SIAM (2013)Google Scholar
  27. 27.
    Liu, B., Xiong, H., Papadimitriou, S., Fu, Y., Yao, Z.: A general geographical probabilistic factor model for point of interest recommendation. IEEE Trans. Knowl. Data Eng. 27(5), 1167–1179 (2015)Google Scholar
  28. 28.
    Liu, Q., Wu, S., Wang, L., Tan, T.: Predicting the next location: a recurrent model with spatial and temporal contexts. In: Thirtieth AAAI Conference on Artificial Intelligence, pp. 194–200 (2016)Google Scholar
  29. 29.
    Liu, X., Liu, Y., Li, X.: Exploring the context of locations for personalized location recommendations. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, pp. 1188–1194. AAAI Press (2016)Google Scholar
  30. 30.
    Liu, Y., Wei, W., Sun, A., Miao, C.: Exploiting geographical neighborhood characteristics for location recommendation. In: ACM International Conference on Conference on Information and Knowledge Management, pp. 739–748. ACM (2014)Google Scholar
  31. 31.
    Ma, H., Liu, C., King, I., Lyu, M.R.: Probabilistic factor models for web site recommendation. In: Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 265–274. ACM (2011)Google Scholar
  32. 32.
    Ma, H., Yang, H., Lyu, M.R., King, I.: Sorec: social recommendation using probabilistic matrix factorization. In: Proceedings of the 17th ACM Conference on Information and Knowledge Management, pp. 931–940. ACM (2008)Google Scholar
  33. 33.
    Ma, H., Zhou, D., Liu, C., Lyu, M.R., King, I.: Recommender systems with social regularization. In: Proceedings of the Fourth ACM International Conference on Web Search and Data Mining, pp. 287–296. ACM (2011)Google Scholar
  34. 34.
    Massa, P., Avesani, P.: Trust-aware recommender systems. In: Proceedings of the 2007 ACM Conference on Recommender Systems, pp. 17–24. ACM (2007)Google Scholar
  35. 35.
    Noulas, A., Scellato, S., Lathia, N., Mascolo, C.: Mining user mobility features for next place prediction in location-based services. In: 2012 IEEE 12th International Conference on Data Mining, pp. 1038–1043. IEEE (2012)Google Scholar
  36. 36.
    Pan, R., Zhou, Y., Cao, B., Liu, N.N., Lukose, R., Scholz, M., Yang, Q.: One-class collaborative filtering. In: Proceedings of the 2008 Eighth IEEE International Conference on Data Mining, pp. 502–511. IEEE Computer Society (2008)Google Scholar
  37. 37.
    Rendle, S., Balby Marinho, L., Nanopoulos, A., Schmidt-Thieme, L.: Learning optimal ranking with tensor factorization for tag recommendation. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 727–736. ACM (2009)Google Scholar
  38. 38.
    Rendle, S., Freudenthaler, C., Schmidt-Thieme, L.: Factorizing personalized markov chains for next-basket recommendation. In: Proceedings of the 19th International Conference on World Wide Web, pp. 811–820. ACM (2010)Google Scholar
  39. 39.
    Rhee, I., Shin, M., Hong, S., Lee, K., Kim, S.J., Chong, S.: On the levy-walk nature of human mobility. IEEE/ACM Trans. Netw. (TON) 19(3), 630–643 (2011)Google Scholar
  40. 40.
    Ricci, F., Rokach, L., Shapira, B.: Introduction to recommender systems handbook. Springer (2011)Google Scholar
  41. 41.
    Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. MIT Press (1986)Google Scholar
  42. 42.
    Salakhutdinov, R., Mnih, A.: Probabilistic matrix factorization. Adv. Neural Inf. Process. Syst. 20, 1257–1264 (2008)Google Scholar
  43. 43.
    Sang, J., Mei, T., Xu, C.: Activity sensor: check-in usage mining for local recommendation. ACM Trans. Intell. Syst. Technol. (TIST) 6(3), 41 (2015)Google Scholar
  44. 44.
    Sattari, M., Manguoglu, M., Toroslu, I.H., Symeonidis, P., Senkul, P., Manolopoulos, Y.: Geo-activity recommendations by using improved feature combination. In: Proceedings of the 2012 ACM Conference on Ubiquitous Computing, pp. 996–1003. ACM (2012)Google Scholar
  45. 45.
    Scellato, S., Mascolo, C., Musolesi, M., Latora, V.: Distance matters: geo-social metrics for online social networks. In: Proceedings of the 3rd Wonference on Online Social Networks, pp. 8–8. USENIX Association (2010)Google Scholar
  46. 46.
    Scellato, S., Noulas, A., Mascolo, C.: Exploiting place features in link prediction on location-based social networks. In: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Diego, CA, USA, August, pp. 1046–1054. ACM (2011)Google Scholar
  47. 47.
    Silverman, B.W.: Density estimation for statistics and data analysis, vol. 26. CRC press (1986)Google Scholar
  48. 48.
    Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition (2014). arXiv:1409.1556
  49. 49.
    Wang, S., Wang, Y., Tang, J., Shu, K., Ranganath, S., Liu, H.: What your images reveal: exploiting visual contents for point-of-interest recommendation. In: Proceedings of the 26th International Conference on World Wide Web, pp. 391–400. International World Wide Web Conferences Steering Committee (2017)Google Scholar
  50. 50.
    Wang, W., Yin, H., Chen, L., Sun, Y., Sadiq, S., Zhou, X.: St-sage: a spatial-temporal sparse additive generative model for spatial item recommendation. ACM Trans. Intell. Syst. Technol. (TIST) 8(3), 48 (2017)Google Scholar
  51. 51.
    Wang, X., Zhao, Y.L., Nie, L., Gao, Y., Nie, W., Zha, Z.J., Chua, T.S.: Semantic-based location recommendation with multimodal venue semantics. IEEE Trans. Multimed. 17(3), 409–419 (2015)Google Scholar
  52. 52.
    Wang, Y., Yuan, N.J., Lian, D., Xu, L., Xie, X., Chen, E., Rui, Y.: Regularity and conformity: location prediction using heterogeneous mobility data. In: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1275–1284. ACM (2015)Google Scholar
  53. 53.
    Wang, Z.S., Juang, J.F., Teng, W.G.: Predicting POI visits with a heterogeneous information network. In: 2015 Conference on Technologies and Applications of Artificial Intelligence (TAAI), pp. 388–395. IEEE (2015)Google Scholar
  54. 54.
    Yang, D., Zhang, D., Yu, Z., Wang, Z.: A sentiment-enhanced personalized location recommendation system. In: Proceedings of the 24th ACM Conference on Hypertext and Social Media, pp. 119–128. ACM (2013)Google Scholar
  55. 55.
    Yang, D., Zhang, D., Zheng, V.W., Yu, Z.: Modeling user activity preference by leveraging user spatial temporal characteristics in LBSNs. IEEE Trans. Syst. Man Cybern. Syst. 45(1), 129–142 (2015)Google Scholar
  56. 56.
    Ye, M., Yin, P., Lee, W.C.: Location recommendation for location-based social networks. In: Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 458–461. ACM (2010)Google Scholar
  57. 57.
    Ye, M., Yin, P., Lee, W.C., Lee, D.L.: Exploiting geographical influence for collaborative point-of-interest recommendation. In: Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 325–334. ACM (2011)Google Scholar
  58. 58.
    Yin, H., Cui, B., Chen, L., Hu, Z., Zhou, X.: Dynamic user modeling in social media systems. ACM Trans. Inf. Syst. (TOIS) 33(3), 10 (2015)Google Scholar
  59. 59.
    Yin, H., Cui, B., Sun, Y., Hu, Z., Chen, L.: LCARS: a spatial item recommender system. ACM Trans. Inf. Syst. (TOIS) 32(3), 11 (2014)Google Scholar
  60. 60.
    Yin, H., Hu, Z., Zhou, X., Wang, H., Zheng, K., Nguyen, Q.V.H., Sadiq, S.: Discovering interpretable geo-social communities for user behavior prediction. In: The 32nd IEEE International Conference on Data Engineering, pp. 942–953. IEEE (2016)Google Scholar
  61. 61.
    Yin, H., Sun, Y., Cui, B., Hu, Z., Chen, L.: Lcars: A location-content-aware recommender system. In: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 221–229. ACM (2013)Google Scholar
  62. 62.
    Yin, H., Wang, W., Wang, H., Chen, L., Zhou, X.: Spatial-aware hierarchical collaborative deep learning for POI recommendation. IEEE Trans. Knowl. Data Eng. 29(11), 2537–2551 (2017)Google Scholar
  63. 63.
    Yuan, J., Zheng, Y., Xie, X.: Discovering regions of different functions in a city using human mobility and POIs. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 186–194. ACM (2012)Google Scholar
  64. 64.
    Yuan, Q., Cong, G., Ma, Z., Sun, A., Thalmann, N.M.: Time-aware point-of-interest recommendation. In: Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 363–372. ACM (2013)Google Scholar
  65. 65.
    Yuan, Q., Cong, G., Sun, A.: Graph-based point-of-interest recommendation with geographical and temporal influences. In: Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management, pp. 659–668. ACM (2014)Google Scholar
  66. 66.
    Zhang, J., Kong, X., Yu, P.S.: Transferring heterogeneous links across location-based social networks. In: ACM International Conference on Web Search and Data Mining, pp. 303–312. ACM (2014)Google Scholar
  67. 67.
    Zhang, J.D., Chow, C.Y.: iGSLR: personalized geo-social location recommendation: a kernel density estimation approach. In: Proceedings of the 21st ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 334–343. ACM (2013)Google Scholar
  68. 68.
    Zhang, J.D., Chow, C.Y.: GeoSoCa: exploiting geographical, social and categorical correlations for point-of-interest recommendations. In: Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 443–452. ACM (2015)Google Scholar
  69. 69.
    Zhang, J.D., Chow, C.Y.: Ticrec: a probabilistic framework to utilize temporal influence correlations for time-aware location recommendations. IEEE Trans. Serv. Comput. 9(4), 633–646 (2016)Google Scholar
  70. 70.
    Zhang, J.D., Chow, C.Y., Li, Y.: LORE: exploiting sequential influence for location recommendations. In: Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 103–112. ACM (2014)Google Scholar
  71. 71.
    Zhao, S., King, I., Lyu, M.R.: Capturing geographical influence in POI recommendations. In: International Conference on Neural Information Processing, pp. 530–537. Springer (2013)Google Scholar
  72. 72.
    Zhao, S., King, I., Lyu, M.R.: A survey of point-of-interest recommendation in location-based social networks (2016). arXiv:1607.00647
  73. 73.
    Zhao, S., King, I., Lyu, M.R.: Aggregated temporal tensor factorization model for point-of-interest recommendation. Neural Process. Lett. (2017).  https://doi.org/10.1007/s11063-017-9681-8
  74. 74.
    Zhao, S., King, I., Lyu, M.R.: Geo-pairwise ranking matrix factorization model for point-of-interest recommendation. In: International Conference on Neural Information Processing, pp. 368–377. Springer (2017)Google Scholar
  75. 75.
    Zhao, S., Lyu, M.R., King, I.: Aggregated temporal tensor factorization model for point-of-interest recommendation. In: International Conference on Neural Information Processing, pp. 450–458. Springer (2016)Google Scholar
  76. 76.
    Zhao, S., Zhao, T., King, I., Lyu, M.R.: Geo-Teaser: Geo-Temporal sequential embedding rank for point-of-interest recommendation. In: Proceedings of the 26th International Conference on World Wide Web Companion, pp. 153–162. International World Wide Web Conferences Steering Committee (2017)Google Scholar
  77. 77.
    Zhao, S., Zhao, T., Yang, H., Lyu, M.R., King, I.: STELLAR: spatial-temporal latent ranking for successive point-of-interest recommendation. In: Thirtieth AAAI Conference on Artificial Intelligence, pp. 315–322 (2016)Google Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Youtu LabTencentShenzhenChina
  2. 2.Department of Computer Science and EngineeringThe Chinese University of Hong KongHong KongChina

Personalised recommendations