Advertisement

CUPID-0: A Cryogenic Calorimeter with Particle Identification for Double Beta Decay Search

  • L. Cardani
  • D. R. Artusa
  • O. Azzolini
  • M. T. Barrera
  • J. W. Beeman
  • F. Bellini
  • M. Beretta
  • M. Biassoni
  • C. Brofferio
  • C. Bucci
  • A. Camacho
  • L. Canonica
  • S. Capelli
  • P. Carniti
  • N. Casali
  • L. Cassina
  • M. Clemenza
  • O. Cremonesi
  • A. Cruciani
  • A. D’Addabbo
  • I. Dafinei
  • S. Di Domizio
  • M. L. di Vacri
  • F. Ferroni
  • L. Gironi
  • A. Giuliani
  • P. Gorla
  • C. Gotti
  • G. Keppel
  • M. Maino
  • M. Martinez
  • S. Morganti
  • S. Nagorny
  • M. Nastasi
  • S. Nisi
  • C. Nones
  • F. Orio
  • D. Orlandi
  • L. Pagnanini
  • M. Pallavicini
  • V. Palmieri
  • L. Pattavina
  • M. Pavan
  • G. Pessina
  • V. Pettinacci
  • S. Pirro
  • S. Pozzi
  • E. Previtali
  • A. Puiu
  • F. Reindl
  • C. Rusconi
  • K. Schaeffner
  • L. Sinkunaite
  • C. Tomei
  • M. Vignati
  • A. Zolotarova
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 213)

Abstract

With their excellent energy resolution, efficiency, and intrinsic radio-purity, cryogenic calorimeters are primed for the search of neutrino-less double beta decay (0nDBD). The sensitivity of these devices could be further increased by discriminating the dominant alpha background from the expected beta-like signal. The CUPID-0 collaboration aims at demonstrating that the measurement of the scintillation light produced by the absorber crystals allows for particle identification and, thus, for a complete rejection of the alpha background. The CUPID-0 detector, assembled in 2016 and now in data-taking, consists of 26 Zn\(^{82}\)Se scintillating calorimeters for about \(2 \times 10^{25}\) 0nDBD emitters. In this contribution we present the preliminary results obtained with the detector and the perspectives for a next generation project.

Notes

Acknowledgements

This work was partially supported by the LUCIFER experiment, funded by ERC under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement n. 247115, funded within the ASPERA 2nd Common Call for R&D Activities. In particular we want to thank to M. Iannone for his help in the detector assembly, M. Guetti for the activity on the cryostat and He liquifier, the mechanical workshop of LNGS (E. Tatananni, A. Rotilio, A. Corsi, and B. Romualdi) for continuous and constructive help in the overall set-up design.

References

  1. 1.
    Dell’Oro, S., et al.: Adv. High Energy Phys. 2016, 2162659 (2016)CrossRefGoogle Scholar
  2. 2.
    Fiorini, E., Niinikoski, T.O.: Nucl. Instr. Meth. A 224, 83 (1984)CrossRefGoogle Scholar
  3. 3.
    Artusa, D.R., et al.: CUORE collaboration. Adv. High Energy Phys. 2015, 879871 (2015)CrossRefGoogle Scholar
  4. 4.
    Alduino, C., et al.: CUORE Collaboration, Cuore Sensitivity to \(0\nu \beta \beta \) Decay. arXiv:1705.10816
  5. 5.
    Alduino, C., et al.: CUORE Collaboration, The projected background for the CUORE experiment (2017). arXiv:1704.08970
  6. 6.
    Wang, G., et al.: R&D towards CUPID (CUORE Upgrade with Particle IDentification) (2015). arXiv:1504.03612
  7. 7.
    Wang, G., et al.: CUPID: CUORE (Cryogenic Underground Observatory for Rare Events) Upgrade with Particle IDentification (2015). arXiv:1504.03599
  8. 8.
    Casali, N., et al.: Eur. Phys. J. C 75(1), 12 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    Schaeffner, K., et al.: Astropart. Phys. 69, 30–36 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    Willers, M., et al.: JINST 10(03), P03003 (2015)CrossRefGoogle Scholar
  11. 11.
    Biassoni, M., et al.: Eur. Phys. J. C 75(10), 480 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    Battistelli, E., et al.: Eur. Phys. J. C 75(8) (2015)Google Scholar
  13. 13.
    Cardani, L., et al.: Appl. Phys. Lett. 107, 093508 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    Bellini, F., et al.: Appl. Phys. Lett. 110, 033504 (2017)ADSCrossRefGoogle Scholar
  15. 15.
    Artusa, D.R., et al.: Phys. Lett. B 767, 321 (2017)ADSCrossRefGoogle Scholar
  16. 16.
    Pirro, S., et al.: Phys. Atom. Nucl. 69, 2109 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    Arnaboldi, C., et al.: Astropart. Phys. 34, 344 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    Beeman, J.W., et al.: JINST 8, P05021 (2013)CrossRefGoogle Scholar
  19. 19.
    Gironi, L., et al.: JINST 5, P11007 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    Beeman, J.W., et al.: Eur. Phys. J. C 72, 2142 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    Beeman, J.W., et al.: Astropart. Phys. 35, 813 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    Beeman, J.W., et al.: Phys. Lett. B 710, 318 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    Cardani, L., et al.: J. Phys. G41, 075204 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    Armengaud, E., et al.: JINST 10(05), P05007 (2015)CrossRefGoogle Scholar
  25. 25.
    Berge, L., et al.: JINST 9, P06004 (2014)CrossRefGoogle Scholar
  26. 26.
    Cardani, L., et al.: JINST 8, P10002 (2013)CrossRefGoogle Scholar
  27. 27.
    Bekker, T.B., et al.: Astropart. Phys. 72, 38 (2016)ADSCrossRefGoogle Scholar
  28. 28.
    Armengaud, E., et al.: Development of \(^{100}\)Mo-containing scintillating bolometers for a high-sensitivity neutrinoless double-beta decay search. arXiv:1704.01758
  29. 29.
    Dafinei, I., et al.: J. Cryst. Growth 475, 158–170 (2017)ADSCrossRefGoogle Scholar
  30. 30.
    Artusa, D.R., et al.: Eur. Phys. J. C 76(7), 364 (2016)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd.  2018

Authors and Affiliations

  • L. Cardani
    • 1
  • D. R. Artusa
    • 2
    • 3
  • O. Azzolini
    • 8
  • M. T. Barrera
    • 8
  • J. W. Beeman
    • 5
  • F. Bellini
    • 1
    • 4
  • M. Beretta
    • 6
    • 7
  • M. Biassoni
    • 7
  • C. Brofferio
    • 6
    • 7
  • C. Bucci
    • 2
  • A. Camacho
    • 8
  • L. Canonica
    • 2
  • S. Capelli
    • 6
    • 7
  • P. Carniti
    • 6
    • 7
  • N. Casali
    • 1
  • L. Cassina
    • 6
    • 7
  • M. Clemenza
    • 6
    • 7
  • O. Cremonesi
    • 6
  • A. Cruciani
    • 1
  • A. D’Addabbo
    • 2
  • I. Dafinei
    • 1
  • S. Di Domizio
    • 9
    • 10
  • M. L. di Vacri
    • 2
  • F. Ferroni
    • 1
    • 4
  • L. Gironi
    • 6
    • 7
  • A. Giuliani
    • 11
    • 12
  • P. Gorla
    • 2
  • C. Gotti
    • 6
    • 7
  • G. Keppel
    • 8
  • M. Maino
    • 6
    • 7
  • M. Martinez
    • 4
  • S. Morganti
    • 1
  • S. Nagorny
    • 14
  • M. Nastasi
    • 6
    • 7
  • S. Nisi
    • 2
  • C. Nones
    • 13
  • F. Orio
    • 1
  • D. Orlandi
    • 2
  • L. Pagnanini
    • 14
  • M. Pallavicini
    • 9
    • 10
  • V. Palmieri
    • 8
  • L. Pattavina
    • 2
  • M. Pavan
    • 6
    • 7
  • G. Pessina
    • 7
  • V. Pettinacci
    • 1
  • S. Pirro
    • 2
  • S. Pozzi
    • 6
    • 7
  • E. Previtali
    • 7
  • A. Puiu
    • 6
    • 7
  • F. Reindl
    • 1
  • C. Rusconi
    • 2
    • 3
  • K. Schaeffner
    • 14
  • L. Sinkunaite
    • 6
    • 7
  • C. Tomei
    • 1
  • M. Vignati
    • 1
  • A. Zolotarova
    • 13
  1. 1.INFN - Sezione di RomaRomaItaly
  2. 2.INFN - Laboratori Nazionali del Gran SassoAssergi (L’Aquila)Italy
  3. 3.Department of Physics and AstronomyUniversity of South CarolinaColumbiaUSA
  4. 4.Dipartimento di FisicaSapienza Università di RomaRomaItaly
  5. 5.Materials Science DivisionLawrence Berkeley National LaboratoryBerkeleyUSA
  6. 6.Dipartimento di FisicaUniversità di Milano-BicoccaMilanoItaly
  7. 7.INFN - Sezione di Milano BicoccaMilanoItaly
  8. 8.INFN - Laboratori Nazionali di LegnaroLegnaro (Padova)Italy
  9. 9.Dipartimento di FisicaUniversità di GenovaGenovaItaly
  10. 10.INFN - Sezione di GenovaGenovaItaly
  11. 11.CSNSM, Univ. Paris-Sud, CNRS/IN2P3, Universite Paris-SaclayOrsayFrance
  12. 12.DiSAT, Università dell’InsubriaComoItaly
  13. 13.CEA-Saclay, DSM/IRFUGif-sur-Yvette CedexFrance
  14. 14.INFN - Gran Sasso Science InstituteL’AquilaItaly

Personalised recommendations