Advertisement

Preliminary Calibration of Spherical Proportional Counter for Low Energy Nuclear Recoils

  • Haiqiong Zhang
  • Zhimin Wang
  • Charling Tao
  • Changjiang Dai
  • Ning Zhou
  • Yi Tao
  • Ruoqing Liu
  • Chenyang Tang
  • Changgen Yang
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 213)

Abstract

Neutrino physics and dark matter detection are frontier topics of current particle physics. Good rock shielding, ultra low background and ultra low energy threshold are key factors to detect signals successfully from neutrino and WIMPs scattering in underground experiments. Thus, a novel large volume spherical proportional counter has been set up in IHEP, which adopted an ultra small front-end capacitor with ultra low energy threshold (few keV) and a single center dynode that creates a strong radial electric field. This simple and robust structure enable the signal to be read out through a single electronic channel. Charges deposited in the gaseous vessel, drifting to the central electrode followed by amplification and collection. In the preliminary calibration of the prototype, it can not only detect but also identify the alpha and neutron particles precisely. The pretest results and performance of the detector reveal its possible application for future neutron background, neutrino and dark matter measurement.

Keywords

Gas detector SPC Rare events Low energy threshold Detector calibration 

References

  1. 1.
    An, F., et al.: Neutrino physics with JUNO. J. Phys. G 36, 030401 (2016)CrossRefGoogle Scholar
  2. 2.
    Yu, H., Lin, W.: Research progress on dark matter model based on weakly interacting massive particles. Chin. Astron. Astrophys. 41(2), 149–181 (2017)ADSCrossRefGoogle Scholar
  3. 3.
    Liu, G.-C., Ng, K.-W.: Axion dark matter induced cosmic microwave background B modes. Phys. Dark Universe 16, 22–25 (2017)ADSCrossRefGoogle Scholar
  4. 4.
    Arisaka, K., Beltrame, P., Lam, C.W., et al.: Studies of three-stage dark matter and neutrino observatory based on multi-ton combination of liquid xenon and liquid argon detectors. Astropart. Phys. 36(1), 93–122 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    Cuo, C., Ma, X.H., Wang, Z.M.: Neutron beam tests of CsI(Na) and CaF2(Eu) crystals for dark matter direct search. Nucl. Instrum. Methods Phys. Res. A 818, 38–44 (2016)ADSCrossRefGoogle Scholar
  6. 6.
    Giomataris, I., Irastorza, I.: A novel large-volume spherical detector with proportional amplification read-out. JINST 3, P09007 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    Bougamont, E., Colas, P.: Low energy investigation and applications with the spherical TPC. J. Phys. Conf. Ser. 309, 012023 (2011)CrossRefGoogle Scholar
  8. 8.
    Andriamonje, S., Aune, S.: Spherical TPC development and trends. J. Phys. Conf. Ser. 179, 012003 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd.  2018

Authors and Affiliations

  • Haiqiong Zhang
    • 1
    • 2
  • Zhimin Wang
    • 2
  • Charling Tao
    • 3
    • 4
  • Changjiang Dai
    • 2
    • 3
  • Ning Zhou
    • 3
  • Yi Tao
    • 3
  • Ruoqing Liu
    • 3
  • Chenyang Tang
    • 3
  • Changgen Yang
    • 2
  1. 1.University of Chinese Academy of ScienceBeijingChina
  2. 2.Institute of High Energy PhysicsChinese Academy of SciencesBeijingChina
  3. 3.Tsinghua UniversityBeijingChina
  4. 4.Marseille Particle Physics Center (CPPM)MarseillesFrance

Personalised recommendations