Advertisement

Silicon Photomultiplier Performance Study and Preamplifier Design for the Wide Field of View Cherenkov Telescope Array of LHAASO

  • B. Y. Bi
  • S. S. Zhang
  • C. Wang
  • Z. Cao
  • L. Q. Yin
  • T. Montaruli
  • D. della Volpe
  • M. Heller
  • for the LHAASO Collaboration
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 212)

Abstract

The Wide Field of View Cherenkov Telescope Array (WFCTA), a main component of the LHAASO, requires a dynamic range between 10 and 32000 photoelectrons (pes) and stable gain of the photosensors. Silicon photomultipliers (SiPMs) are relatively new kind devices with respect to photomultipliers (PMT). Their performance are improving very rapidly since 1990s. SiPMs suffer for negligible ageing even under strong light exposure. SiPM-based cameras could operate under high moon conditions and their duty-cycle is larger than that of PMT-based camera. The design of preamplifier for the WFCTA camera is described this paper. Moreover properties of the SiPMs are studied, such as their linearity at high number of photoelectrons. An analytical function is derived to relate number of fired cells and the total number of cells in the SiPM. We also compare the performance of SiPMs and PMTs under long light pulses up to 3 \(\upmu \)s. Furthermore, the additional non-linearity due to disuniformities in light distribution is also evaluated.

Keywords

SiPM Dynamic range Long duration pulse LHAASO WFCTA 

Notes

Acknowledgements

This work is supported in China by the Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, CAS. Projects No. 11475190 and No. 11675204 of NSFC also provide support to this study.

References

  1. 1.
    Zhen, C.: A future project at tibet: the large high altitude air shower observatory (LHAASO). Chin. Phys. C 34(2), 249–252 (2010).  https://doi.org/10.1088/1674-1137/34/2/018ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    He, H.: LHAASO Project: detector design and prototype. In: Proceedings of the 31st ICRC, pp. 2–5 (2009)Google Scholar
  3. 3.
    Anderhub, H., Backes, M., Biland, A., Boccone, V., Braun, I., Bretz, T., Zänglein, M.: Design and operation of FACT-the first G-APD Cherenkov telescope. J. Instrum. 8(6), P06008–P06008 (2013).  https://doi.org/10.1088/1748-0221/8/06/P06008CrossRefGoogle Scholar
  4. 4.
    Heller, M., Schioppa Jr., E., Porcelli, A., et al.: An innovative silicon photomultiplier digitizing camera for gamma-ray astronomy. Eur. Phys. J. C. 77, 47 (2017)Google Scholar
  5. 5.
    van Dam, H.T., Seifert, S., Vinke, R., Dendooven, P., Lohner, H., Beekman, F.J., Schaart, D.R.: A comprehensive model of the response of silicon photomultipliers. IEEE Trans. Nucl. Sci. 57(4), 2254–2266 (2010).  https://doi.org/10.1109/TNS.2010.2053048ADSCrossRefGoogle Scholar
  6. 6.
    Ge, M., Zhang, L., Chen, Y., Cao, Z., Zhang, S., Wang, C., Bi, B.: Photomultiplier tube selection for the wide field of view cherenkov/fluorescence telescope array of the large high altitude air shower observatory. Nucl. Instrum. Methods Phy. Res., Sect. A: Accelerators Spectrometers Detectors Assoc. Equipment, 819, 175–181 (2016). https://doi.org/10.1016/j.nima.2016.02.093
  7. 7.
    Heck, D., Knapp, J., Capdevielle, J.N., Schatz, G., Thouw, T.: CORSIKA: a Monte Carlo code to simulate extensive air showers. Forschungszentrum Karlsruhe FZKA 6019, 1–90 (1998). http://www.ikp.kit.edu/ADSGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • B. Y. Bi
    • 1
    • 2
  • S. S. Zhang
    • 1
  • C. Wang
    • 1
  • Z. Cao
    • 1
  • L. Q. Yin
    • 1
    • 2
  • T. Montaruli
    • 3
  • D. della Volpe
    • 3
  • M. Heller
    • 3
  • for the LHAASO Collaboration
  1. 1.Key Laboratory of Particle AstrophysicsIHEP, CASBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.University of GenevaGenevaSwitzerland

Personalised recommendations