Advertisement

Plants Response and Tolerance to Arsenic-Induced Oxidative Stress

  • Anindita Mitra
  • Soumya Chatterjee
  • Dharmendra K. Gupta
Chapter

Abstract

Arsenic (As) is a toxic metalloid of global concern derived from natural, geothermal, and anthropogenic sources. Arsenic has deleterious effects in all forms of life including plants. Between the two inorganic forms, the highly oxidized pentavalent arsenate (AsV) is prevalent in the aerobic environment, while the highly reduced trivalent arsenite (AsIII) is the predominant form in an anaerobic environment. The main route of AsV uptake in plants is through the phosphate transporters, while AsIII and methylated As species enter through nodulin 26–like intrinsic protein (NIP) or aquaglyceroporins. After entering into the plant cell As can severely impede plant metabolism which leads to various physiological disorder. Subsequently, growth of the plants is subdued, and it results in delaying or restraining accrual of biomass and induces loss of fertility, yield, and fruit production. Exposure to inorganic As in plants promotes oxidative stress by generating reactive oxygen species (ROS) during their conversion from AsV to AsIII. Plants have a well-organized antioxidant defense system to combat As stress. In plants, As intoxication triggers the activation of enzymatic antioxidants like superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), glutathione reductase (GR), glutathione S-transferase (GST), and glutathione peroxidase (GPX); synthesis of nonenzymatic antioxidants, such as ascorbate and γ-Glu-Cys-Gly-tripeptide glutathione (GSH); and accumulation of anthocyanin in the leaves. As tolerance in plants is achieved by the production of phytochelatin following As exposure which is derived from GSH. This chapter aims to provide current updates about the molecular mechanism involved in uptake of the inorganic and organic species of As, their translocation, and the As-induced stress in plants with a special emphasis on oxidative stress.

Keywords

Uptake Translocation Oxidative stress Antioxidative enzymes Phytochelatin Glutathione 

References

  1. Abbas MHH, Meharg AA (2008) Arsenate, arsenite and dimethyl arsenic acid (DMA) uptake and tolerance in maize (Zea mays L.). Plant Soil 304:277–289CrossRefGoogle Scholar
  2. Abercrombie JM, Halfhill MD, Ranjan P, Rao MR, Saxton AM, Yuan JS, Stewart CN (2008) Transcriptional responses of Arabidopsis thaliana plants to As (V) stress. BMC Plant Biol 8:87.  https://doi.org/10.1186/1471-2229-8-87 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Adriano DC (1986) Trace element in terrestrial environment. Springer, New YorkCrossRefGoogle Scholar
  4. Ahsan N, Lee DG, Kim KH, Alam I, Lee SH, Lee KW, Lee H, Lee BH (2010) Analysis of arsenic stress-induced differentially expressed proteins in rice leaves by two-dimensional gel electrophoresis coupled with mass spectrometry. Chemosphere 78:224–231PubMedCrossRefGoogle Scholar
  5. Airaki M, Leterrier M, Valderrama R, Chaki M, Begara-Morales JC, Barroso JB, del Río LA, Palma JM, Corpas FJ (2015) Spatial and temporal regulation of the metabolism of reactive oxygen and nitrogen species during the early development of pepper (Capsicum annuum) seedlings. Ann Bot 116:679–693PubMedPubMedCentralCrossRefGoogle Scholar
  6. Anjum NA, Umar S, Chan MT (2010) Ascorbate-glutathione pathway and stress tolerance in plants. Springer, DordrechtCrossRefGoogle Scholar
  7. Anjum NA, Umar S, Ahmad A (2011a) Oxidative stress in plants: causes, consequences and tolerance. IK International Publishing House Pvt. Ltd, New DelhiGoogle Scholar
  8. Anjum NA, Umar S, Iqbal M, Khan NA (2011b) Cadmium causes oxidative stress in moongbean [Vigna radiata (L.) Wilczek] by affecting antioxidant enzyme systems and ascorbate-glutathione cycle metabolism. Russ J Plant Physiol 58:92–99CrossRefGoogle Scholar
  9. Anjum NA, Ahmad I, Mohmood I, Pacheco M, Duarte AC, Pereira E, Umar S, Ahmad A, Khan NA, Iqbal M, Prasad MN (2012) Modulation of glutathione and its related enzymes in plants’ responses to toxic metals and metalloids—a review. Environ Exp Bot 75:307–324Google Scholar
  10. Anjum NA, Sharma P, Gill SS, Hasanuzzaman M, Khan EA, Kachhap K, Mohamed AA, Thangavel P, Devi GD, Vasudhevan P, Sofo A (2016) Catalase and ascorbate peroxidase—representative H2O2-detoxifying heme enzymes in plants. Environ Sci Pollut Res 23:19002–19029CrossRefGoogle Scholar
  11. Battistuzzi G, D’Onofrio M, Loschi L, Sola M (2001) Isolation and characterization of two peroxidases from Cucumis sativus. Arch Biochem Biophys 388:100–112PubMedCrossRefGoogle Scholar
  12. Begum MC, Islam MS, Islam M, Amin R, Parvez MS, Kabir AH (2016) Biochemical and molecular responses underlying differential arsenic tolerance in rice (Oryza sativa L.). Plant Physiol Biochem 104:266–277PubMedCrossRefGoogle Scholar
  13. Bienert GP, Schuessler MD, Jahn TP (2008) Metalloids: essential, beneficial or toxic? Major intrinsic proteins sort it out. Trends Biochem Sci 33:20–26PubMedCrossRefGoogle Scholar
  14. Bleeker PM, Schat H, Vooijs R, Verkleij JAC, Ernst WHO (2003) Mechanisms of arsenate tolerance in Cytisus striatus. New Phytol 157:33–38CrossRefGoogle Scholar
  15. Bona E, Cattaneo C, Cesaro P, Marsano F, Lingua G, Cavaletto M, Berta G (2010) Proteomic analysis of Pteris vittata fronds: two arbuscular mycorrhizal fungi differentially modulate protein expression under arsenic contamination. Proteomics 10:3811–3834PubMedCrossRefGoogle Scholar
  16. Bricker TJ, Pichtel J, Brown HJ, Simmons M (2001) Phytoextraction of Pb and Cd from a superfund soil: effects of amendments and croppings. J Environ Sci Health 36:1597–1610CrossRefGoogle Scholar
  17. Bunkelmann JR, Trelease RN (1996) Ascorbate peroxidase, a prominent membrane protein in oilseed glyoxysomes. Plant Physiol 110:589–598PubMedPubMedCentralCrossRefGoogle Scholar
  18. Burlo F, Guijarro I, Carbonell-Barrachina AA, Valero D, Martinez-Sánchez F (1999) Arsenic species: effects on and accumulation by tomato plants. J Agric Food Chem 7:1247–1253CrossRefGoogle Scholar
  19. Cao X, Ma LQ, Tu C (2004) Antioxidant responses to arsenic in the arsenic-hyperaccumulator Chinese brake fern (Pteris vittata L.). Environ Pollut 128:317–325PubMedCrossRefGoogle Scholar
  20. Carbonell-Barrachina AA, Aarabi MA, DeLaune RD, Gambrell RP, Patrick WH (1998) The influence of arsenic chemical form and concentration on Spartina patens and Spartina alterniflora growth and tissue arsenic concentration. Plant Soil 198:33–43CrossRefGoogle Scholar
  21. Carey AM, Scheckel KG, Lombi E, Newville M, Choi Y, Norton GJ, Charnock JM, Feldmann J, Price AH, Meharg AA (2010) Grain unloading of arsenic species in rice (Oryza sativa L.). Plant Physiol 152:309–319PubMedPubMedCentralCrossRefGoogle Scholar
  22. Carey AM, Norton GJ, Deacon C, Scheckel KG, Lombi E, Punshon T, Guerinot ML, Lanzirotti A, Newville M, Choi Y, Price AH, Meharg AA (2011) Phloem transport of arsenic species from flag leaf to grain during grain filling. New Phytol 192:87–98PubMedPubMedCentralCrossRefGoogle Scholar
  23. Carrasco JA, Armario P, Pajuelo E, Burgos A, Caviedes MA, López R, Chamber MA, Palomares AJ (2005) Isolation and characterisation of symbiotically effective Rhizobium resistant to arsenic and heavy metals after the toxic spill at the Aznalcollar pyrite mine. Soil Biol Biochem 37:1131–1140CrossRefGoogle Scholar
  24. Catarecha P, Segura MD, Franco-Zorrilla JM, García-Ponce B, Lanza M, Solano R, Paz-Ares J, Leyva A (2007) A mutant of the Arabidopsis phosphate trans-porter PHT1;1displays enhanced arsenic accumulation. Plant Cell 19:1123–1133PubMedPubMedCentralCrossRefGoogle Scholar
  25. Caverzan A, Passaia G, Rosa SB, Ribeiro CW, Lazzarotto F, Margis-Pinheiro M (2012) Plant responses to stresses: role of ascorbate peroxidase in the antioxidant protection. Gen Mol Biol 35:1011–1019CrossRefGoogle Scholar
  26. Cesaro P, Cattaneo C, Bona E, Berta G, Cavaletto M (2015) The arsenic hyperaccumulating Pteris vittata expresses two arsenate reductases. Sci Rep 5:14525.  https://doi.org/10.1038/srep14525 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Chakrabarty D, Trivedi PK, Misra P, Tiwari M, Shri M, Shukla D, Kumar S, Rai A, Pandey A, Nigam D, Tripathi RD (2009) Comparative transcriptome analysis of arsenate and arsenite stresses in rice seedlings. Chemosphere 74:688–702PubMedCrossRefGoogle Scholar
  28. Chang CC, Ślesak I, Jordá L, Sotnikov A, Melzer M, Miszalski Z, Mullineaux PM, Parker JE, Karpińska B, Karpiński S (2009) Arabidopsis chloroplastic glutathione peroxidases play a role in cross talk between photooxidative stress and immune responses. Plant Physiol 150:670–683PubMedPubMedCentralCrossRefGoogle Scholar
  29. Chatterjee S, Moogoui R, Gupta DK (2017a) Arsenic: source, occurrence, cycle and detection. In: Gupta DK, Chatterjee S (eds) Arsenic contamination in the environment. Springer, New York, pp 13–35CrossRefGoogle Scholar
  30. Chatterjee S, Sharma S, Gupta DK (2017b) Arsenic and its effect on major crop plants: stationary awareness to paradigm with special reference to rice crop. In: Gupta DK, Chatterjee S, (eds) Arsenic contamination in the environment. Springer New York, pp 123–143CrossRefGoogle Scholar
  31. Chaumont F, Moshelion M, Daniels MJ (2005) Regulation of plant aquaporin activity. Biol Cell 97:749–764PubMedCrossRefPubMedCentralGoogle Scholar
  32. Chen GX, Asada K (1989) APX in tea leaves, occurrence of two isoenzymes, the differences in their enzymatic and molecular properties. Plant Cell Physiol 30:987–998CrossRefGoogle Scholar
  33. Choudhury B, Mitra S, Biswas AK (2010) Regulation of sugar metabolism in rice (Oryza sativa L.) seedlings under arsenate toxicity and its improvement by phosphate. Physiol Mol Biol Plants 16:59–68PubMedPubMedCentralCrossRefGoogle Scholar
  34. Chung JY, Yu SD, Hong YS (2014) Environmental source of arsenic exposure. J Pre Med Pub Health 47:253–257CrossRefGoogle Scholar
  35. Clemens S (2006) Evolution and function of phytochelatin synthases. J Plant Physiol 163:319–332PubMedCrossRefPubMedCentralGoogle Scholar
  36. Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Ann Rev Plant Biol 53:159–182CrossRefGoogle Scholar
  37. Dave R, Singh PK, Tripathi P, Shri M, Dixit G, Dwivedi S, Chakrabarty D, Trivedi PK, Sharma YK, Dhankher OP, Corpas FJ (2013a) Arsenite tolerance is related to proportional thiolic metabolite synthesis in rice (Oryza sativa L.). Arch Environ Contam Toxicol 64:235–242PubMedCrossRefPubMedCentralGoogle Scholar
  38. Dave R, Tripathi RD, Dwivedi S, Tripathi P, Dixit G, Sharma YK, Trivedi PK, Corpas FJ, Barroso JB, Chakrabarty D (2013b) Arsenate and arsenite exposure modulate antioxidants and amino acids in contrasting arsenic accumulating rice (Oryza sativa L.) genotypes. J Hazard Mater 262:1123–1131PubMedCrossRefPubMedCentralGoogle Scholar
  39. Dhankher OP, Li Y, Rosen BP, Shi J, Salt D, Senecoff JF, Sashti NA, Meagher RB (2002) Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and γ-glutamylcysteine synthetase expression. Nat Biotechnol 20:1140.  https://doi.org/10.1038/nbt747 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Dhankher OP, Rosen BP, McKinney EC, Meagher RB (2006) Hyperaccumulation of arsenic in the shoots of Arabidopsis silenced for arsenate reductase (ACR2). Proc Natl Acad Sci USA 103:5413–5418PubMedCrossRefGoogle Scholar
  41. Dietz KJ, Baier M, Krämer U (1999) Free radicals and reactive oxygen species as mediators of heavy metal toxicity in plants. In: Prasad MNV, Hagemeyer J (eds) Heavy metal stress in plants. Springer, Berlin, pp 73–97CrossRefGoogle Scholar
  42. Dong J, Wu F, Zhang G (2006) Influence of cadmium on antioxidant capacity and four microelement concentrations in tomato seedlings (Lycopersicon esculentum). Chemosphere 64:1659–1666PubMedCrossRefGoogle Scholar
  43. Duan GL, Zhu YG, Tong YP, Cai C, Kneer R (2005) Characterization of arsenate reductase in the extract of roots and fronds of Chinese brake fern, an arsenic hyperaccumulator. Plant Physiol 138:461–469PubMedPubMedCentralCrossRefGoogle Scholar
  44. Duman F, Ozturk F, Aydin Z (2010) Biological responses of duckweed (Lemna minor L.) exposed to the inorganic arsenic species As (III) and As (V): effects of concentration and duration of exposure. Ecotoxicology 19:983–993PubMedCrossRefGoogle Scholar
  45. Duquesnoy I, Goupil P, Nadaud I, Branlard G, Piquet-Pissaloux A, Ledoigt G (2009) Identification of Agrostis tenuis leaf proteins in response to As (V) and As (III) induced stress using a proteomics approach. Plant Sci 176:206–213CrossRefGoogle Scholar
  46. Duquesnoy I, Champeau GM, Evray G, Ledoigt G, Piquet-Pissaloux A (2010) Enzymatic adaptations to arsenic-induced oxidative stress in Zea mays and genotoxic effect of arsenic in root tips of Vicia faba and Zea mays. Com Ren Biol 333:814–824CrossRefGoogle Scholar
  47. Dwivedi S, Tripathi RD, Tripathi P, Kumar A, Dave R, Mishra S, Singh R, Sharma D, Rai UN, Chakrabarty D, Trivedi PK (2010) Arsenate exposure affects amino acids, mineral nutrient status and antioxidants in rice (Oryza sativa L.) genotypes. Environ Sci Tech 44:9542–9549CrossRefGoogle Scholar
  48. Ellis DR, Gumaelius L, Indriolo E, Pickering IJ, Banks JA, Salt DE (2006) A novel arsenate reductase from the arsenic hyperaccumulating fern Pteris vittata. Plant Physiol 141:1544–1554PubMedPubMedCentralCrossRefGoogle Scholar
  49. Esteban E, Carpena RO, Meharg AA (2003) High-affinity phosphate/arsenate transport in white lupin (Lupinus albus) is relatively in sensitive to phosphate status. New Phytol 158:165–173CrossRefGoogle Scholar
  50. Finnegan PM, Chen W (2012) Arsenic toxicity: the effects on plant metabolism. Front Physiol 3:182.  https://doi.org/10.3389/fphys.2012.00182 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. The Plant Cell 17:1866–1875PubMedPubMedCentralCrossRefGoogle Scholar
  52. Freeman JL, Persans MW, Nieman K, Albrecht C, Peer W, Pickering IJ, Salt DE (2004) Increased glutathione biosynthesis plays a role in nickel tolerance in Thlaspi nickel hyperaccumulators. The Plant Cell 16:2176–2191PubMedPubMedCentralCrossRefGoogle Scholar
  53. Gapper C, Dolan L (2006) Control of plant development by reactive oxygen species. Plant Physiol 141:341–345PubMedPubMedCentralCrossRefGoogle Scholar
  54. Gasic K, Korban SS (2007) Transgenic Indian mustard (Brassica juncea) plants expressing an Arabidopsis phytochelatin synthase (AtPCS1) exhibit enhanced As and Cd tolerance. Plant Mol Biol 64:361–369PubMedCrossRefGoogle Scholar
  55. Ghelfi A, Gaziola SA, Cia MC, Chabregas SM, Falco MC, Kuser-Falcão PR, Azevedo RA (2011) Cloning, expression, molecular modelling and docking analysis of glutathione transferase from Saccharum officinarum. Ann Appl Biol 159:267–280CrossRefGoogle Scholar
  56. Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930PubMedCrossRefGoogle Scholar
  57. Gong H, Zhu X, Chen K, Wang S, Zhang C (2005) Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Sci 169:313–321CrossRefGoogle Scholar
  58. Grill E, Mishra S, Srivastava S, Tripathi RD (2006) Role of phytochelatins in phytoremediation of heavy metals. In: Singh SN, Tripathi RD (eds) Environmental bioremediation technologies. Springer, Berlin, pp 101–146Google Scholar
  59. Gunes A, Pilbeam DJ, Inal A (2009) Effect of arsenic–phosphorus interaction on arsenic-induced oxidative stress in chickpea plants. Plant Soil 314:211–220CrossRefGoogle Scholar
  60. Guo J, Dai X, Xu W, Ma M (2008) Overexpressing GSH1 and AsPCS1 simultaneously increases the tolerance and accumulation of cadmium and arsenic in Arabidopsis thaliana. Chemosphere 72:1020–1026PubMedCrossRefGoogle Scholar
  61. Gupta DK, Chatterjee S (2017) Arsenic contamination in the environment: the issues and solutions. Springer, New YorkCrossRefGoogle Scholar
  62. Gupta DK, Srivastava S, Huang H, Romero-Puertas MC, Sandalio LM (2011) Arsenic tolerance and detoxification mechanisms in plants. In: Sherameti I, Varma A (eds) Detoxification of heavy metals (Book series: Soil biology). Springer, Berlin, pp 169–180CrossRefGoogle Scholar
  63. Gupta DK, Inouhe M, Rodríguez-Serrano M, Romero-Puerta MC, Sandalio LM (2013a) Oxidative stress and arsenic toxicity: role of NADPH oxidases. Chemosphere 90:1987–1996PubMedCrossRefGoogle Scholar
  64. Gupta DK, Huang HG, Nicoloso FT, Schetinger MR, Farias JG, Li TQ, Razafindrabe BH, Aryal N, Inouhe M (2013b) Effect of Hg, As and Pb on biomass production, photosynthetic rate, nutrients uptake and phytochelatin induction in Pfaffia glomerata. Ecotoxicology 22:1403–1412PubMedCrossRefGoogle Scholar
  65. Gupta DK, Vandenhove H, Inouhe M (2013c) Role of phytochelatin in heavy metal stress and detoxification mechanisms in plants. In: Gupta DK, Corpas FJ, Palma JM (eds) Heavy metal stress in plants. Springer, Berlin, pp 73–94CrossRefGoogle Scholar
  66. Gupta DK, Tiwari S, Razafindrabe BHN, Chatterjee S (2017) Arsenic contamination from historical aspects till present situation. In: Gupta DK, Chatterjee S (eds) Arsenic contamination in the environment: the issues and solutions. Springer, New York, pp 1–12CrossRefGoogle Scholar
  67. Ha SB, Smith AP, Howden R, Dietrich WM, Bugg S, O’Connell MJ, Goldsbrough PB, Cobbett CS (1999) Phytochelatin synthase genes from Arabidopsis and the yeast Schizosaccharomyces pombe. The Plant Cell 11:1153–1163PubMedPubMedCentralCrossRefGoogle Scholar
  68. Hartley-Whitaker J, Ainsworth G, Meharg A (2001) Copper and- arsenic induced oxidative stress in Holcus lanatus L. Cloned with differential sensitivity. Plant Cell Environ 24:713–722CrossRefGoogle Scholar
  69. Hasanuzzaman M, Fujita M (2011) Selenium pretreatment upregulates the antioxidant defense and methylglyoxal detoxification system and confers enhanced tolerance to drought stress in rapeseed seedlings. Biol Trace Elem Res 143:1758–1776PubMedCrossRefGoogle Scholar
  70. Hasanuzzaman M, Hossain MA, Fujita M (2011a) Selenium-induced up-regulation of the antioxidant defense and methylglyoxal detoxifi cation system reduces salinity-induced damage in rapeseed seedlings. Biol Trace Elem Res 143:1704–1721PubMedCrossRefGoogle Scholar
  71. Hasanuzzaman M, Hossain MA, Fujita M (2011b) Nitric oxide modulates antioxidant defense and the methylglyoxal detoxifi cation system and reduces salinity-induced damage of wheat seedlings. Plant Biotechnol Rep 5:353.  https://doi.org/10.1007/s11816-011-0189-9 CrossRefGoogle Scholar
  72. Hasanuzzaman M, Hossain MA, Teixeira da Silva JA, Fujita M (2012) Plant response and tolerance to abiotic oxidative stress: antioxidant defense is a key factor. In: Venkateswarlu B, Shanker A, Shanker C, Maheswari M (eds) Crop stress and its management: perspectives and strategies. Springer, Berlin, pp 261–317CrossRefGoogle Scholar
  73. Herbette S, Lenne C, Leblanc N, Julien JL, Drevet JR, Roeckel-Drevet P (2002) Two GPX-like proteins from Lycopersicon esculentum and Helianthus annuus are antioxidant enzymes with phospholipid hydroperoxide glutathione peroxidase and thioredoxin peroxidase activities. Eur J Biochem 269:2414–2420PubMedCrossRefGoogle Scholar
  74. Iqbal A, Yabuta Y, Takeda T, Nakano Y, Shigeoka S (2006) Hydroperoxide reduction by thioredoxin-specific glutathione peroxidase isoenzymes of Arabidopsis thaliana. The FEBS J 273:5589–5597PubMedCrossRefGoogle Scholar
  75. Isayenkov SV, Maathuis FJM (2008) The Arabidopsis thaliana aquaglyceroporin AtNIP7;1 is a pathway for arsenite uptake. FEBS Lett 582:1625–1628PubMedCrossRefGoogle Scholar
  76. Islam E, Khan MT, Irem S (2015) Biochemical mechanisms of signaling: perspectives in plants under arsenic stress. Ecotoxicol Environ Safe 114:126–133CrossRefGoogle Scholar
  77. Jozefczak M, Remans T, Vangronsveld J, Cuypers A (2012) Glutathione is a key player in metal-induced oxidative stress defenses. Int J Mol Sci 13:3145–3175PubMedPubMedCentralCrossRefGoogle Scholar
  78. Katsuhara M, Sasano S, Horie T, Matsumoto T, Rhee J, Shibasaka M (2014) Functional and molecular characteristics of rice and barley NIP aquaporins transporting water, hydrogen peroxide and arsenite. Plant Biotechnol 31:213–219CrossRefGoogle Scholar
  79. Khan I, Ahmad A, Iqbal M (2009) Modulation of antioxidant defence system for arsenic detoxification in Indian mustard. Ecotoxicol Environ Safe 72:626–634CrossRefGoogle Scholar
  80. del Río LA (2015) ROS and RNS in plant physiology: an overview. J Exp Bot 66:2827–2837PubMedCrossRefGoogle Scholar
  81. Lafuente A, Pajuelo E, Caviedes MA, Rodríguez-Llorente ID (2010) Reduced nodulation in alfalfa induced by arsenic correlates with altered expression of early nodulins. J Plant Physiol 167:286–291PubMedCrossRefGoogle Scholar
  82. Lei M, Tie B, Zeng M, Qing P, Song Z, Williams PN, Huang Y (2013) An arsenic-contaminated field trial to assess the uptake and translocation of arsenic by genotypes of rice. Environ Geochem Health 35:379–390PubMedCrossRefGoogle Scholar
  83. Lemos Batista B, Nigar M, Mestrot A, Alves Rocha B, Barbosa Junior F, Price AH, Raab A, Feldmann J (2014) Identification and quantification of phytochelatins in roots of rice to long-term exposure: evidence of individual role on arsenic accumulation and translocation. J Exp Bot 65:1467–1479PubMedCentralCrossRefPubMedGoogle Scholar
  84. Li WX, Chen TB, Huang ZC, Lei M, Liao XY (2006) Effect of arsenic on chloroplast ultrastructure and calcium distribution in arsenic hyperaccumulator Pteris vittata L. Chemosphere 62:803–809PubMedCrossRefGoogle Scholar
  85. Li RY, Ago Y, Liu WJ, Mitani N, Feldmann J, Mc Grath SP, Ma JF, Zhao FJ (2009) The rice aquaporin Lsi1mediates uptake of methylated arsenic species. Plant Physiol 150:2071–2080PubMedPubMedCentralCrossRefGoogle Scholar
  86. Li N, Wang J, Song WY (2016) Arsenic uptake and translocation in plants. Plant Cell Physiol 57:4–13PubMedCrossRefGoogle Scholar
  87. Li Z, Han X, Song X, Zhang Y, Jiang J, Han Q, Liu M, Qiao G, Zhuo R (2017) Overexpressing the Sedum alfredii Cu/Zn superoxide dismutase increased resistance to oxidative stress in transgenic Arabidopsis. Front Plant Sci 8:1010.  https://doi.org/10.3389/fpls.2017.01010 CrossRefPubMedPubMedCentralGoogle Scholar
  88. Liu WJ, Wood BA, Raab A, McGrath SP, Zhao FJ, Feldmann J (2010) Complexation of arsenite with phytochelatins reduces arsenite efflux and translocation from roots to shoots in Arabidopsis. Plant Physiol 152:2211–2221PubMedPubMedCentralCrossRefGoogle Scholar
  89. Lopez-Huertas E, del Rio LA (2014) Characterization of antioxidant enzymes and peroxisomes of olive (Olea europaea L) fruits. J Plant Physiol 171:1463–1471PubMedCrossRefGoogle Scholar
  90. Ma JF, Yamaji N, Mitani N, Xu XY, Su YH, McGrath SP, Zhao FJ (2008) Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Pro Nat Acad Sci USA 105:9931–9935CrossRefGoogle Scholar
  91. Madhusudhan R, Ishikawa T, Sawa Y, Shigeoka S, Shibata H (2003) Characterization of an ascorbate peroxidase in plastids of tobacco BY–2 cells. Physiol Plant 117:550–557PubMedCrossRefGoogle Scholar
  92. Mallick S, Sinam G, Sinha S (2011) Study on arsenate tolerant and sensitive cultivars of Zea mays L. Differential detoxification mechanism and effect on nutrients status. Ecotoxicol Environ Saf 74:1316–1324PubMedCrossRefGoogle Scholar
  93. Marin AR, Masscheleyn PH, Patrick WH (1993) Soil redox-pH stability of arsenic species and its influence on arsenic uptake by rice. Plant Soil 152:245–253CrossRefGoogle Scholar
  94. Marrs KA (1996) The functions and regulation of glutathione S-transferases in plants. l. Annu Rev Plant Biol 47:127–158CrossRefGoogle Scholar
  95. Mascher R, Lippman B, Holiinger S, Bergmann H (2002) Arsenate toxicity: effects on oxidative stress response molecules and enzymes in red clover plants. Plant Sci 163:961–969CrossRefGoogle Scholar
  96. Matschullat J (2000) Arsenic in the geosphere – a review. Sci Total Environ 249:297–312PubMedCrossRefGoogle Scholar
  97. Maurel C, Verdoucq L, Luu DT, Santoni V (2008) Plant aquaporins: membrane channels with multiple integrated functions. Annu Rev Plant Biol 59:595–624PubMedCrossRefGoogle Scholar
  98. Meharg AA, Hartley-Whitaker J (2002) Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. New Phytol 154:29–43CrossRefGoogle Scholar
  99. Meharg AA, Macnair MR (1992) Suppression of the high-affinity phosphate uptake system: a mechanism of arsenate tolerance in Holcus lanatus L. J Exp Bot 43:519–524CrossRefGoogle Scholar
  100. Meharg C, Meharg AA (2015) Silicon, the silver bullet for mitigating biotic and abiotic stress, and improving grain quality, in rice? Environ Exp Bot 120:8–17CrossRefGoogle Scholar
  101. Meharg AA, Naylor J, Macnair MR (1994) Phosphorus nutrition of arsenate tolerant and nontolerant phenotypes of velvetgrass. J Environ Qual 23:234–238CrossRefGoogle Scholar
  102. Mehlhorn H (1990) Ethylene-promoted ascorbate peroxidase activity protects plants against hydrogen peroxide, ozone and paraquat. Plant Cell Environ 13:971–976CrossRefGoogle Scholar
  103. Mendoza-Cózat DG, Jobe TO, Hauser F, Schroeder JI (2011) Long-distance transport, vacuolar sequestration, tolerance, and transcriptional responses induced by cadmium and arsenic. Curr Opin Plant Biol 14:554–562CrossRefGoogle Scholar
  104. Mihucz VG, Tatar E, Virag I, Cseh E, Fodor F, Zaray G (2005) Arsenic speciation in xylem sap of cucumber (Cucumis sativus L.). Anal Bio Chem 383:461–466CrossRefGoogle Scholar
  105. Milla MA, Maurer A, Huete AR, Gustafson JP (2003) Glutathione peroxidase genes in Arabidopsis are ubiquitous and regulated by abiotic stresses through diverse signaling pathways. The Plant J 36:602–615CrossRefGoogle Scholar
  106. Millar AH, Mittova V, Kiddle G (2003) Control of ascorbate synthesis by respiration and its implications for stress responses. Plant Physiol 133:443–447PubMedPubMedCentralCrossRefGoogle Scholar
  107. Mishra S, Dubey RS (2006) Inhibition of ribonuclease and protease activities in arsenic exposed rice seedlings: role of proline as enzyme protectant. J Plant Physiol 163:927–936PubMedCrossRefGoogle Scholar
  108. Mishra P, Dubey RS (2013) Excess nickel modulates activities of carbohydrate metabolizing enzymes and induces accumulation of sugars by upregulating acid invertase and sucrose synthase in rice seedlings. Biometals 26:97–111PubMedCrossRefGoogle Scholar
  109. Mishra S, Wellenreuther G, Mattusch J, Stark HJ, Kupper H (2008) Speciation and Distribution of arsenic in the nonhyperaccumulator macrophyte Ceratophyllum demersum. Plant Physiol 163:1396–1408CrossRefGoogle Scholar
  110. Miteva E, Peycheva S (1999) Arsenic accumulation and effect on peroxidase activity in green bean and tomatoes. Bulg J Agric Sci 5:737–740Google Scholar
  111. Mithöfer A, Schulze B, Boland W (2004) Biotic and heavy metal stress response in plants: evidence for common signals. FEBS Lett 566:1–5PubMedCrossRefGoogle Scholar
  112. Mitra A, Chatterjee S (2016) Environmental amelioration using aquatic macrophytes: emphasizing removal of heavy metals from waste water. South Asian J Exp Biol 5:244–250Google Scholar
  113. Mitra A, Chatterjee S, Datta S, Sharma S, Veer V, Razafindrabe BHM, Walther C, Gupta DK (2014) Mechanism of metal transporter in plants. In: Gupta DK, Chatterjee S (eds) Heavy metal remediation transport and accumulation in plants. Nova Science Publishers, New York, pp 1–27Google Scholar
  114. Mitra A, Chatterjee S, Gupta DK (2017a) Uptake, transport, and remediation of arsenic by Algae and higher plants. In: Gupta DK, Chatterjee S (eds) Arsenic contamination in the environment: the issues and solution. Springer, New York, pp 145–169CrossRefGoogle Scholar
  115. Mitra A, Chatterjee S, Moogouei R, Gupta DK (2017b) Arsenic accumulation in rice and probable mitigation approaches: a review. Agronomy 7:67.  https://doi.org/10.3390/agronomy7040067 CrossRefGoogle Scholar
  116. Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410PubMedCrossRefGoogle Scholar
  117. Miyake C, Asada K (1996) Inactivation of mechanism of ascorbate peroxidase at low concentrations of ascorbate, hydrogen peroxide decomposes compound I of ascorbate peroxidase. Plant Cell Physiol 37:423–430CrossRefGoogle Scholar
  118. Mokgalaka-Matlala NS, Flores-Tavizon E, Castillo-Michel H, Peralta-Videa JR, Gardea-Torresdey JL (2009) Arsenic tolerance in mesquite (Prosopis sp.): low molecular weight thiols synthesis and glutathione activity in response to arsenic. Plant Physiol Biochem 47:822–826PubMedCrossRefGoogle Scholar
  119. Moller IM, Jensen PE, Hansson A (2007) Oxidative modifications to cellular components in plants. Annu Rev Plant Biol 58:459–481PubMedCrossRefGoogle Scholar
  120. Montes-Bayon M, Meija J, LeDuc DL, Terry N, Caruso JA, Sanz-Medel A (2004) HPLC–ICP-MS and ESI-Q-TOF analysis of biomolecules induced in Brassica juncea during arsenic accumulation. J Anal At Spectrom 19:153–158CrossRefGoogle Scholar
  121. Mullineaux PM, Rausch T (2005) Glutathione, photosynthesis and the redox regulation of stress-responsive gene expression. Photosynth Res 86:459–474PubMedCrossRefGoogle Scholar
  122. Munoz-Bertomeu J, Cascales-Minana B, Mulet JM, Baroja-Fernández E, Pozueta-Romero J, Kuhn JM, Segura J, Ros R (2009) Plastidial glyceraldehyde-3-phosphate dehydrogenase deficiency leads to altered root development and affects the sugar and amino acid balance in Arabidopsis. Plant Physiol 151:541–558PubMedPubMedCentralCrossRefGoogle Scholar
  123. Mylona PV, Polidoros AN, Scandalios JG (1998) Modulation of antioxidant responses by arsenic in maize. Free Radic Biol Med 25:576–585PubMedCrossRefGoogle Scholar
  124. Navrot N, Collin V, Gualberto J, Gelhaye E, Hirasawa M, Rey P, Knaff DB, Issakidis E, Jacquot JP, Rouhier N (2006) Plant glutathione peroxidases are functional peroxiredoxins distributed in several subcellular compartments and regulated during biotic and abiotic stresses. Plant Physiol 142:1364–1379PubMedPubMedCentralCrossRefGoogle Scholar
  125. Neill SJ, Desikan R, Clarke A, Hurst RD, Hancock JT (2002) Hydrogen peroxide and nitric oxide as signaling molecules in plants. J Exp Bot 53:1237–1247PubMedCrossRefGoogle Scholar
  126. Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol 49:249–279CrossRefGoogle Scholar
  127. Noctor G, Queval G, Mhamdi A, Chaouch S, Foyer CH (2011) Glutathione. In: The Arabidopsis Book. The American Society of Plant Biologists, RockvilleGoogle Scholar
  128. Noctor G, Mhamdi A, Foyer CH (2016) Oxidative stress and antioxidative systems: recipes for successful data collection and interpretation. Plant Cell Environ 39:1140–1160PubMedCrossRefGoogle Scholar
  129. Norton GJ, Lou-Hing DE, Meharg AA, Price AH (2008) Rice–arsenate interactions in hydroponics: whole genome transcriptional analysis. J Exp Bot 59:2267–2276PubMedPubMedCentralCrossRefGoogle Scholar
  130. Ogawa KI, Hatano-Iwasaki A, Yanagida M, Iwabuchi M (2004) Level of glutathione is regulated by ATP-dependent ligation of glutamate and cysteine through photosynthesis in Arabidopsis thaliana: mechanism of strong interaction of light intensity with flowering. Plant Cell Physiol 45:1–8PubMedCrossRefGoogle Scholar
  131. Pajuelo E, Rodríguez-Llorente ID, Dary M, Palomares AJ (2008) Toxic effects of arsenic on Sinorhizobium–Medicago sativa symbiotic interaction. Environ Poll 154:203–211CrossRefGoogle Scholar
  132. Panda SK, Upadhyay RK, Nath S (2010) Arsenic stress in plants. J Agron Crop Sci 196:161–174CrossRefGoogle Scholar
  133. Patra M, Bhowmik N, Bandopadhyay B, Sharma A (2004) Comparison of mercury, lead and arsenic with respect to genotoxic effects on plant systems and the development of genetic tolerance. Environ Exp Bot 52:199–223CrossRefGoogle Scholar
  134. Pavlík M, Pavlíkova D, Staszkova L, Neuberg M, Kaliszova R, Szákova J, Tlustos P (2010) The effect of arsenic contamination on amino acids metabolism in Spinacia oleracea L. Ecotoxicol Environ Saf 73:1309–1313PubMedCrossRefGoogle Scholar
  135. Pickering IJ, Prince RC, George MJ, Smith RD, George GN, Salt DE (2000) Reduction and coordination of arsenic in Indian mustard. Plant Physiol 122:1171–1177PubMedPubMedCentralCrossRefGoogle Scholar
  136. Pickering IJ, Gumaelius L, Harris HH, Prince RC, Hirsch G, Banks JA, Salt DE, George GN (2006) Localizing the biochemical transformations of arsenate in a hyperaccumulating fern. Environ Sci Technol 40:5010–5014PubMedCrossRefGoogle Scholar
  137. Poynton CY, Huang JWW, Blaylock MJ, Kochian LV, Elless MP (2004) Mechanisms of arsenic hyperaccumulation in Pteris species: root As influx and translocation. Planta 219:1080–1088PubMedCrossRefGoogle Scholar
  138. Qadir S, Qureshi MI, Javed S, Abdin MZ (2004) Genotypic variation in phytoremediation potential of Brassica juncea cultivars exposed to Cd stress. Plant Sci 167:1171–1181CrossRefGoogle Scholar
  139. Quaghebeur M, Rengel Z (2004) Arsenic uptake, translocation and speciation in pho1 and pho2 mutants of Arabidopsis thaliana. Physiol Plant 120:280–286PubMedCrossRefGoogle Scholar
  140. Raab A, Feldmann J, Meharg AA (2004) The nature of arsenic–phytochelatin complexes in Holcus lanatus and Pteris cretica. Plant Physiol 134:1113–1122PubMedPubMedCentralCrossRefGoogle Scholar
  141. Raab A, Schat H, Feldmann J, Meharg AA (2005) Uptake, translocation and transformation of arsenate and arsenite in sunflower (Helianthus annuus): formation of arsenic–phytochelatin complexes during exposure to high arsenic concentrations. New Phytol 168:551–558PubMedCrossRefGoogle Scholar
  142. Raab A, Williams PN, Meharg A, Feldmann J (2007) Uptake and translocation of inorganic and methylated arsenic species by plants. Environ Chem 4:197–203CrossRefGoogle Scholar
  143. Rahman MA, Hasegawa H (2011) Aquatic arsenic: phytoremediation using floating macrophytes. Chemosphere 83:633–646PubMedCrossRefGoogle Scholar
  144. Rahman MA, Hasegawa H, Rahman MM, Miah MM, Tasmin A (2008) Arsenic accumulation in rice (Oryza sativa L.): human exposure through food chain. Ecotoxicol Environ Saf 69:317–324CrossRefGoogle Scholar
  145. Rathinasabapathi B, Ma LQ, Srivastava M (2006) Arsenic hyperaccumulating ferns and their application to phytoremediation of arsenic contaminated sites. In: da Silva JAT (ed) Floriculture, ornamental and plant biotechnology, vol III. Global Science Books, Middlesex, pp 304–311Google Scholar
  146. Requejo R, Tena M (2005) Proteome analysis of maize roots reveals that oxidative stress is a main contributing factor to plant arsenic toxicity. Phytochemistry 66:1519–1528PubMedCrossRefGoogle Scholar
  147. Schat H, Llugany M, Vooijs R, Hartley-Whitaker J, Bleeker PM (2002) The role of phytochelatins in constitutive and adaptive heavy metal tolerances in hyperaccumulator and nonhyperaccumulator metallophytes. J Exp Bot 53:2381–2392PubMedCrossRefGoogle Scholar
  148. Schmoger MEV, Oven M, Grill E (2000) Detoxification of arsenic by phytochelatins in plants. Plant Physiol 122:793–801PubMedPubMedCentralCrossRefGoogle Scholar
  149. Schulz H, Härtling S, Tanneberg H (2008) The identification and quantification of arsenic-induced phytochelatins—comparison between plants with varying As sensitivities. Plant Soil 303:275–287CrossRefGoogle Scholar
  150. Sharma I (2012) Arsenic induced oxidative stress in plants. Biologia 67:447–453CrossRefGoogle Scholar
  151. Sharma P, Dubey RS (2004) APX from rice seedlings, properties of enzyme isoforms, effects of stresses and protective roles of osmolytes. Plant Sci 167:541–550CrossRefGoogle Scholar
  152. Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012:1.  https://doi.org/10.1155/2012/217037 CrossRefGoogle Scholar
  153. Sheehan D, Meade G, Foley VM (2001) Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochem J 360:1–6PubMedPubMedCentralCrossRefGoogle Scholar
  154. Shi H, Shi X, Liu KJ (2004) Oxidative mechanism of arsenic toxicity and carcinogenesis. Mol Cell Biochem 255:67–78PubMedCrossRefPubMedCentralGoogle Scholar
  155. Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y, Yoshimura K (2002) Regulation and function of ascorbate peroxidase isoenzymes. J Exp Bot 53:1305–1319PubMedCrossRefPubMedCentralGoogle Scholar
  156. Shin H, Shin HS, Dewbre GR, Harrison MJ (2004) Phosphate transport in Arabidopsis: Pht1;1 and Pht1;4 play a major role in phosphate acquisition from both low- and high-phosphate environments. Plant J 39:629–642PubMedCrossRefPubMedCentralGoogle Scholar
  157. Shri M, Kumar S, Chakrabarty D, Trivedi PK, Mallick S, Misra P, Shukla D, Mishra S, Srivastava S, Tripathi RD, Tuli R (2009) Effect of arsenic on growth, oxidative stress, and antioxidant system in rice seedlings. Ecotoxicol Environ Saf 72:1102–1110PubMedCrossRefPubMedCentralGoogle Scholar
  158. Shugaev AG, Lashtabega DA, Shugaeva NA, Vyskrebentseva EI (2011) Activities of antioxidant enzymes in mitochondria of growing and dormant sugar beet roots. Russ J Plant Physiol 58:387–393CrossRefGoogle Scholar
  159. Simola LK (1997) The effect of lead, cadmium, arsenate and fluoride ions on the growth and fine structure of Sphagnum nemoreum in aseptic culture. Can J Bot 90:375–405Google Scholar
  160. Singh N, Ma LQ, Srivastava M, Rathinasabapathi B (2006) Metabolic adaptations to arsenic-induced oxidative stress in Pteris vittata L. and Pteris ensiformis L. Plant Sci 170:274–282CrossRefGoogle Scholar
  161. Singh HP, Batish DR, Kohali RK, Arora K (2007) Arsenic induced root growth inhibition in mung bean (Phaseolus aureus Roxb.) is due to oxidative stress resulting from enhanced lipid peroxidation. Plant Growth Regul 53:65–73CrossRefGoogle Scholar
  162. Singh AP, Dixit G, Mishra S, Dwivedi S, Tiwari M, Mallick S, Pandey V, Trivedi PK, Chakrabarty D, Tripathi RD (2015) Salicylic acid modulates arsenic toxicity by reducing its root to shoot translocation in rice (Oryza sativa L.). Front. Plant Sci 6:340.  https://doi.org/10.3389/fpls.2015.00340 CrossRefGoogle Scholar
  163. Song WY, Park J, Mendoza-Cózatl DG, Suter-Grotemeyer M, Shim D, Hörtensteiner S, Geisler M, Weder B, Rea PA, Rentsch D, Schroeder JI (2010) Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters. Proc Nat Acad Sci 107:21187–21192PubMedCrossRefPubMedCentralGoogle Scholar
  164. Srivastava S, Tripathi RD, Dwivedi UN (2004) Synthesis of phytochelatins and modulation of antioxidants in response to cadmium stress in Cuscuta reflexa–an angiospermic parasite. J Plant Phsiol 161:665–674CrossRefGoogle Scholar
  165. Srivastava M, Ma LQ, Singh N, Singh S (2005) Antioxidant responses of hyper-accumulator and sensitive fern species to arsenic. J Exp Bot 56:1335–1342PubMedCrossRefGoogle Scholar
  166. Srivastava S, Mishra S, Trtpathi RD, Dwivedi S, Trivedi PK, Tandon PK (2007) Phytochelatins and antioxidant systems respond differentially during arsenite and arsenate stress in Hydrilla verticillata (L.f.) Royle. Environ Sci Technol 41:2930–2936PubMedCrossRefGoogle Scholar
  167. Srivastava S, Srivastava AK, Suprasanna P, D’souza SF (2009) Comparative biochemical and transcriptional profiling of two contrasting varieties of Brassica juncea L. in response to arsenic exposure reveals mechanisms of stress perception and tolerance. J Exp Bot 60:3419–3431PubMedCrossRefGoogle Scholar
  168. Stoeva N, Bineva T (2003) Oxidative changes and photosynthesis in oat plants grown in As-contaminated soil. Bulg J Plant Physiol 29:87–95Google Scholar
  169. Stoeva N, Berova M, Vassilev A, Zlatev Z (2005) Effect of exogenous polyamine diethylenetriamine on oxidative changes and photosynthesis in As-treated maize plants (Zea mays L). J Cent Eur Agric 6:367–374Google Scholar
  170. Su YH, McGrath SP, Zhu YG, Zhao FJ (2008) Highly efficient xylem transport of arsenite in the arsenic hyperaccumulator Pteris vittata. New Phytol 180:434–441PubMedCrossRefGoogle Scholar
  171. Su Y, Guo J, Ling H, Chen S, Wang S, Xu L, Allan AC, Que Y (2014) Isolation of a novel peroxisomal catalase gene from sugarcane, which is responsive to biotic and abiotic stresses. PLoS One 9:e84426.  https://doi.org/10.1371/journal.pone.0084426 CrossRefPubMedPubMedCentralGoogle Scholar
  172. Sung DY, Kim TH, Komives EA, Mendoza-Cozatl DG, Schroeder JI (2009) ARS5 is a component of the 26S proteasome complex, and negatively regulates thiol biosynthesis and arsenic tolerance in Arabidopsis. The Plant J 59:802–813PubMedCrossRefGoogle Scholar
  173. Takahashi H, Kopriva S, Giordano M, Saito K, Hell R (2011) Sulfur assimilation in photosynthetic organisms: molecular functions and regulations of transporters and assimilatory enzymes. Annu Rev Plant Biol 62:157–184PubMedCrossRefPubMedCentralGoogle Scholar
  174. Talukdar D (2011) Effect of arsenic-induced toxicity on morphological traits of Trigonella foenum-graecum L. and Lathyrus sativus L. during germination and early seedling growth. Curr Res J Biol Sci 3:116–123Google Scholar
  175. Talukdar D (2013a) Arsenic-induced changes in growth and antioxidant metabolism of fenugreek. Russ J Plant Physiol 60:652–660CrossRefGoogle Scholar
  176. Talukdar D (2013b) Arsenic-induced oxidative stress in the common bean legume, Phaseolus vulgaris L. seedlings and its amelioration by exogenous nitric oxide. Physiol Mol Biol Plants 19:69–79PubMedCrossRefGoogle Scholar
  177. Titah HS, Abdullah SR, Mushrifah I, Anuar N, Basri H, Mukhlisin M (2013) Effect of applying rhizobacteria and fertilizer on the growth of Ludwigia octovalvis for arsenic uptake and accumulation in phytoremediation. Ecol Engin 58:303–313CrossRefGoogle Scholar
  178. Tripathi RD, Srivastava S, Mishra S, Singh N, Tuli R, Gupta DK, Matthuis FJM (2007) Arsenic hazards: strategies for tolerance and remediation by plants. Trends Biotechnol 25:158–165PubMedCrossRefGoogle Scholar
  179. Tripathi RD, Tripathi P, Dwivedi S, Dubey S, Chatterjee S, Chakrabarty D, Trivedi PK (2012) Arsenomics: omics of arsenic metabolism in plants. Front Physiol 3:275.  https://doi.org/10.3389/fphys.2012.00275 CrossRefPubMedPubMedCentralGoogle Scholar
  180. Tu C, Ma LQ (2003) Interactive effects of pH, arsenic and phosphorus on uptake of As and P and growth of the arsenic hyper accumulator Pteris vittata L. under hydroponic conditions. Environ Exp Bot 50:243–251CrossRefGoogle Scholar
  181. Ullrich-Eberius CI, Sanz A, Novacky AJ (1989) Evaluation of arsenate- and vanadate-associated changes of electrical membrane potential and phosphate transport in Lemna gibba G1. J Exp Bot 40:119–128CrossRefGoogle Scholar
  182. Upadhyay RK (2014) Metal stress in plants: its detoxification in natural environment. Brazil J Bot 37:377–382CrossRefGoogle Scholar
  183. Van Breusegem F, Dat JF (2006) Reactive oxygen species in plant cell death. Plant Physiol 141:384–390PubMedPubMedCentralCrossRefGoogle Scholar
  184. Vatamaniuk OK, Mari S, Lang A, Chalasani S, Demkiv LO, Rea PA (2004) Phytochelatin Synthase, a dipeptidyltransferase that undergoes multisite acylation with γ- glutamylcysteine during catalysis: stoichiometric and site-directed mutagenic analysis of Arabidopsis thaliana pcs1-catalyzed phytochelatin synthesis. J Biol Chem 279:22449–22460PubMedCrossRefGoogle Scholar
  185. Vaughan GT (1993) The environmental chemistry and fate of arsenical pesticides in cattle tick dip sites and banana land plantations. CSIRO Division of Coal Industry. Center for Advanced Analytical Chemistry, MelbourneGoogle Scholar
  186. Vernoux T, Wilson RC, Seeley KA, Reichheld JP, Muroy S, Brown S, Maughan SC, Cobbett CS, Van Montagu M, Inzé D, May MJ (2000) The root meristemless1/cadmium sensitive 2 gene defines a glutathione-dependent pathway involved in initiation and maintenance of cell division during postembryonic root development. Plant Cell 12:97–109PubMedPubMedCentralCrossRefGoogle Scholar
  187. Wallace IS, Choi WG, Roberts DM (2006) The structure, function and regulation of the nodulin 26-like intrinsic protein family of plant aquaglyceroporins. Biochim Biophys Acta Biomembr 1758:1165–1175CrossRefGoogle Scholar
  188. Wang JR, Zhao FJ, Meharg AA, Raab A, Feldmann J, McGrath SP (2002) Mechanisms of arsenic hyperaccumulation in Pteris vittata. Uptake kinetics, interactions with phosphate, and arsenic speciation. Plant Physiol 130:1552–1561PubMedPubMedCentralCrossRefGoogle Scholar
  189. Wu Z, Ren H, McGrath SP, Wu P, Zhao FJ (2011) Investigating the contribution of the phosphate transport pathway to arsenic accumulation in rice. Plant Physiol 157:498–508PubMedPubMedCentralCrossRefGoogle Scholar
  190. Xu XY, McGrath SP, Zhao FJ (2007) Rapid reduction of arsenate in the medium mediated by plant roots. New Phytol 176:590–599PubMedCrossRefGoogle Scholar
  191. Yadav SK (2010) Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. SA J Bot 76:167–179CrossRefGoogle Scholar
  192. Yadav P, Yadav T, Kumar S, Rani B, Kumar S, Jain V, Malhotra SP (2014) Partial purification and characterization of ascorbate peroxidase from ripening ber (Ziziphus mauritiana L.) fruits. Afr J Biotechnol 13:3323–3331CrossRefGoogle Scholar
  193. Yu LJ, Luo YF, Liao B, Xie LJ, Chen L, Xiao S, Li JT, Hu SN, Shu WS (2012) Comparative transcriptome analysis of transporters, phytohormone and lipid metabolism pathways in response to arsenic stress in rice (Oryza sativa). New Phytol 195:97–112PubMedCrossRefGoogle Scholar
  194. Zaman K, Pardini RS (1996) An overview of the relationship between oxidative stress and mercury and arsenic. Toxic Subst Mech 15:151–181Google Scholar
  195. Zhao FJ, Wang JR, Barker JHA, Schat H, Bleeker PM, McGrath SP (2003) The role of phytochelatins in arsenic tolerance in the hyperaccumulator Pteris vittata. New Phytol 159:403–410CrossRefGoogle Scholar
  196. Zhao FJ, Ma JF, Meharg AA, McGrath SP (2009) Arsenic uptake and metabolism in plants. New Phytol 181:777–794PubMedCrossRefGoogle Scholar
  197. Zhao FJ, McGrath SP, Meharg AA (2010) Arsenic as a food chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies. Annul Rev Plant Biol 61:535–559CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Anindita Mitra
    • 1
  • Soumya Chatterjee
    • 2
  • Dharmendra K. Gupta
    • 3
  1. 1.Bankura Christian CollegeBankuraIndia
  2. 2.Defence Research Laboratory, Defence Research and Development Organization (DRDO)Ministry of DefenceTezpurIndia
  3. 3.Gottfried Wilhelm Leibniz Universität Hannover, Institut für Radioökologie und Strahlenschutz (IRS)HannoverGermany

Personalised recommendations