Advertisement

Algae as a Budding Tool for Mitigation of Arsenic from Aquatic Systems

  • Neha Arora
  • Khushboo Gulati
  • Shweta Tripathi
  • Vikas Pruthi
  • Krishna Mohan PoluriEmail author
Chapter

Abstract

Arsenic (As) pollution in aquatic environment has become one of the most severe ecological problems affecting the provision of clean drinking water in many countries. To combat this, numerous physicochemical methods have been developed including adsorption, ion exchange, biosorption, solar stills, etc. However, the barrier to the successful deployment of these methods lies in the differential removal and disposal efficiency of As species/wastes generated during the treatment. Plants and algae are currently considered as efficient biotechnological tools for safe As remediation from contaminated soil and water sources. In the current chapter, we will focus on algal (micro and macro)-based As bioremediation mechanism and the influence of environmental factors on its uptake from contaminated aquatic systems. Utilization of algae for As bioremediation has an edge over other conventional technologies as it can efficiently accumulate and metabolize all the As species with adequate efficiency, along with generation of biomass that can be used as biofertilizers and biofuels. Recent studies have shown that algal strains can grow in 500–2000 mg per liter of As waters and can remediate a substantial quantity by rewiring their cellular physiology. In a nutshell, the chapter provides a detailed mechanistic overview of algal-based eco-friendly As mitigation processes for generating sustainable environmental solutions.

Keywords

Aquatic plants Bioremediation Macrophytes Phytoremediation Toxic metalloids 

Notes

Acknowledgment

KMP acknowledges the support of SERB (SB/YS/LS-380/2013), DBT-IYBA fellowship (BT/07/IYBA/2013-19), and MoWR (GKC/01/2016-17/212/NMCG) Research grants from the Government of India (GoI). NA is thankful to the Department of Biotechnology (DBT) for SRF fellowship (Grant No.: 7001-35-44). KG and ST acknowledge the MHRD fellowship from IIT-Roorkee.

References

  1. Abdul KSM, Jayasinghe SS, Chandana EP, Jayasumana C, De Silva PMC (2015) Arsenic and human health effects: a review. Environ Toxicol Pharmacol 40:828–846PubMedCrossRefPubMedCentralGoogle Scholar
  2. Abtahi M, Mesdaghinia A, Saeedi R, Nazmara S (2013) Biosorption of As (III) and As (V) from aqueous solutions by brown macroalga Colpomenia sinuosa biomass: kinetic and equilibrium studies. Desalin Water Treat 51:3224–3232CrossRefGoogle Scholar
  3. Acreman J (1994) Algae and cyanobacteria: isolation, culture and long-term maintenance. J Ind Microbiol Biotechnol 13:193–194Google Scholar
  4. Al Abdallah Q, Nixon BT, Fortwendel JR (2016) The enzymatic conversion of major algal and cyanobacterial carbohydrates to bioethanol. Front Energy Res 4:36.  https://doi.org/10.3389/fenrg.2016.00036 CrossRefGoogle Scholar
  5. Alexander J et al (2009) EFSA panel on contaminants in the food chain (CONTAM); scientific opinion on marine biotoxins in shellfish—Palytoxin group. EFSA J 1393:1–38Google Scholar
  6. Andersen R (1992) Diversity of eukaryotic algae. Biodivers Conserv 1:267–292CrossRefGoogle Scholar
  7. Arora N, Patel A, Pruthi PA, Pruthi V (2016) Recycled de-oiled algal biomass extract as a feedstock for boosting biodiesel production from Chlorella minutissima. Appl Biochem Biotechnol 180:1534–1541PubMedCrossRefPubMedCentralGoogle Scholar
  8. Arora N, Gulati K, Patel A, Pruthi PA, Poluri KM, Pruthi V (2017) A hybrid approach integrating arsenic detoxification with biodiesel production using oleaginous microalgae. Algal Res 24:29–39CrossRefGoogle Scholar
  9. Ashokkumar V, Salam Z, Tiwari O, Chinnasamy S, Mohammed S, Ani FN (2015) An integrated approach for biodiesel and bioethanol production from Scenedesmus bijugatus cultivated in a vertical tubular photobioreactor. Energy Conver Manag 101:778–786CrossRefGoogle Scholar
  10. Bahar MM, Megharaj M, Naidu R (2013) Toxicity, transformation and accumulation of inorganic arsenic species in a microalga Scenedesmus sp. isolated from soil. J Appl Phycol 25:913–917CrossRefGoogle Scholar
  11. Bahar MM, Megharaj M, Naidu R (2016) Influence of phosphate on toxicity and bioaccumulation of arsenic in a soil isolate of microalga Chlorella sp. Environ Sci Pollut Res 23:2663–2668CrossRefGoogle Scholar
  12. Baker J, Wallschläger D (2016) The role of phosphorus in the metabolism of arsenate by a freshwater green alga, Chlorella vulgaris. J Environ Sci 49:169–178CrossRefGoogle Scholar
  13. Baker M, Wong P, Chau Y, Mayfield C, Inniss W (1983) Methylation of arsenic by freshwater green algae. Can J Fish Aquat Sci 40:1254–1257CrossRefGoogle Scholar
  14. Benson A, Cooney R, Herrera-Lasso J (1981) Arsenic metabolism in algae and higher plants. J Plant Nutr 3:285–292CrossRefGoogle Scholar
  15. Bentley C (2005) The toxicity of trimethylarsine: an urban myth. J Environ Monit 7:11–15CrossRefGoogle Scholar
  16. Bhattacharya P, Pal R (2012) Scope of phycoremediation of Arsenic using Phormidium tenue with special reference to modulation in cellular biochemistry. J Algal Biomass Util 3:1–8Google Scholar
  17. Bibi R, Ahmad Z, Imran M, Hussain S, Ditta A, Mahmood S, Khalid A (2016) Algal bioethanol production technology: a trend towards sustainable development. Renew Sust Energ Rev 71:976–985CrossRefGoogle Scholar
  18. Bottino N, Newman R, Cox E, Stockton R, Hoban M, Zingaro R, Irgolic K (1978) The effects of arsenate and arsenite on the growth and morphology of the marine unicellular algae Tetraselmis chui (Chlorophyta) and Hymenomonas carterae (Chrysophyta). J Exp Mar Biol Ecol 33:153–168CrossRefGoogle Scholar
  19. Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev 14:557–577CrossRefGoogle Scholar
  20. Brookin D (1988) Eh-pH diagrams for geochemistry. Springer, BerlinCrossRefGoogle Scholar
  21. Bundschuh J, Bhattacharya P, Sracek O, Mellano MF, Ramírez AE, Storniolo ADR et al (2011) Arsenic removal from groundwater of the Chaco-Pampean Plain (Argentina) using natural geological materials as adsorbents. J Environ Sci Health A 46:1297–1310CrossRefGoogle Scholar
  22. Caumette G, Koch I, House K, Reimer KJ (2014) Arsenic cycling in freshwater phytoplankton and zooplankton cultures. Environ Chem 11:496–505CrossRefGoogle Scholar
  23. Chekroun KB, Baghour M (2013) The role of algae in phytoremediation of heavy metals: a review. J Mater Environ Sci 4:873–880Google Scholar
  24. Chng LM, Chan DJ, Lee KT (2016) Sustainable production of bioethanol using lipid-extracted biomass from Scenedesmus dimorphus. J Clean Prod 130:68–73CrossRefGoogle Scholar
  25. Christobel J, Lipton A (2015) Evaluation of macroalgal biomass for removal of heavy metal arsenic (As) from aqueous solution. Int J Appl Innov Eng Manag 4:94–104Google Scholar
  26. Davis TA, Volesky B, Mucci A (2003) A review of the biochemistry of heavy metal biosorption by brown algae. Water Res 37:4311–4330PubMedCrossRefPubMedCentralGoogle Scholar
  27. Dembitsky VM, Levitsky DO (2004) Arsenolipids. Prog Lipid Res 43:403–448PubMedCrossRefPubMedCentralGoogle Scholar
  28. Doshi A, Pascoe S, Coglan L, Rainey TJ (2016) Economic and policy issues in the production of algae-based biofuels: a review. Renew Sust Energ Rev 64:329–337CrossRefGoogle Scholar
  29. Duncan E, Foster S, Maher W (2010) Uptake and metabolism of arsenate, methylarsonate and arsenobetaine by axenic cultures of the phytoplankton Dunaliella tertiolecta. Bot Mar 53:377–386CrossRefGoogle Scholar
  30. Duncan EG, Maher WA, Foster SD, Krikowa F (2013a) The influence of arsenate and phosphate exposure on arsenic uptake, metabolism and species formation in the marine phytoplankton Dunaliella tertiolecta. Mar Chem 157:78–85CrossRefGoogle Scholar
  31. Duncan EG, Maher WA, Foster SD, Krikowa F (2013b) Influence of culture regime on arsenic cycling by the marine phytoplankton Dunaliella tertiolecta and Thalassiosira pseudonana. Environ Chem 10:91–101CrossRefGoogle Scholar
  32. Duncan EG, Maher WA, Foster SD (2014a) Contribution of arsenic species in unicellular algae to the cycling of arsenic in marine ecosystems. Environ Sci Technol 49:33–50PubMedCrossRefPubMedCentralGoogle Scholar
  33. Duncan EG, Maher WA, Foster SD, Mikac KM, Krikowa F (2014b) The influence of bacteria on the arsenic species produced by laboratory cultures of the marine phytoplankton Dunaliella tertiolecta. J Appl Phycol 26:2129–2134CrossRefGoogle Scholar
  34. Edmonds J, Francesconi K (1981) Arseno-sugars from brown kelp (Ecklonia radiata) as intermediates in cycling of arsenic in a marine ecosystem. Nature 289:602–604CrossRefGoogle Scholar
  35. Edmonds J, Shibata Y, Francesconi K, Rippingale R, Morita M (1997) Arsenic transformations in short marine food chains studied by HPLC-ICP MS. Appl Organomet Chem 11:281–287CrossRefGoogle Scholar
  36. Felmy A, Girvin D, Jenne E (1984) MINTEQ-a computer program for calculating aqueous geochemical equilibria. National Technical Information Service, SpringfieldGoogle Scholar
  37. Ferrari SG, Silva PG, González DM, Navoni JA, Silva HJ (2013) Tolerancia a arsénico de cianobacterias con usos biotecnológicos. Rev Argent Microbiol 45:174–174PubMedPubMedCentralGoogle Scholar
  38. Foster S, Thomson D, Maher W (2008) Uptake and metabolism of arsenate by anexic cultures of the microalgae Dunaliella tertiolecta and Phaeodactylum tricornutum. Mar Chem 108:172–183CrossRefGoogle Scholar
  39. Fowler BA (2013) Biological and environmental effects of arsenic. Elsevier, New YorkGoogle Scholar
  40. Francesconi KA (2010) Arsenic species in seafood: origin and human health implications. Pure Appl Chem 82:373–381CrossRefGoogle Scholar
  41. Frankenberger WT Jr (2001) Environmental chemistry of arsenic. Marcel Dekker, New YorkCrossRefGoogle Scholar
  42. Frassanito AM, Barsanti L, Passarelli V, Evangelista V, Gualtieri P (2010) A rhodopsin-like protein in Cyanophora paradoxa: gene sequence and protein immunolocalization. Cell Mol Life Sci 67:965–971PubMedCrossRefPubMedCentralGoogle Scholar
  43. Fuhua C, Weiqi C, Shugui D (1994) Toxicities of four arsenic species to Scenedesmus obliquus and influence of phosphate on inorganic arsenic toxicities. Toxicol Environ Chem 41:1–7CrossRefGoogle Scholar
  44. Fujiwara S, Kobayashi I, Hoshino S, Kaise T, Shimogawara K, Usuda H, Tsuzuki M (2000) Isolation and characterization of arsenate-sensitive and resistant mutants of Chlamydomonas reinhardtii. Plant Cell Physiol 41:77–83PubMedCrossRefPubMedCentralGoogle Scholar
  45. Garcia-Gonzalez J, Sommerfeld M (2016) Biofertilizer and biostimulant properties of the microalga Acutodesmus dimorphus. J Appl Phycol 28:1051–1061PubMedCrossRefPubMedCentralGoogle Scholar
  46. Geiszinger A, Goessler W, Pedersen SN, Francesconi KA (2001) Arsenic biotransformation by the brown macroalga Fucus serratus. Environ Toxicol Chem 20:2255–2262PubMedCrossRefGoogle Scholar
  47. Ghadiryanfar M, Rosentrater KA, Keyhani A, Omid M (2016) A review of macroalgae production, with potential applications in biofuels and bioenergy. Renew Sust Energ Rev 54:473–481CrossRefGoogle Scholar
  48. Granchinho S, Cullen W, Polishchuk E, Reimer K (2004) The effect of phosphate on the bioaccumulation and biotransformation of arsenic (V) by the marine alga Fucus gardneri. In: Hirner AV, Emons H (eds) Organic metal and metalloid species in the environment. Springer, Berlin, pp 155–166CrossRefGoogle Scholar
  49. Grotti M, Soggia F, Lagomarsino C, Goessler W, Francesconi KA (2008) Arsenobetaine is a significant arsenical constituent of the red Antarctic alga Phyllophora antarctica. Environ Chem 5:171–175CrossRefGoogle Scholar
  50. Guo P, Gong Y, Wang C, Liu X, Liu J (2011) Arsenic speciation and effect of arsenate inhibition in a Microcystis aeruginosa culture medium under different phosphate regimes. Environ Toxicol Chem 30:1754–1759PubMedCrossRefPubMedCentralGoogle Scholar
  51. Gupta DK, Srivastava S, Huang H, Romero-Puertas MC, Sandalio LM (2011) Arsenic tolerance and detoxification mechanisms in plants. In: Sherameti I, Varma A (eds) Detoxification of heavy metals. Springer, Berlin, pp 169–179CrossRefGoogle Scholar
  52. Gupta R, Biswas K, Mishra I, Suthindhiran K (2012) Ethanol production from marine algae using yeast fermentation. Biosci Technol 1:17–22Google Scholar
  53. Hansen HK, Ribeiro A, Mateus E (2006) Biosorption of arsenic (V) with Lessonia nigrescens. Min Eng 19:486–490CrossRefGoogle Scholar
  54. Hasegawa H, Sohrin Y, Seki K, Sato M, Norisuye K, Naito K, Matsui M (2001) Biosynthesis and release of methylarsenic compounds during the growth of freshwater algae. Chemosphere 43:265–272PubMedCrossRefPubMedCentralGoogle Scholar
  55. Hernández D, Riaño B, Coca M, García-González M (2015) Saccharification of carbohydrates in microalgal biomass by physical, chemical and enzymatic pre-treatments as a previous step for bioethanol production. Chem Eng J 262:939–945CrossRefGoogle Scholar
  56. Ho S-H, Huang S-W, Chen C-Y, Hasunuma T, Kondo A, Chang J-S (2013a) Bioethanol production using carbohydrate-rich microalgae biomass as feedstock. Bioresour Technol 135:191–198PubMedCrossRefPubMedCentralGoogle Scholar
  57. Ho S-H, Li P-J, Liu C-C, Chang J-S (2013b) Bioprocess development on microalgae-based CO2 fixation and bioethanol production using Scenedesmus obliquus CNW-N. Bioresour Technol 145:142–149PubMedCrossRefPubMedCentralGoogle Scholar
  58. Ho DP, Ngo HH, Guo W (2014) A mini review on renewable sources for biofuel. Bioresour Technol 169:742–749PubMedCrossRefPubMedCentralGoogle Scholar
  59. Huang W-J, Wu C-C, Chang W-C (2014) Bioaccumulation and toxicity of arsenic in cyanobacteria cultures separated from a eutrophic reservoir. Environ Monit Asses 186:805–814CrossRefGoogle Scholar
  60. Jadhav SV, Bringas E, Yadav GD, Rathod VK, Ortiz I, Marathe KV (2015) Arsenic and fluoride contaminated groundwaters: a review of current technologies for contaminants removal. J Environ Manag 162:306–325CrossRefGoogle Scholar
  61. Jasrotia S, Kansal A, Kishore V (2014) Arsenic phyco-remediation by Cladophora algae and measurement of arsenic speciation and location of active absorption site using electron microscopy. Microchem J 114:197–202CrossRefGoogle Scholar
  62. Jiang Y, Purchase D, Jones H, Garelick H (2011) Effects of arsenate (As5+) on growth and production of glutathione (GSH) and phytochelatins (PCS) in Chlorella vulgaris international. J Phytorem 13:834–844CrossRefGoogle Scholar
  63. Karadjova IB, Slaveykova VI, Tsalev DL (2008) The biouptake and toxicity of arsenic species on the green microalga Chlorella salina in seawater. Aquat Toxicol 87:264–271PubMedCrossRefGoogle Scholar
  64. Katsoyiannis IA, Zouboulis AI (2004) Application of biological processes for the removal of arsenic from groundwaters. Water Res 38:17–26PubMedCrossRefGoogle Scholar
  65. Kile ML et al (2011) A pathway-based analysis of urinary arsenic metabolites and skin lesions. Am J Epidemiol 173:778–786PubMedPubMedCentralCrossRefGoogle Scholar
  66. Knauer K, Hemond H (2000) Accumulation and reduction of arsenate by the freshwater green alga Chlorella sp. (Chlorophyta). J Phycol 36:506–509PubMedCrossRefPubMedCentralGoogle Scholar
  67. Kobayashi I, Fujiwara S, Shimogawara K, Kaise T, Usuda H, Tsuzuki M (2003) Insertional mutagenesis in a homologue of a Pi transporter gene confers arsenate resistance on Chlamydomonas. Plant Cell Physiol 44:597–606PubMedCrossRefGoogle Scholar
  68. Kostas ET, White DA, Du C, Cook DJ (2016) Selection of yeast strains for bioethanol production from UK seaweeds. J Appl Phycol 28:1427–1441PubMedCrossRefGoogle Scholar
  69. Kumar KS, Dahms H-U, Won E-J, Lee J-S, Shin K-H (2015) Microalgae–a promising tool for heavy metal remediation. Ecotoxicol Environ Saf 113:329–352CrossRefGoogle Scholar
  70. Kumaresan M, Riyazuddin P (2001) Overview of speciation chemistry of arsenic. Curr Sci 80:837–846Google Scholar
  71. Lai VWM, Cullen WR, Harrington CF, Reimer KJ (1997) The characterization of arsenosugars in commercially available algal products including a Nostoc species of terrestrial origin. Appl Organomet Chem 11:797–803CrossRefGoogle Scholar
  72. Levy JL, Stauber JL, Adams MS, Maher WA, Kirby JK, Jolley DF (2005) Toxicity, biotransformation, and mode of action of arsenic in two freshwater microalgae (Chlorella sp. and Monoraphidium arcuatum). Environ Toxicol Chem 24:2630–2639PubMedCrossRefGoogle Scholar
  73. Lièvremont D, Bertin PN, Lett MC (2009) Arsenic in contaminated waters: biogeochemical cycle, microbial metabolism and biotreatment processes. Biochimie 91:1229–1237PubMedCrossRefPubMedCentralGoogle Scholar
  74. Lim K, Shukor M, Wasoh H (2014) Physical, chemical, and biological methods for the removal of arsenic compounds. BioMed Res Int 2014:503784.  https://doi.org/10.1155/2014/503784 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Llorente-Mirandes T, Ruiz-Chancho MJ, Barbero M, Rubio R, López-Sánchez JF (2010) Measurement of arsenic compounds in littoral zone algae from the Western Mediterranean Sea. Occurence of arsenobetaine. Chemosphere 81:867–875PubMedCrossRefGoogle Scholar
  76. Lunde G (1973) The synthesis of fat and water soluble arseno organic compounds in marine and limnetic algae. Acta Chem Scand 27:1586–1594PubMedCrossRefGoogle Scholar
  77. Maeda S, Nakashima S, Takeshita T, Higashi S (1985) Bioaccumulation of arsenic by freshwater algae and the application to the removal of inorganic arsenic from an aqueous phase. Part II. By Chlorella vulgaris isolated from arsenic-polluted environment. Sep Sci Technol 20:153–161CrossRefGoogle Scholar
  78. Maeda S, Kusadome K, Arima H, Ohki A, Naka K (1992) Biomethylation of arsenic and its excretion by the alga Chlorella vulgaris. Appl Organomet Chem 6:407–413CrossRefGoogle Scholar
  79. Maity JP, Bundschuh J, Chen C-Y, Bhattacharya P (2014) Microalgae for third generation biofuel production, mitigation of greenhouse gas emissions and wastewater treatment: present and future perspectives–a mini review. Energy 78:104–113CrossRefGoogle Scholar
  80. Mandal BK, Suzuki KT (2002) Arsenic round the world: a review. Talanta 58:201–235PubMedCrossRefPubMedCentralGoogle Scholar
  81. Markley CT, Herbert BE (2010) Modeling phosphate influence on arsenate reduction kinetics by a freshwater cyanobacterium. Environ Model Asses 15:361–368CrossRefGoogle Scholar
  82. Marshall G et al (2007) Fifty-year study of lung and bladder cancer mortality in Chile related to arsenic in drinking water. J Natl Cancer Inst 99:920–928PubMedCrossRefPubMedCentralGoogle Scholar
  83. Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14:217–232CrossRefGoogle Scholar
  84. Mehtani J, Arora N, Patel A, Jain P, Pruthi PA, Poluri KM, Pruthi V (2017) Augmented lipid accumulation in ethyl methyl sulphonate mutants of oleaginous microalga for biodiesel production. Bioresour Technol 242:121–127PubMedCrossRefPubMedCentralGoogle Scholar
  85. Meyer J, Schmidt A, Michalke K, Hensel R (2007) Volatilisation of metals and metalloids by the microbial population of an alluvial soil. Syst Appl Microbiol 30:229–238PubMedCrossRefPubMedCentralGoogle Scholar
  86. Meyer S, Schulz J, Jeibmann A, Taleshi MS, Ebert F, Francesconi K, Schwerdtle T (2014) Arsenic-containing hydrocarbons are toxic in the in vivo model Drosophila melanogaster. Metallomics 6:2010–2014PubMedCrossRefPubMedCentralGoogle Scholar
  87. Michalke K, Hensel R (2004) Biovolatilisation of metal (loid) s by microorganisms. In: Hirner AV, Emons H (eds) Organic metal and metalloid species in the environment. Springer, Berlin, pp 137–153CrossRefGoogle Scholar
  88. Mitchell VL (2014) Health risks associated with chronic exposures to arsenic in the environment. Rev Mineral Geochem 79:435–449CrossRefGoogle Scholar
  89. Miyashita S, Fujiwara S, Tsuzuki M, Kaise T (2011) Rapid biotransformation of arsenate into oxo-arsenosugars by a freshwater unicellular green alga, Chlamydomonas reinhardtii. Biosci Biotechnol Biochem 75:522–530PubMedCrossRefPubMedCentralGoogle Scholar
  90. Miyashita S-i, Fujiwara S, Tsuzuki M, Kaise T (2012) Cyanobacteria produce arsenosugars. Environ Chem 9:474–484CrossRefGoogle Scholar
  91. Miyashita SI, Murota C, Kondo K, Fujiwara S, Tsuzuki M (2016) Arsenic metabolism in cyanobacteria. Environ Chem 13:577–589CrossRefGoogle Scholar
  92. Mondal P, Bhowmick S, Chatterjee D, Figoli A, Van der Bruggen B (2013) Remediation of inorganic arsenic in groundwater for safe water supply: a critical assessment of technological solutions. Chemosphere 92:157–170PubMedCrossRefPubMedCentralGoogle Scholar
  93. Munoz LP, Purchase D, Jones H, Raab A, Urgast D, Feldmann J, Garelick H (2016) The mechanisms of detoxification of As (III), dimethylarsinic acid (DMA) and As (V) in the microalga Chlorella vulgaris. Aquat Toxicol 175:56–72CrossRefGoogle Scholar
  94. Murota C et al (2012) Arsenic tolerance in a Chlamydomonas photosynthetic mutant is due to reduced arsenic uptake even in light conditions. Planta 236:1395–1403PubMedCrossRefPubMedCentralGoogle Scholar
  95. Murray LA, Raab A, Marr IL, Feldmann J (2003) Biotransformation of arsenate to arsenosugars by Chlorella vulgaris. Appl Organomet Chem 17:669–674CrossRefGoogle Scholar
  96. Nischwitz V, Pergantis SA (2005) First report on the detection and quantification of arsenobetaine in extracts of marine algae using HPLC-ES-MS/MS. Analyst 130:1348–1350PubMedCrossRefPubMedCentralGoogle Scholar
  97. Nissen P, Benson A (1982) Arsenic metabolism in freshwater and terrestrial plants. Physiol Plant 54:446–450CrossRefGoogle Scholar
  98. Nriagu J, Bhattacharya P, Mukherjee A, Bundschuh J, Zevenhoven R, Loeppert R (2007) Arsenic in soil and groundwater: an overview. Trace Met Contam Environ 9:3–60CrossRefGoogle Scholar
  99. Odjadjare EC, Mutanda T, Olaniran AO (2017) Potential biotechnological application of microalgae: a critical review. Crit Rev Biotechnol 37:37–52PubMedCrossRefPubMedCentralGoogle Scholar
  100. Ohki A, Maeda S (2001) Biotransformation of arsenite in freshwater food-chain models. Appl Organomet Chem 15:277–284CrossRefGoogle Scholar
  101. Ohki A, Kuroiwa T, Maeda S (1999) Arsenic compounds in the freshwater green microalga Chlorella vulgaris after exposure to arsenite. Appl Organomet Chem 13:127–133CrossRefGoogle Scholar
  102. Osman MEH, El-Sheekh MM, El-Naggar AH, Gheda SF (2010) Effect of two species of cyanobacteria as biofertilizers on some metabolic activities, growth, and yield of pea plant. Biol Fertil Soils 46:861–875CrossRefGoogle Scholar
  103. Painter TJ (1993) Carbohydrate polymers in desert reclamation: the potential of microalgal biofertilizers. Carbohydr Polym 20:77–86CrossRefGoogle Scholar
  104. Podder M, Majumder C (2016) Arsenic toxicity to Chlorella pyrenoidosa and its phycoremediation. Acta Ecol Sin 36:256–268CrossRefGoogle Scholar
  105. Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65:635–648PubMedCrossRefPubMedCentralGoogle Scholar
  106. Qin J, Rosen BP, Zhang Y, Wang G, Franke S, Rensing C (2006) Arsenic detoxification and evolution of trimethylarsine gas by a microbial arsenite S-adenosylmethionine methyltransferase. Proc Natl Acad Sci U S A 103:2075–2080PubMedPubMedCentralCrossRefGoogle Scholar
  107. Quinn JC, Davis R (2015) The potentials and challenges of algae based biofuels: a review of the techno-economic, life cycle, and resource assessment modeling. Bioresour Technol 184:444–452PubMedCrossRefPubMedCentralGoogle Scholar
  108. Rahman S, Kim K-H, Saha SK, Swaraz A, Paul DK (2014) Review of remediation techniques for arsenic (As) contamination: a novel approach utilizing bio-organisms. J Environ Manag 134:175–185CrossRefGoogle Scholar
  109. Ratnaike RN (2003) Acute and chronic arsenic toxicity. Postgrad Med J 79:391–396PubMedPubMedCentralCrossRefGoogle Scholar
  110. Renuka N et al (2016) Exploring the efficacy of wastewater-grown microalgal biomass as a biofertilizer for wheat. Environ Sci Pollut Res 23:6608–6620CrossRefGoogle Scholar
  111. Sanders JG (1979) The concentration and speciation of arsenic in marine macro-algae. Estuar Coast Mar Sci 9:95–99CrossRefGoogle Scholar
  112. Sanders JG, Windom HL (1980) The uptake and reduction of arsenic species by marine algae. Estuar Coast Mar Sci 10:555–567CrossRefGoogle Scholar
  113. Sari A, Uluozlü ÖD, Tüzen M (2011) Equilibrium, thermodynamic and kinetic investigations on biosorption of arsenic from aqueous solution by algae (Maugeotia genuflexa) biomass. Chem Eng J 167:155–161CrossRefGoogle Scholar
  114. Scow K, Byrne M, Goyer M, Nelken L, Perwak J, Wood M, Young S (1981) Final Draft Report to the US Environmental Protection Agency EPA ContractGoogle Scholar
  115. Simas-Rodrigues C, Villela HD, Martins AP, Marques LG, Colepicolo P, Tonon AP (2015) Microalgae for economic applications: advantages and perspectives for bioethanol. J Exp Bot 66:4097–4108PubMedCrossRefGoogle Scholar
  116. Singh R, Singh S, Parihar P, Singh VP, Prasad SM (2015) Arsenic contamination, consequences and remediation techniques: a review. Ecotoxicol Environ Saf 112:247–270PubMedCrossRefPubMedCentralGoogle Scholar
  117. Sirajunnisa AR, Surendhiran D (2016) Algae–a quintessential and positive resource of bioethanol production: a comprehensive review. Renew Sust Energ Rev 66:248–267CrossRefGoogle Scholar
  118. Smedley P, Kinniburgh D (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17:517–568CrossRefGoogle Scholar
  119. Stolz JF, Basu P, Santini JM, Oremland RS (2006) Arsenic and selenium in microbial metabolism. Annu Rev Microbiol 60:107–130PubMedPubMedCentralCrossRefGoogle Scholar
  120. Takimura O, Fuse H, Yamaoka Y (1990) Effect of metal ions on accumulation of arsenic in marine green algae, Dunaliella sp. Appl Organomet Chem 4:265–268CrossRefGoogle Scholar
  121. Takimura O, Fuse H, Murakami K, Kamimura K, Yamaoka Y (1996) Uptake and reduction of arsenate by Dunaliella sp. Appl Organomet Chem 10:753–756CrossRefGoogle Scholar
  122. Thiel T (1988) Phosphate transport and arsenate resistance in the cyanobacterium Anabaena variabilis. J Bacteriol 170:1143–1147PubMedPubMedCentralCrossRefGoogle Scholar
  123. Tuzen M, Sari A, Mendil D, Uluozlu OD, Soylak M, Dogan M (2009) Characterization of biosorption process of As (III) on green algae Ulothrix cylindricum. J Hazard Mater 165:566–572PubMedCrossRefPubMedCentralGoogle Scholar
  124. Upadhyay A, Mandotra S, Kumar N, Singh N, Singh L, Rai U (2016) Augmentation of arsenic enhances lipid yield and defense responses in alga Nannochloropsis sp. Bioresour Technol 221:430–437PubMedCrossRefPubMedCentralGoogle Scholar
  125. Wang Z, Luo Z, Yan C (2013) Accumulation, transformation, and release of inorganic arsenic by the freshwater cyanobacterium Microcystis aeruginosa. Environ Sci Pollut Res 20:7286–7295CrossRefGoogle Scholar
  126. Wang Y et al (2015) Review of arsenic speciation, toxicity and metabolism in microalgae. Rev Environ Sci Bio Technol 14:427–451CrossRefGoogle Scholar
  127. Wang Y et al (2016) Arsenate toxicity and metabolism in the halotolerant microalga Dunaliella salina under various phosphate regimes. Environ Sci Processes Impacts 18:735–743CrossRefGoogle Scholar
  128. Wang Y, Zhang C, Zheng Y, Ge Y (2017) Phytochelatin synthesis in Dunaliella salina induced by arsenite and arsenate under various phosphate regimes. Ecotoxicol Environ Saf 136:150–160PubMedCrossRefGoogle Scholar
  129. Ward A, Lewis D, Green F (2014) Anaerobic digestion of algae biomass: a review. Algal Res 5:204–214CrossRefGoogle Scholar
  130. Wen W et al (2011) Metabolites of arsenic and increased DNA damage of p53 gene in arsenic plant workers. Toxicol Appl Pharmacol 254:41–47PubMedCrossRefPubMedCentralGoogle Scholar
  131. WHO G (2011) Guidelines for drinking-water quality. World Health Organ 216:303–304Google Scholar
  132. Williams PJB, Laurens LM (2010) Microalgae as biodiesel & biomass feedstocks: review & analysis of the biochemistry, energetics & economics. Energy Environ Sci 3:554–590CrossRefGoogle Scholar
  133. Wrench J, Addison R (1981) Reduction, methylation, and incorporation of arsenic into lipids by the marine phytoplankton Dunaliella tertiolecta. Can J Fish Aquat Sci 38:518–523CrossRefGoogle Scholar
  134. Wurl O, Zimmer L, Cutter GA (2013) Arsenic and phosphorus biogeochemistry in the ocean: arsenic species as proxies for P-limitation. Limnol Oceanogr 58:729–740CrossRefGoogle Scholar
  135. Xue X-M, Raber G, Foster S, Chen S-C, Francesconi KA, Zhu Y-G (2014) Biosynthesis of arsenolipids by the cyanobacterium Synechocystis sp. PCC 6803. Environ Chem 11:506–513CrossRefGoogle Scholar
  136. Yamamura S, Amachi S (2014) Microbiology of inorganic arsenic: from metabolism to bioremediation. J Biosci Bioeng 118:1–9PubMedCrossRefPubMedCentralGoogle Scholar
  137. Yamaoka Y, Takimura O, Fuse H (1994) Effects of various elements on arsenic accumulation of the alga Dunaliella salina. Appl Organomet Chem 8:229–235CrossRefGoogle Scholar
  138. Yamaoka Y, Takimura O, Fuse H, Murakami K (1999) Effect of glutathione on arsenic accumulation by Dunaliella salina. Appl Organomet Chem 13:89–94CrossRefGoogle Scholar
  139. Yan X-P, Kerrich R, Hendry MJ (2000) Distribution of arsenic (III), arsenic (V) and total inorganic arsenic in porewaters from a thick till and clay-rich aquitard sequence, Saskatchewan. Geochim Cosmochim Acta 64:2637–2648CrossRefGoogle Scholar
  140. Yan C, Wang Z, Luo Z (2014) Arsenic efflux from Microcystis aeruginosa under different phosphate regimes. PLoS One 9:e116099.  https://doi.org/10.1371/journal.pone.0116099 CrossRefPubMedPubMedCentralGoogle Scholar
  141. Ye J, Rensing C, Rosen BP, Zhu Y-G (2012) Arsenic biomethylation by photosynthetic organisms. Trends Plant Sci 17:155–162PubMedPubMedCentralCrossRefGoogle Scholar
  142. Yin X, Chen J, Qin J, Sun G, Rosen B, Zhu Y (2011) Biotransformation and volatilization of arsenic by three photosynthetic cyanobacteria. Plant Physiol.  https://doi.org/10.1104/pp.111.178947 PubMedPubMedCentralCrossRefGoogle Scholar
  143. Yin X-X, Wang L, Bai R, Huang H, Sun G-X (2012) Accumulation and transformation of arsenic in the blue-green alga Synechocysis sp. PCC6803. Water Air Soil Pollut 223:1183–1190CrossRefGoogle Scholar
  144. Zhang B, Wang L-H, Xu Y-X, Yin X-X (2011) Study on absorption and transformation of arsenic in blue alga (Synechocystis sp. PCC6803). Asian J Ecotoxicol 6:629Google Scholar
  145. Zhang S-Y, Sun G-X, Yin X-X, Rensing C, Zhu Y-G (2013) Biomethylation and volatilization of arsenic by the marine microalgae Ostreococcus tauri. Chemosphere 93:47–53PubMedCrossRefGoogle Scholar
  146. Zhang Y, Liu X, White MA, Colosi LM (2017) Economic evaluation of algae biodiesel based on meta-analyses. Int J Sustain Energy 36:682–694CrossRefGoogle Scholar
  147. Zhao F-J, Zhu Y-G, Meharg AA (2013) Methylated arsenic species in rice: geographical variation, origin, and uptake mechanisms. Environ Sci Technol 47:3957–3966PubMedCrossRefGoogle Scholar
  148. Zouboulis AI, Katsoyiannis IA (2005) Recent advances in the bioremediation of arsenic-contaminated groundwaters. Environ Int 31:213–219PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Neha Arora
    • 1
  • Khushboo Gulati
    • 1
  • Shweta Tripathi
    • 1
  • Vikas Pruthi
    • 1
    • 2
  • Krishna Mohan Poluri
    • 1
    • 2
    • 3
    Email author
  1. 1.Department of BiotechnologyIndian Institute of Technology RoorkeeRoorkeeIndia
  2. 2.Centre for Transportation Systems (CTRANS)Indian Institute of Technology RoorkeeRoorkeeIndia
  3. 3.Centre for NanotechnologyIndian Institute of Technology RoorkeeRoorkeeIndia

Personalised recommendations