Advertisement

Event-Triggered Robust Stabilization Incorporating an Adaptive Critic Mechanism

  • Ding Wang
  • Chaoxu Mu
Chapter
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 167)

Abstract

In this chapter, we investigate the robust feedback stabilization for a class of continuous-time uncertain nonlinear systems via event-triggering mechanism and adaptive critic learning technique. The main idea is to combine the event-triggering mechanism with adaptive critic designs, so as to solve the nonlinear robust control problem under uncertain environment. This can not only make better use of computation and communication resources, but also conduct controller design from the view of intelligent optimization. Through theoretical analysis, the nonlinear robust stabilization can be achieved by deriving an event-triggered optimal controller of the nominal system with a newly defined cost function and a certain triggering condition. The adaptive critic technique is employed to facilitate the event-triggered control design, where a critic neural network is constructed to serve as the approximator of the learning phase. The performance of the event-triggered robust control strategy is verified via simulation studies and comparisons. The present method extends the application domain of both event-triggered control and adaptive critic learning control to nonlinear systems possessing dynamical uncertainties.

References

  1. 1.
    Abu-Khalaf, M., Lewis, F.L.: Nearly optimal control laws for nonlinear systems with saturating actuators using a neural network HJB approach. Automatica 41(5), 779–791 (2005)MathSciNetMATHGoogle Scholar
  2. 2.
    Adhyaru, D.M., Kar, I.N., Gopal, M.: Bounded robust control of nonlinear systems using neural network-based HJB solution. Neural Comput. Appl. 20(1), 91–103 (2011)CrossRefGoogle Scholar
  3. 3.
    Astrom, K.J., Kumar, P.R.: Control: a perspective. Automatica 50(1), 3–43 (2014)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Binazadeh, T., Shafiei, M.H.: Robust stabilization of uncertain nonlinear slowly-varying systems: application in a time-varying inertia pendulum. ISA Trans. 53(2), 373–379 (2014)CrossRefGoogle Scholar
  5. 5.
    Dierks, T., Jagannathan, S.: Online optimal control of affine nonlinear discrete-time systems with unknown internal dynamics by using time-based policy update. IEEE Trans. Neural Netw. Learn. Syst. 23(7), 1118–1129 (2012)CrossRefGoogle Scholar
  6. 6.
    Fan, Q.Y., Yang, G.H.: Adaptive actor-critic design-based integral sliding-mode control for partially unknown nonlinear systems with input disturbances. IEEE Trans. Neural Netw. Learn. Syst. 27(1), 165–177 (2016)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Heydari, A.: Revisiting approximate dynamic programming and its convergence. IEEE Trans. Cybern. 44(12), 2733–2743 (2014)CrossRefGoogle Scholar
  8. 8.
    Jiang, Y., Jiang, Z.P.: Robust adaptive dynamic programming and feedback stabilization of nonlinear systems. IEEE Trans. Neural Netw. Learn. Syst. 25(5), 882–893 (2014)CrossRefGoogle Scholar
  9. 9.
    Jiang, Z.P., Jiang, Y.: Robust adaptive dynamic programming for linear and nonlinear systems: an overview. Eur. J. Control 19(5), 417–425 (2013)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Khalil, H.K., Grizzle, J.W.: Nonlinear Systems. Pearson, New Jersey (1996)Google Scholar
  11. 11.
    Lewis, F.L., Vrabie, D.: Reinforcement learning and adaptive dynamic programming for feedback control. IEEE Circuits Syst. Mag. 9(3), 32–50 (2009)CrossRefGoogle Scholar
  12. 12.
    Liu, T., Jiang, Z.P.: A small-gain approach to robust event-triggered control of nonlinear systems. IEEE Trans. Autom. Control 60(8), 2072–2085 (2015)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Lin, F., Brand, R.D., Sun, J.: Robust control of nonlinear systems: compensating for uncertainty. Int. J. Control 56(6), 1453–1459 (1992)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Liu, D., Yang, X., Wang, D., Wei, Q.: Reinforcement-learning-based robust controller design for continuous-time uncertain nonlinear systems subject to input constraints. IEEE Trans. Cybern. 45(7), 1372–1385 (2015)CrossRefGoogle Scholar
  15. 15.
    Luo, B., Wu, H.N., Huang, T.: Off-policy reinforcement learning for $H_{\infty }$ control design. IEEE Trans. Cybern. 45(1), 65–76 (2015)CrossRefGoogle Scholar
  16. 16.
    Modares, H., Lewis, F.L., Naghibi-Sistani, M.-B.: Adaptive optimal control of unknown constrained-input systems using policy iteration and neural networks. IEEE Trans. Neural Netw. Learn. Syst. 24(10), 1513–1525 (2013)CrossRefGoogle Scholar
  17. 17.
    Mu, C., Ni, Z., Sun, C., He, H.: Air-breathing hypersonic vehicle tracking control based on adaptive dynamic programming. IEEE Trans. Neural Netw. Learn. Syst. 28(3), 584–598 (2017)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Nascimento, J., Powell, W.B.: An optimal approximate dynamic programming algorithm for concave, scalar storage problems with vector-valued controls. IEEE Trans. Autom. Control 58(12), 2995–3010 (2013)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Prokhorov, D.V., Wunsch, D.C.: Adaptive critic designs. IEEE Trans. Neural Netw. 8(5), 997–1007 (1997)CrossRefGoogle Scholar
  20. 20.
    Sahoo, A., Xu, H., Jagannathan, S.: Neural network-based event-triggered state feedback control of nonlinear continuous-time systems. IEEE Trans. Neural Netw. Learn. Syst. 27(3), 497–509 (2016)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Shi, P., Wang, H., Lim, C.C.: Network-based event-triggered control for singular systems with quantizations. IEEE Trans. Ind. Electron. 63(2), 1230–1238 (2016)CrossRefGoogle Scholar
  22. 22.
    Si, J., Barto, A.G., Powell, W.B., Wunsch, D.C.: Handbook of Learning and Approximate Dynamic Programming. Wiley-IEEE Press, New Jersey (2004)CrossRefGoogle Scholar
  23. 23.
    Vamvoudakis, K.G.: Event-triggered optimal adaptive control algorithm for continuous-time nonlinear systems. IEEE/CAA J. Autom. Sin. 1(3), 282–293 (2014)CrossRefGoogle Scholar
  24. 24.
    Vamvoudakis, K.G., Lewis, F.L.: Online actor-critic algorithm to solve the continuous-time infinite horizon optimal control problem. Automatica 46(5), 878–888 (2010)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Wang, D., Liu, D.: Neural robust stabilization via event-triggering mechanism and adaptive learning technique. Neural Netw. 102, 27–35 (2018)CrossRefGoogle Scholar
  26. 26.
    Wang, D., Liu, D., Li, H.: Policy iteration algorithm for online design of robust control for a class of continuous-time nonlinear systems. IEEE Trans. Autom. Sci. Eng. 11(2), 627–632 (2014)CrossRefGoogle Scholar
  27. 27.
    Wang, D., Liu, D., Zhang, Q., Zhao, D.: Data-based adaptive critic designs for nonlinear robust optimal control with uncertain dynamics. IEEE Trans. Syst. Man Cybern.: Syst. 46(11), 1544–1555 (2016)CrossRefGoogle Scholar
  28. 28.
    Wang, D., Mu, C., He, H., Liu, D.: Adaptive-critic-based event-driven nonlinear robust state feedback. In: Proceedings of 55th IEEE Conference on Decision and Control, pp. 5813–5818 (2016)Google Scholar
  29. 29.
    Werbos, P.J.: Beyond regression: New tools for prediction and analysis in the behavioural sciences. Ph.D. dissertation, Harvard University (1974)Google Scholar
  30. 30.
    Werbos, P.J.: Approximate dynamic programming for real-time control and neural modeling. Handbook of Intelligent Control, Neural, Fuzzy, and Adaptive Approaches, pp. 493–526 (1992)Google Scholar
  31. 31.
    Zhang, H., Cui, L., Luo, Y.: Near-optimal control for nonzero-sum differential games of continuous-time nonlinear systems using single-network ADP. IEEE Trans. Cybern. 43(1), 206–216 (2013)CrossRefGoogle Scholar
  32. 32.
    Zhang, Q., Zhao, D., Zhu, Y.: Event-triggered $H_{\infty }$ control for continuous-time nonlinear system via concurrent learning. IEEE Trans. Syst. Man Cybern.: Syst. 47(7), 1071–1081 (2016)CrossRefGoogle Scholar
  33. 33.
    Zhong, X., Ni, Z., He, H., Xu, X., Zhao, D.: Event-triggered reinforcement learning approach for unknown nonlinear continuous-time system. In: Proceedings of 2014 International Joint Conference on Neural Networks, pp. 3677–3684 (2014)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.The State Key Laboratory of Management and Control for Complex SystemsInstitute of Automation, Chinese Academy of SciencesBeijingChina
  2. 2.School of Electrical and Information EngineeringTianjin UniversityTianjinChina

Personalised recommendations