Mechanism of Overwintering in Trees

  • Keita ArakawaEmail author
  • Jun Kasuga
  • Naoki Takata
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1081)


Boreal trees possess very high freezing resistance, which is induced by short-day length and low temperatures, in order to survive severe subzero temperatures in winter. During autumn, cooperation of photoreceptors and circadian clock system perceiving photoperiod shortening results in growth cessation, dormancy development, and first induction of freezing resistance. The freezing resistance is further enhanced by subsequent low temperature during seasonal cold acclimation with concomitant changes in various morphological and physiological features including accumulation of sugars and late embryogenesis abundant proteins. The mechanism of adaptation to freezing temperatures differs depending on the type of tissue in boreal trees. For example, bark, cambium, and leaf cells tolerate freezing-induced dehydration by extracellular freezing, whereas xylem parenchyma cells avoid intracellular freezing by deep supercooling. In addition, dormant buds in some trees respond by extraorgan freezing. Boreal trees have evolved overwintering mechanisms such as dormancy and high freezing resistance in order to survive freezing temperatures in winter.


Tree Cold acclimation Dormancy Day length Temperature sensing Extracellular freezing Deep supercooling Extraorgan freezing 



Abscisic acid


Circadian clock associated 1






Dehydration-responsive element-binding 1/C-repeat binding factor


Differential thermal analysis


Evening complex


Early flowering


Endoplasmic reticulum


Flowering locus T


Flowering locus T/terminal flower 1-like


Long day


Late elongated hypocotyl


Low temperature


Low-temperature exotherm


Lux arrhythmo


Multiplex lamellae




Pseudo-response regulator


Short day


Timing of CAB2 expression 1


Wild type


Xylem ray parenchyma cells



Some studies cited in this chapter were partially supported by the Japan Society for the Promotion of Science under a Grant-in-Aid for Scientific Research (KAKENHI) [grant numbers: 15H04615, 23580453, 20580360 (KA)].


  1. Adams S, Manfield I, Stockley P, Carré IA (2015) Revised morning loops of the Arabidopsis circadian clock based on analyses of direct regulatory interactions. PLoS One 10:e0143943PubMedPubMedCentralCrossRefGoogle Scholar
  2. Alabadí D, Oyama T, Yanovsky MJ, Harmon FG, Más P, Kay SA (2001) Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock. Science 293:880–883PubMedCrossRefGoogle Scholar
  3. Arora R, Wisniewski M (1994) Cold acclimation in genetically related (sibling) deciduous and evergreen peach (Prunus persica [L.] Batsch) II. A 60-kilodalton bark protein in cold-acclimated tissues of peach is heat stable and related to the dehydrin family of proteins. Plant Physiol 105:95–101PubMedPubMedCentralCrossRefGoogle Scholar
  4. Artus NN, Uemura M, Steponkus PL, Gilmour SJ, Thomashow MF (1996) Constitutive expression of the cold-regulated Arabidopsis thaliana COR15a gene affects chloroplast and protoplast freezing tolerance. Proc Natl Acad Sci U S A 93:13404–13409PubMedPubMedCentralCrossRefGoogle Scholar
  5. Ashworth EN, Abeles FB (1984) Freezing behavior of water in small pores and the possible role in the freezing of plant tissues. Plant Physiol 76:201–204PubMedPubMedCentralCrossRefGoogle Scholar
  6. Ashworth EN, Davis GA, Wisniewski ME (1989) The formation and distribution of ice within dormant and deacclimated peach flower buds. Plant Cell Environ 12:607–612CrossRefGoogle Scholar
  7. Avia K, Kärkkäinen K, Lagercrantz U, Savolainen O (2014) Association of FLOWERING LOCUS T/TERMINAL FLOWER 1-like gene FTL2 expression with growth rhythm in Scots pine (Pinus sylvestris). New Phytol 204:159–170PubMedCrossRefGoogle Scholar
  8. Bassett CL, Wisniewski ME, Artlip TS, Norelli JL, Renaut J, Farrel RE Jr (2006) Global analysis of genes regulated by low temperature and photoperiod in peach bark. J Am Soc Hortic Sci 131:551–563Google Scholar
  9. Benedict C, Skinner JS, Meng R, Chang Y, Bhalerao R, Huner NP, Finn CE, Chen TH, Hurry V (2006) The CBF1-dependent low temperature signalling pathway, regulon and increase in freeze tolerance are conserved in Populus spp. Plant Cell Environ 29:1259–1272PubMedCrossRefGoogle Scholar
  10. Böhlenius H, Huang T, Charbonnel-Campaa L, Brunner AM, Jansson S, Strauss SH, Nilsson O (2006) CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees. Science 312:1040–1043PubMedCrossRefGoogle Scholar
  11. Chaves I, Pokorny R, Byrdin M, Hoang N, Ritz T, Brettel K, Essen LO, van der Horst GT, Batschauer A, Ahmad M (2011) The cryptochromes: blue light photoreceptors in plants and animals. Annu Rev Plant Biol 62:335–364PubMedCrossRefGoogle Scholar
  12. Chen J, Tian Q, Pang T, Jiang L, Wu R, Xia X, Yin W (2014) Deep-sequencing transcriptome analysis of low temperature perception in a desert tree, Populus euphratica. BMC Genomics 15:326PubMedPubMedCentralCrossRefGoogle Scholar
  13. Chow BY, Sanchez SE, Breton G, Pruneda-Paz JL, Krogan NT, Kay SA (2014) Transcriptional regulation of LUX by CBF1 mediates cold input to the circadian clock in Arabidopsis. Curr Biol 24:1518–1524PubMedPubMedCentralCrossRefGoogle Scholar
  14. Christersson L (1978) The influence of photoperiod and temperature on the development of frost hardiness in seedlings of Pinus sylvestris and Picea abies. Plant Physiol 44:288–294CrossRefGoogle Scholar
  15. Christie JM (2007) Phototropin blue-light receptors. Annu Rev Plant Biol 58:21–45PubMedCrossRefGoogle Scholar
  16. Cloix C, Kaiserli E, Heilmann M, Baxter KJ, Brown BA, O'Hara A, Smith BO, Christie JM, Jenkins GI (2012) C-terminal region of the UV-B photoreceptor UVR8 initiates signaling through interaction with the COP1 protein. Proc Natl Acad Sci U S A 109:16366–16370PubMedPubMedCentralCrossRefGoogle Scholar
  17. Cooke JE, Eriksson ME, Junttila O (2012) The dynamic nature of bud dormancy in trees: environmental control and molecular mechanisms. Plant Cell Environ 35:1707–1728PubMedCrossRefGoogle Scholar
  18. Crowe JH, Crowe LM, Carpenter JF, Rudolph AS, Wistrom CA, Spargo BJ, Anchordoguy TJ (1988) Interaction of sugars with membranes. Biochim Biopys Acta 947:367–384CrossRefGoogle Scholar
  19. Dong MA, Farré EM, Thomashow MF (2011) Circadian clock-associated 1 and late elongated hypocotyl regulate expression of the C-repeat binding factor (CBF) pathway in Arabidopsis. Proc Natl Acad Sci U S A 108:7241–7246PubMedPubMedCentralCrossRefGoogle Scholar
  20. Drira M, Saibi W, Brini F, Gargouri A, Masmoudi K, Hanin M (2013) The K-segments of the wheat dehydrin DHN-5 are essential for the protection of lactate dehydrogenase and β-glucosidase activities in vitro. Mol Biotechnol 54:643–650PubMedCrossRefGoogle Scholar
  21. El Kayal W, Allen CC, Ju CJ, Adams E, King-Jones S, Zaharia LI, Abrams SR, Cooke JE (2011) Molecular events of apical bud formation in white spruce, Picea glauca. Plant Cell Environ 34:480–500PubMedCrossRefGoogle Scholar
  22. Endoh K, Kasuga J, Arakawa K, Ito T, Fujikawa S (2009) Cryo-scanning electron microscopic study on freezing behaviors of tissue cells in dormant buds of larch (Larix kaempferi). Cryobiology 59:214–222PubMedCrossRefGoogle Scholar
  23. Endoh K, Kuwabara C, Arakawa K, Fujikawa S (2014) Consideration of the reasons why dormant buds of trees have evolved extraorgan freezing as an adaptation for winter survival. Environ Exp Bot 106:52–59CrossRefGoogle Scholar
  24. Fernández M, Troncoso V, Valenzuela S (2015) Transcriptome profile in response to frost tolerance in Eucalyptus globulus. Plant Mol Biol Rep 33:1472–1485CrossRefGoogle Scholar
  25. Frewen BE, Chen TH, Howe GT, Davis J, Rohde A, Boerjan W, Bradshaw HD Jr (2000) Quantitative trait loci and candidate gene mapping of bud set and bud flush in Populus. Genetics 154:837–845PubMedPubMedCentralGoogle Scholar
  26. Fujikawa S (2016) Plant responses to freezing. eLS. Wiley, Chichester, pp 1–9. CrossRefGoogle Scholar
  27. Fujikawa S, Kuroda K (2000) Cryo-scanning electron microscopic study on freezing behavior of xylem ray parenchyma cells in hardwood species. Micron 31:669–686PubMedCrossRefGoogle Scholar
  28. Fujikawa S, Miura K (1986) Plasma membrane ultrastructural changes caused by mechanical stress in the formation of extracellular ice as a primary cause of slow freezing injury in fruit-bodies of Basidiomycetes (Lyophyllum ulmarium (Fr.) Kuhner). Cryobiology 23:371–382CrossRefGoogle Scholar
  29. Fujikawa S, Steponkus PL (1990) Freeze-induced alterations in the ultrastructure of the plasma membrane of rye protoplasts isolated from cold acclimated leaves. Cryobiology 27:665–666Google Scholar
  30. Fujikawa S, Takabe K (1996) Formation of multiplex lamellae by equilibrium slow freezing of cortical parenchyma cells of mulberry and its possible relationship to freezing tolerance. Protoplasma 190:189–203CrossRefGoogle Scholar
  31. Fujikawa S, Ukaji N, Nagao M, Yamane K, Takezawa D, Arakawa K (2006) Functional role of winter-accumulating proteins from mulberry tree in adaptation to winter-induced stresses. In: Chen THH, Uemura M, Fujikawa S (eds) Cold hardiness in plants: molecular genetics, cell biology and physiology. CABI, Wallingford, pp 181–202Google Scholar
  32. Fujikawa S, Kasuga J, Takata N, Arakawa K (2009) Factors related to change of deep supercooling capability in xylem parenchyma cells of trees. In: Gusta LV, Wisniewski ME, Tanino KK (eds) Plant cold hardiness: from the laboratory to the field. CABI, Wallingford, pp 29–42CrossRefGoogle Scholar
  33. Galindo González LM, El Kayal W, Ju CJ, Allen CC, King-Jones S, Cooke JE (2012) Integrated transcriptomic and proteomic profiling of white spruce stems during the transition from active growth to dormancy. Plant Cell Environ 35:682–701PubMedCrossRefGoogle Scholar
  34. George MF, Burke MJ, Pellet HM, Johnson AG (1974) Low temperature exotherms and woody plant distribution. Hortscience 9:519–522Google Scholar
  35. George MF, Becwar MR, Burke MJ (1982) Freezing avoidance by deep supercooling of tissue water in winter-hardy plants. Cryobiology 19:628–639PubMedCrossRefGoogle Scholar
  36. Gordon-Kamm WJ, Steponkus PL (1984) Lamellar-to-hexagonal II phase transitions in the plasma membrane of isolated protoplasts after freeze-induced dehydration. Proc Natl Acad Sci U S A 81:6373–6377PubMedPubMedCentralCrossRefGoogle Scholar
  37. Gusta LV, Tyler NJ, Chen THH (1983) Deep undercooling in woody taxa growing north of the −40°C isotherm. Plant Physiol 72:122–128PubMedPubMedCentralCrossRefGoogle Scholar
  38. Gyllenstrand N, Clapham D, Källman T, Lagercrantz U (2007) A Norway spruce FLOWERING LOCUS T homolog is implicated in control of growth rhythm in conifers. Plant Physiol 144:248–257PubMedPubMedCentralCrossRefGoogle Scholar
  39. Gyllenstrand N, Karlgren A, Clapham D, Holm K, Hall A, Gould PD, Källman T, Lagercrantz U (2014) No time for spruce: rapid dampening of circadian rhythms in Picea abies (L. Karst). Plant Cell Physiol 55:535–550PubMedCrossRefGoogle Scholar
  40. Hanin M, Brini F, Ebel C, Toda Y, Takeda S, Masmoudi K (2011) Plant dehydrins and stress tolerance: versatile proteins for complex mechanisms. Plant Signal Behav 6:1503–1509PubMedPubMedCentralCrossRefGoogle Scholar
  41. Hara M, Terashima S, Fukaya T, Kuboi T (2003) Enhancement of cold tolerance and inhibition of lipid peroxidation by citrus dehydrin in transgenic tobacco. Planta 217:290–298PubMedGoogle Scholar
  42. Hara M, Fujinaga M, Kuboi T (2004) Radical scavenging activity and oxidative modification of citrus dehydrin. Plant Physiol Biochem 42:657–662PubMedCrossRefGoogle Scholar
  43. Heide OM (1974) Growth and dormancy in Norway spruce ecotypes (Picea abies) I. Interaction of photoperiod and temperature. Physiol Plant 30:1–12CrossRefGoogle Scholar
  44. Howell GS, Weiser CJ (1970a) The environmental control of cold acclimation in apple. Plant Physiol 45:390–394PubMedPubMedCentralCrossRefGoogle Scholar
  45. Howell GS, Weiser CJ (1970b) Fluctuations in the cold resist ace of apple twigs during spring dehardening. J Am Soc Hortic Sci 95:190–192Google Scholar
  46. Hsu CY, Adams JP, Kim H, No K, Ma C, Strauss SH, Drnevich J, Vandervelde L, Ellis JD, Rice BM et al (2011) FLOWERING LOCUS T duplication coordinates reproductive and vegetative growth in perennial poplar. Proc Natl Acad Sci U S A 108:10756–10761PubMedPubMedCentralCrossRefGoogle Scholar
  47. Hu Y, Jiang Y, Han X, Wang H, Pan J, Yu D (2017) Jasmonate regulates leaf senescence and tolerance to cold stress: crosstalk with other phytohormones. J Exp Bot 68:1361–1369PubMedCrossRefGoogle Scholar
  48. Huang W, Pérez-García P, Pokhilko A, Millar AJ, Antoshechkin I, Riechmann JL, Mas P (2012) Mapping the core of the Arabidopsis circadian clock defines the network structure of the oscillator. Science 336:75–79PubMedCrossRefGoogle Scholar
  49. Ibañez C, Ramos A, Acebo P, Contreras A, Casado R, Allona I, Aragoncillo C (2008) Overall alteration of circadian clock gene expression in the chestnut cold response. PLoS One 3:e3567PubMedPubMedCentralCrossRefGoogle Scholar
  50. Ibáñez C, Kozarewa I, Johansson M, Ogren E, Rohde A, Eriksson ME (2010) Circadian clock components regulate entry and affect exit of seasonal dormancy as well as winter hardiness in Populus trees. Plant Physiol 153:1823–1833PubMedPubMedCentralCrossRefGoogle Scholar
  51. Ingvarsson PK, García MV, Hall D, Luquez V, Jansson S (2006) Clinal variation in phyB2, a candidate gene for day-length-induced growth cessation and bud set, across a latitudinal gradient in European aspen (Populus tremula). Genetics 172:1845–1853PubMedPubMedCentralCrossRefGoogle Scholar
  52. Ishikawa M, Ishikawa M, Toyomasu T, Aoki T, Price WS (2015) Ice nucleation activity in various tissues of Rhododendron flower buds: their relevance to extraorgan freezing. Front Plant Sci 6:149PubMedPubMedCentralCrossRefGoogle Scholar
  53. Ito S, Song YH, Imaizumi T (2012) LOV domain-containing F-box proteins: light-dependent protein degradation modules in Arabidopsis. Mol Plant 5:573–582PubMedCrossRefGoogle Scholar
  54. Johansson M, Ramos-Sánchez JM, Conde D, Ibáñez C, Takata N, Allona I, Eriksson ME (2015) Role of the circadian clock in cold acclimation and winter dormancy in perennial plants. In: Anderson J (ed) Advances in dormancy. Springer, New York, pp 51–74Google Scholar
  55. Jung J-H, Domijan M, Klose C, Biswas S, Ezer D, Gao M, Khattak AK, Box MS, Charoensawan V, Cortijo S, Kumar M, Grant A, Locke JCW, Schäfer E, Jaeger KE, Wigge PA (2016) Phytochromes function as thermosensors in Arabidopsis. Science 354:886–889PubMedCrossRefGoogle Scholar
  56. Junttila O (1980) Effect of photoperiod and temperature on apical growth cessation in two ecotypes of Salix and Betula. Physiol Plant 48:347–352CrossRefGoogle Scholar
  57. Junttila O, Kaurin Å (1990) Environmental control of cold acclimation in Salix pentandra. Scand J For Res 5:195–204CrossRefGoogle Scholar
  58. Kalcsits L, Silim S, Tanino K (2009) Warm temperature accelerates short photoperiod-induced growth cessation and dormancy induction in hybrid poplar (Populus × spp.). Trees 23:973–979CrossRefGoogle Scholar
  59. Karimi R, Ershadi A (2015) Role of exogenous abscisic acid in adapting of ‘Sultana’ grapevine to low-temperature stress. Acta Physiol Plant 37:151CrossRefGoogle Scholar
  60. Karlgren A, Gyllenstrand N, Källman T, Sundström JF, Moore D, Lascoux M, Lagercrantz U (2011) Evolution of the PEBP gene family in plants: functional diversification in seed plant evolution. Plant Physiol 156:1967–1977PubMedPubMedCentralCrossRefGoogle Scholar
  61. Karlgren A, Gyllenstrand N, Clapham D, Lagercrantz U (2013a) FLOWERING LOCUS T/TERMINAL FLOWER1-like genes affect growth rhythm and bud set in Norway spruce. Plant Physiol 163:792–803PubMedPubMedCentralCrossRefGoogle Scholar
  62. Karlgren A, Gyllenstrand N, Källman T, Lagercrantz U (2013b) Conserved function of core clock proteins in the gymnosperm Norway spruce (Picea abies L. Karst). PLoS One 8:e60110PubMedPubMedCentralCrossRefGoogle Scholar
  63. Kasuga J, Arakawa K, Fujikawa S (2007) High accumulation of soluble sugars in deep supercooling Japanese white birch xylem parenchyma cells. New Phytol 174:569–579PubMedCrossRefGoogle Scholar
  64. Kasuga J, Hashidoko Y, Nishioka A, Yoshiba M, Arakawa K, Fujikawa S (2008) Deep supercooling xylem parenchyma cells of katsura tree (Cercidiphyllum japocum) contain flavonol glycosides exhibiting high anti-ice nucleation activity. Plant Cell Environ 31:1335–1348CrossRefGoogle Scholar
  65. Kasuga J, Endoh K, Yoshiba M, Taido I, Arakawa K, Uemura M, Fujikawa S (2013) Roles of cell walls and intracellular contents in supercooling capability of xylem parenchyma cells of boreal trees. Physiol Plant 148:25–35PubMedCrossRefGoogle Scholar
  66. Kawamura Y, Uemura M (2003) Mass spectrometric approach for identifying putative plasma membrane proteins of Arabidopsis leaves associated with cold acclimation. Plant J 36:141–154CrossRefGoogle Scholar
  67. Kim JY, Song HR, Taylor BL, Carré IA (2003) Light-regulated translation mediates gated induction of the Arabidopsis clock protein LHY. EMBO J 22:935–944PubMedPubMedCentralCrossRefGoogle Scholar
  68. Koster KL, Webb MS, Bryant G, Lynch DV (1994) Interactions between soluble sugars and POPC (1-palmitoyl-2-oleoylphosphatidylcholine) during dehydration: vitrification of sugars alter the phase behavior of the phospholipid. Biochim Biophys Acta 1193:143–150PubMedCrossRefGoogle Scholar
  69. Kozarewa I, Ibáñez C, Johansson M, Ogren E, Mozley D, Nylander E, Chono M, Moritz T, Eriksson ME (2010) Alteration of PHYA expression change circadian rhythms and timing of bud set in Populus. Plant Mol Biol 73:143–156PubMedCrossRefGoogle Scholar
  70. Kuroda K, Kasuga J, Arakawa K, Fujikawa S (2003) Xylem ray parenchyma cells in boreal hardwood species respond to subfreezing temperatures by deep supercooling that is accompanied by incomplete desiccation. Plant Physiol 131:736–744PubMedPubMedCentralCrossRefGoogle Scholar
  71. Kuwabara C, Kasuga J, Wang D, Fukushi Y, Arakawa K, Koyama T, Inada T, Fujikawa S (2011) Changes of supercooling capability in solutions containing different kinds of ice nucleators by flavonol glycosides from deep supercooling xylem parenchyma cells in trees. Cryobiology 63:157–163CrossRefGoogle Scholar
  72. Kuwabara C, Wang D, Kasuga J, Fukushi Y, Arakawa K, Koyama T, Inada T, Fujikawa S (2012) Freezing activities of flavonoids in solutions containing different ice nucleators. Cryobiology 64:279–285CrossRefGoogle Scholar
  73. Larcher W (2003) Physiological plant ecology, 4th edn. Springer-Verlag, BerlinCrossRefGoogle Scholar
  74. Legris M, Klose C, Burgie ES, Rojas CC, Neme M, Hiltbrunner A, Wigge PA, Schäfer E, Vierstra RD, Casal JJ (2016) Phytochrome B integrates light and temperature signals in Arabidopsis. Science 354:897–900PubMedCrossRefGoogle Scholar
  75. Leyva-Pérez MD, Valverde-Corredor A, Valderrama R, Jiménez-Ruiz J, Muñoz-Merida A, Trelles O, Barroso JB, Mercado-Blanco J, Luque F (2015) Early and delayed long-term transcriptional changes and short-term transient responses during cold acclimation in olive leaves. DNA Res 22:1–11CrossRefGoogle Scholar
  76. Li FW, Mathews S (2016) Evolutionary aspects of plant photoreceptors. J Plant Res 129:115–122PubMedCrossRefGoogle Scholar
  77. Li C, Puhakainen T, Welling A, Viherä-Aarnio A, Ernstsen A, Junttila O, Heino P, Palva T (2002) Cold acclimation in silver birch (Betula pendula). Development of freezing tolerance in different tissues and climatic ecotypes. Physiol Plant 116:478–488CrossRefGoogle Scholar
  78. Li C, Junttila O, Ernstsen A, Heino P, Palva ET (2003a) Photoperiodic control of growth, cold acclimation and dormancy development in silver birch (Betula pendula) ecotypes. Physiol Plant 117:206–212CrossRefGoogle Scholar
  79. Li C, Junttila O, Heino P, Palva ET (2003b) Different responses of northern and southern ecotypes of Betula pendula to exogenous ABA application. Tree Physiol 23:481–487PubMedCrossRefGoogle Scholar
  80. Li C, Welling A, Puhakainen T, Viherä-Aarnio A, Ernstsen A, Junttila O, Heino P, Palva ET (2005) Differential responses of silver birch (Betula pendula) ecotypes to short-day photoperiod and low temperature. Tree Physiol 25:1563–1569PubMedCrossRefGoogle Scholar
  81. Li FW, Villarreal JC, Kelly S, Rothfels CJ, Melkonian M, Frangedakis E, Ruhsam M, Sigel EM, Der JP, Pittermann J et al (2014) Horizontal transfer of an adaptive chimeric photoreceptor from bryophytes to ferns. Proc Natl Acad Sci U S A 111:6672–6677PubMedPubMedCentralCrossRefGoogle Scholar
  82. Li FW, Melkonian M, Rothfels CJ, Villarreal JC, Stevenson DW, Graham SW, Wong GK, Pryer KM, Mathews S (2015) Phytochrome diversity in green plants and the origin of canonical plant phytochromes. Nat Commun 6:7852PubMedPubMedCentralCrossRefGoogle Scholar
  83. Liu LJ, Zhang YC, Li QH, Sang Y, Mao J, Lian HL, Wang L, Yang HQ (2008) COP1-mediated ubiquitination of CONSTANS is implicated in cryptochrome regulation of flowering in Arabidopsis. Plant Cell 20:292–306PubMedPubMedCentralCrossRefGoogle Scholar
  84. Maestrini P, Cavallini A, Rizzo M, Giordani T, Bernardi R, Durante M, Natali L (2009) Isolation and expression analysis of low temperature-induced genes in white poplar (Populus alba). J Plant Physiol 166:1544–1556PubMedCrossRefGoogle Scholar
  85. Makino S, Matsushika A, Kojima M, Oda Y, Mizuno T (2001) Light response of the circadian waves of the APRR1/TOC1 quintet: when does the quintet start singing rhythmically in Arabidopsis? Plant Cell Physiol 42:334–339PubMedCrossRefGoogle Scholar
  86. Murata N, Los DA (1997) Membrane fluidity and temperature perception. Plant Physiol 115:875–879PubMedPubMedCentralCrossRefGoogle Scholar
  87. Nagel DH, Kay SA (2012) Complexity in the wiring and regulation of plant circadian networks. Curr Biol 22:R648–R657PubMedPubMedCentralCrossRefGoogle Scholar
  88. Nakamichi N, Kita M, Ito S, Yamashino T, Mizuno T (2005) PSEUDO-RESPONSE REGULATORS, PRR9, PRR7 and PRR5, together play essential roles close to the circadian clock of Arabidopsis thaliana. Plant Cell Physiol 46:686–698PubMedCrossRefGoogle Scholar
  89. Nakamichi N, Kusano M, Fukushima A, Kita M, Ito S, Yamashino T, Saito K, Sakakibara H, Mizuno T (2009) Transcript profiling of an Arabidopsis PSEUDO RESPONSE REGULATOR arrhythmic triple mutant reveals a role for the circadian clock in cold stress response. Plant Cell Physiol 50:447–462CrossRefGoogle Scholar
  90. Nusinow DA, Helfer A, Hamilton EE, King JJ, Imaizumi T, Schultz TF, Farré EM, Kay SA (2011) The ELF4-ELF3-LUX complex links the circadian clock to diurnal control of hypocotyl growth. Nature 475:398–402PubMedPubMedCentralCrossRefGoogle Scholar
  91. Nystedt B, Street NR, Wetterbom A, Zuccolo A, Lin YC, Scofield DG, Vezzi F, Delhomme N, Giacomello S, Alexeyenko A et al (2013) The Norway spruce genome sequence and conifer genome evolution. Nature 497:579–584PubMedCrossRefGoogle Scholar
  92. Olsen JE, Junttila O, Nilsen J, Eriksson ME, Martinussen I, Olsson O, Sandberg G, Moritz T (1997) Ectopic expression of oat phytochrome A in hybrid aspen changes critical daylength for growth and prevents cold acclimatization. Plant J 12:1339–1350CrossRefGoogle Scholar
  93. Pallardy SG (2008) Physiology of woody plants, 3rd edn. Elsevier, BurlingtonGoogle Scholar
  94. Pauley SS, Perry TO (1954) Ecotypic variation of the photoperiodic response in Populus. J Arnold Arbor 35:167–188Google Scholar
  95. Pearce RS, Willison JHM (1985) A freeze-etch study of the effects of extracellular freezing on cellular membranes of wheat. Planta 163:304–316PubMedCrossRefGoogle Scholar
  96. Pokhilko A, Fernández AP, Edwards KD, Southern MM, Halliday KJ, Millar AJ (2012) The clock gene circuit in Arabidopsis includes a repressilator with additional feedback loops. Mol Syst Biol 8:574PubMedPubMedCentralCrossRefGoogle Scholar
  97. Preston JC, Sandve SR (2013) Adaptation to seasonality and the winter freeze. Front Plant Sci 4:1–18Google Scholar
  98. Quamme H, Stushnoff C, Weiser CJ (1972) The relationship of exotherms to cold injury in apple stem tissues. J Am Soc Hortic Sci 97:608–613Google Scholar
  99. Ramos A, Pérez-Solís E, Ibáñez C, Casado R, Collada C, Gómez L, Aragoncillo C, Allona I (2005) Winter disruption of the circadian clock in chestnut. Proc Natl Acad Sci U S A 102:7037–7042PubMedPubMedCentralCrossRefGoogle Scholar
  100. Renaut J, Hausman J-F, Bassett C, Artlip T, Cauchie H-M, Witters E, Wisniewski M (2008) Quantitative proteomic analysis of short photoperiod and low-temperature responses in bark tissues of peach (Prunus persica L. Batsch). Tree Genet Genomes 4:589–600CrossRefGoogle Scholar
  101. Rinne P, Welling A, Kaikuranta P (1998) Onset of freezing tolerance in birch (Betula pubescens Ehrh.) involves LEA proteins and osmoregulation and is impaired in an ABA deficient genotype. Plant Cell Environ 21:601–611CrossRefGoogle Scholar
  102. Rizzini L, Favory JJ, Cloix C, Faggionato D, O'Hara A, Kaiserli E, Baumeister R, Schäfer E, Nagy F, Jenkins GI, Ulm R (2011) Perception of UV-B by the Arabidopsis UVR8 protein. Science 332:103–106PubMedCrossRefGoogle Scholar
  103. Rohde A, Bhalerao RP (2007) Plant dormancy in the perennial context. Trends Plant Sci 12:217–223PubMedCrossRefGoogle Scholar
  104. Sagisaka S, Asada M, Ahn YH (1990) Ultrastructure of poplar cortical cells during the transition from growing to wintering stages and vice versa. Trees 4:120–127CrossRefGoogle Scholar
  105. Sakai A (1966) Studies of frost hardiness in woody plants. II. Effect of temperature on hardening. Plant Physiol 41:353–359PubMedPubMedCentralCrossRefGoogle Scholar
  106. Sakai A (1982) Freezing tolerance of shoot and flower primordia of coniferous buds by extraorgan freezing. Plant Cell Physiol 23:1219–1227CrossRefGoogle Scholar
  107. Sakai A, Larcher W (1987) Frost survival in plants: responses and adaptations to freezing stress. Springer-Verlag, BerlinCrossRefGoogle Scholar
  108. Sauter JJ, Wisniewski M, Witt W (1996) Interrelationships between ultrastructure, sugar levels, and frost hardiness of ray parenchyma cells during frost acclimation and deacclimation in poplar (Populus × canadensis Moench <robusta>) wood. J Plant Physiol 149:451–461CrossRefGoogle Scholar
  109. Schrader J, Moyle R, Bhalerao R, Hertzberg M, Lundeberg J, Nilsson P, Bhalerao RP (2004) Cambial meristem dormancy in trees involves extensive remodelling of the transcriptome. Plant J 40:173–187PubMedCrossRefGoogle Scholar
  110. Singh RK, Svystun T, AlDahmash B, Jönsson AM, Bhalerao RP (2017) Photoperiod- and temperature-mediated control of phenology in trees – a molecular perspective. New Phytol 213:511–524PubMedCrossRefGoogle Scholar
  111. Steponkus PL (1984) Role of the plasma membrane in freezing injury and cold acclimation. Annu Rev Plant Physiol 35:543–584CrossRefGoogle Scholar
  112. Steponkus PL, Webb MS (1992) Freeze-induced dehydration and membrane destabilization in plants. In: Somero GN, Osmond CB, Bolis CL (eds) Water and life: comparative analysis of water relationships at the organismic, cellular and molecular level. Springer, Berlin, pp 338–362CrossRefGoogle Scholar
  113. Steponkus PL, Uemura M, Webb MS (1993) A contrast of the cryostability of the plasma membrane of winter rye and spring oat. Two species that widely differ in their freezing tolerance and plasma membrane lipid composition. In: Steponkus PL (ed) Advances in low-temperature biology, vol 2. JAI Press, London, pp 211–312Google Scholar
  114. Suárez-López P, Wheatley K, Robson F, Onouchi H, Valverde F, Coupland G (2001) CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature 410:1116–1120PubMedCrossRefGoogle Scholar
  115. Suzuki I, Los DA, Kanesaki Y, Mikami K, Murata N (2000) The pathway for perception and transduction of low-temperature signals in Synechocystis. EMBO J 19:1327–1334PubMedPubMedCentralCrossRefGoogle Scholar
  116. Takata N, Kasuga J, Takezawa D, Arakawa K, Fujikawa S (2007) Gene expression associated with increased supercooling capability in xylem parenchyma cells of larch (Larix kaempferi). J Exp Bot 58:3731–3742PubMedCrossRefGoogle Scholar
  117. Takata N, Saito S, Saito CT, Nanjo T, Shinohara K, Uemura M (2009) Molecular phylogeny and expression of poplar circadian clock genes, LHY1 and LHY2. New Phytol 181:808–819PubMedCrossRefGoogle Scholar
  118. Takata N, Saito S, Saito CT, Uemura M (2010) Phylogenetic footprint of the plant clock system in angiosperms: evolutionary processes of pseudo-response regulators. BMC Evol Biol 10:126PubMedPubMedCentralCrossRefGoogle Scholar
  119. Tanino KK, Kalcsits L, Silim S, Kendall E, Gray GR (2010) Temperature-driven plasticity in growth cessation and dormancy development in deciduous woody plants: a working hypothesis suggesting how molecular and cellular function is affected by temperature during dormancy induction. Plant Mol Biol 73:49–65PubMedCrossRefGoogle Scholar
  120. Taulavuori K, Taulavuori E, Sarjala T, Savonen E-M, Pietiläinen P, Lähdesmäki P, Laine K (2000) In vivo chlorophyll fluorescence is not always a good indicator of cold hardiness. J Plant Physiol 157:227–229CrossRefGoogle Scholar
  121. Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50:571–599PubMedCrossRefGoogle Scholar
  122. Thomashow MF, Gilmour SJ, Stockinger EJ, Jaglo-Ottosen KR, Zarka DG (2001) Role of the Arabidopsis CBF transcriptional activators in cold acclimation. Physiol Plant 112:171–175CrossRefGoogle Scholar
  123. Uemura M, Yoshida S (1984) Improvement of plasma membrane alterations in cold acclimation of winter rye seedlings (Scale cereal L. cv. Puma). Plant Physiol 75:818–826PubMedPubMedCentralCrossRefGoogle Scholar
  124. Uemura U, Tominaga Y, Nakagawara C, Shigematsu S, Minami A, Kawamura Y (2006) Responses of the plasma membrane to low temperatures. Physiol Plant 126:81–89CrossRefGoogle Scholar
  125. Valverde F, Mouradov A, Soppe W, Ravenscroft D, Samach A, Coupland G (2004) Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. Science 303:1003–1006PubMedCrossRefGoogle Scholar
  126. Wallner SJ, Wu MT, Anderson-Krengel SJ (1986) Changes in extracellular polysaccharides during cold acclimation of cultured pear cells. J Am Soc Hortic Sci 111:769–773Google Scholar
  127. Wang ZY, Tobin EM (1998) Constitutive expression of the CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) gene disrupts circadian rhythms and suppresses its own expression. Cell 93:1207–1217PubMedCrossRefGoogle Scholar
  128. Wang D, Kasuga J, Kuwabara C, Endoh K, Fukushi Y, Fujikawa S, Arakawa K (2012) Presence of supercooling-facilitating (anti-ice nucleation) hydrolyzable tannins in deep supercooling xylem parenchyma cells in Cercidiphyllum japonicum. Planta 235:747–759CrossRefGoogle Scholar
  129. Weiser CJ (1970) Cold resistance and injury in woody plants: knowledge of hardy plant adaptations to freezing stress may help us to reduce winter damage. Science 169:1269–1278PubMedCrossRefGoogle Scholar
  130. Welling A, Palva ET (2006) Molecular control of cold acclimation in trees. Physiol Plant 127:167–181CrossRefGoogle Scholar
  131. Welling A, Kaikuranta P, Rinne P (1997) Photoperiodic induction of dormancy and freezing tolerance in Betula pubescens. Involvement of ABA and dehydrins. Physiol Plant 100:119–125CrossRefGoogle Scholar
  132. Welling A, Moritz T, Palva ET, Junttila O (2002) Independent activation of cold acclimation by low temperature and short photoperiod in hybrid aspen. Plant Physiol 129:1633–1641PubMedPubMedCentralCrossRefGoogle Scholar
  133. Wingler A (2015) Comparison of signaling interactions determining annual and perennial plant growth in response to low temperature. Front Plant Sci 5:794PubMedPubMedCentralCrossRefGoogle Scholar
  134. Wisniewski M (1995) Deep supercooling in woody plants and the role of cell wall structure. In: Lee RE, Warren GJ, Gusta LV (eds) Biological ice nucleation and its applications. APS Press, Minneapolis, pp 163–181Google Scholar
  135. Wisniewski M, Davis G (1989) Evidence for the involvement of a specific cell wall layer in regulation of deep supercooling of xylem parenchyma. Plant Physiol 91:151–156PubMedPubMedCentralCrossRefGoogle Scholar
  136. Wisniewski M, Davis G (1995) Immunogold localization of pectins and glycoproteins in tissues of peach with reference to deep supercooling. Trees 9:253–260CrossRefGoogle Scholar
  137. Wisniewski M, Webb R, Balsamo R, Close TJ, Yu X-M, Griffith M (1999) Purification, immunolocalization, cryoprotective, and antifreeze activity of PCA60: a dehydrin from peach (Prunus persica). Physiol Plant 105:600–608CrossRefGoogle Scholar
  138. Wisniewski M, Norelli J, Bassett C, Artlip T, Macarisin D (2011) Ectopic expression of a novel peach (Prunus persica) CBF transcription factor in apple (Malus x domestica) results in short-day induced dormancy and increased cold hardiness. Planta 233:971–983PubMedCrossRefGoogle Scholar
  139. Wisniewski M, Gusta L, Neuner G (2014) Adaptive mechanisms of freeze avoidance in plants: a brief update. Environ Exp Bot 99:133–140CrossRefGoogle Scholar
  140. Zhang G, Ryyppö A, Vapaavuori E, Repo T (2003) Quantification of additive response and stationarity of frost hardiness by photoperiod and temperature in Scots pine. Can J For Res 33:1772–1784CrossRefGoogle Scholar
  141. Zhou B-L, Arakawa K, Fujikawa S, Yoshida S (1994) Cold-induced alterations in plasma membrane proteins that are specifically related to the development of freezing tolerance in cold-hardy winter wheat. Plant Cell Physiol 35:175–182Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Research Faculty and Graduate School of AgricultureHokkaido UniversitySapporoJapan
  2. 2.Research Center for Global AgromedicineObihiro University of Agriculture and Veterinary MedicineObihiroJapan
  3. 3.Forest Research and Management OrganizationForestry and Forest Products Research Institute, Forest Bio-Research CenterHitachiJapan

Personalised recommendations