The Mechanism Enabling Hibernation in Mammals

  • Yuuki Horii
  • Takahiko Shiina
  • Yasutake ShimizuEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1081)


Some rodents including squirrels and hamsters undergo hibernation. During hibernation, body temperature drops to only a few degrees above ambient temperature. The suppression of whole-body energy expenditure is associated with regulated, but not passive, reduction of cellular metabolism. The heart retains the ability to beat constantly, although body temperature drops to less than 10 °C during hibernation. Cardiac myocytes of hibernating mammals are characterized by reduced Ca2+ entry into the cell membrane and a concomitant enhancement of Ca2+ release from and reuptake by the sarcoplasmic reticulum. These adaptive changes would help in preventing excessive Ca2+ entry and its overload and in maintaining the resting levels of intracellular Ca2+. Adaptive changes in gene expression in the heart prior to hibernation may be indispensable for acquiring cold resistance. In addition, protective effects of cold-shock proteins are thought to have an important role. We recently reported the unique expression pattern of cold-inducible RNA-binding protein (CIRP) in the hearts of hibernating hamsters. The CIRP mRNA is constitutively expressed in the heart of a nonhibernating euthermic hamster with several different forms probably due to alternative splicing. The short product contained the complete open reading frame for full-length CIRP, while the long product had inserted sequences containing a stop codon, suggesting production of a C-terminal deletion isoform of CIRP. In contrast to nonhibernating hamsters, only the short product was found in hibernating animals. Thus, these results indicate that CIRP expression in the hamster heart is regulated at the level of alternative splicing, which would permit a rapid increment of functional CIRP when entering hibernation. We will summarize the current understanding of the cold-resistant property of the heart in hibernating animals.


Hibernation Cold-shock protein Hypothermia 



Cold-inducing RNA-binding protein


The central nervous system




Hepatocyte nuclear factor


Hibernation-specific protein




RNA-binding motif 3


asarco(endo)plasmic reticulum Ca2+-ATPase 2a



The reviewed results obtained in our laboratory were supported in part by JSPS KAKENHI Grant numbers JP15K14876 and JP25660249 to Y.S. and JP17J02251 to Y.H., and the Sasakawa Scientific Research Grant from The Japan Science Society to Y.H.


  1. Abnous K, Dieni CA, Storey KB (2008) Regulation of Akt during hibernation in Richardson’s ground squirrels. Biochim Biophys Acta 1780:185–193PubMedCrossRefGoogle Scholar
  2. Alekseev AE, Markevich NI, Korystova AF, Terzic A, Kokoz YM (1996) Comparative analysis of the kinetic characteristics of L-type calcium channels in cardiac cells of hibernators. Biophys J 70:786–797PubMedPubMedCentralCrossRefGoogle Scholar
  3. Andrews MT, Russeth KP, Drewes LR, Henry PG (2009) Adaptive mechanisms regulate preferred utilization of ketones in the heart and brain of a hibernating mammal during arousal from torpor. Am J Physiol Regul Integr Comp Physiol 296:R383–R393PubMedCrossRefGoogle Scholar
  4. Barnes BM (1989) Freeze avoidance in a mammal: body temperatures below 0 degrees C in an Arctic hibernator. Science 244:1593–1595PubMedCrossRefGoogle Scholar
  5. Belke DD, Milner RE, Wang LC (1991) Seasonal variations in the rate and capacity of cardiac SR calcium accumulation in a hibernating species. Cryobiology 28:354–363PubMedCrossRefGoogle Scholar
  6. Bieber C, Lebl K, Stalder G, Geiser F, Ruf T (2014) Body mass dependent use of hibernation: why not prolong the active season, if they can? Funct Ecol 28:167–177CrossRefGoogle Scholar
  7. Brauch KM, Dhruv ND, Hanse EA, Andrews MT (2005) Digital transcriptome analysis indicates adaptive mechanisms in the heart of a hibernating mammal. Physiol Genomics 23:227–234PubMedCrossRefGoogle Scholar
  8. Breukelen FV, Martin SL (2015) The hibernation continuum: physiological and molecular aspects of metabolic plasticity in mammals physiology. Physiology 30:273–281PubMedCrossRefGoogle Scholar
  9. Brunson CE, Abbud E, Osman K, Skelton TN, Markov AK (2005) Osborn (J) wave appearance on the electrocardiogram in relation to potassium transfer and myocardial metabolism during hypothermia. J Investig Med 53:434–437PubMedCrossRefGoogle Scholar
  10. Caprette DR, Senturia JB (1984) Isovolumetric performance of isolated ground squirrel and rat hearts at low temperature. Am J Physiol Regul Integr Comp Physiol 247:R722–R727CrossRefGoogle Scholar
  11. Carey HV, Andrews MT, Martin SL (2003) Mammalian hibernation: cellular and molecular responses to depressed metabolism and low temperature. Physiol Rev 83:1153–1181PubMedCrossRefGoogle Scholar
  12. Chayama Y, Ando L, Tamura Y, Miura M, Yamaguchi Y (2016) Decreases in body temperature and body mass constitute pre-hibernation remodelling in the Syrian golden hamster, a facultative mammalian hibernator. R Soc Open Sci 3:160002PubMedPubMedCentralCrossRefGoogle Scholar
  13. De Leeuw F, Zhang T, Wauquier C, Huez G, Kruys V, Gueydan C (2007) The cold inducible RNA-binding protein migrates from the nucleus to cytoplasmic stress granules by a methylation-dependent mechanism and acts as a translational repressor. Exp Cell Res 313:4130–4144PubMedCrossRefGoogle Scholar
  14. Dibb KM, Hagarty CL, Loudon AS, Trafford AW (2005) Photoperioddependent modulation of cardiac excitation contraction coupling in the Siberian hamster. Am J Physiol Regul Integr Comp Physiol 288:R607–R614PubMedCrossRefGoogle Scholar
  15. Dow J, Simkhovich BZ, Hale SL, Kay G, Kloner RA (2014) Capsaicin-induced cardioprotection. Is hypothermia or the salvage kinase pathway involved? Cardiovasc Drugs Ther 28:295–301PubMedCrossRefGoogle Scholar
  16. Duker GD, Olsson SO, Hecht NH, Senturia JB, Johansson BW (1983) Ventricular fibrillation in hibernators and nonhibernators. Cryobiology 20:407–420PubMedCrossRefGoogle Scholar
  17. Epperson LE, Dahl TA, Martin SL (2004) Quantitative analysis of liver protein expression during hibernation in the golden-mantled ground squirrel. Mol Cell Proteomics 3:920–933PubMedCrossRefGoogle Scholar
  18. Fedorov VV, Li L, Glukhov A, Shishkina I, Aliev RR, Mikheeva T, Nikolski VP, Rosenshtraukh LV, Efimov IR (2005) Hibernator Citellus undulates maintains safe cardiac conduction and is protected against tachyarrhythmias during extreme hypothermia: possible role of Cx43 and Cx45 up-regulation. Heart Rhythm 2:966–975PubMedCrossRefGoogle Scholar
  19. Fedorov VV, Glukhov AV, Sudharshan S, Egorov Y, Rosenshtraukh LV, Efimov IR (2008) Electrophysiological mechanisms of antiarrhythmic protection during hypothermia in winter hibernating versus nonhibernating mammals. Heart Rhythm 5:1587–1596PubMedPubMedCentralCrossRefGoogle Scholar
  20. Fedorov VB, Goropashnaya AV, Tøien Ø, Stewart NC, Gracey AY, Chang CL, Qin SZ, Pertea G, Quackenbush J, Showe LC, Showe MK, Boyer BB, Barnes BM (2009) Elevated expression of protein biosynthesis genes in liver and muscle of hibernating black bears (Ursus americanus). Physiol Genomics 37:108–118PubMedPubMedCentralCrossRefGoogle Scholar
  21. Fedorov VB, Goropashnaya AV, Tøien O, Stewart NC, Chang C, Wang H, Yan J, Showe LC, Showe MK, Barnes BM (2011) Modulation of gene expression in heart and liver of hibernating black bears (Ursus americanus). BMC Genomics 12:171PubMedPubMedCentralCrossRefGoogle Scholar
  22. Fleck CC, Carey HV (2005) Modulation of apoptotic pathways in intestinal mucosa during hibernation. Am J Physiol Regul Integr Comp Physiol 289:R586–R595PubMedCrossRefGoogle Scholar
  23. Galvin IM, Levy R, Boyd JG, Day AG, Wallace MC (2015) Cooling for cerebral protection during brain surgery. Cochrane Database Syst Rev 1:CD006638PubMedGoogle Scholar
  24. Geiser F (2004) Metabolic rate and body temperature reduction during hibernation and daily torpor. Annu Rev Physiol 66:239–274PubMedCrossRefGoogle Scholar
  25. Gotic I, Omidi S, Fleury-Olela F, Molina N, Naef F, Schibler U (2016) Temperature regulates splicing efficiency of the cold-inducible RNA-binding protein gene Cirbp. Genes Dev 30:2005–2017PubMedPubMedCentralCrossRefGoogle Scholar
  26. Gualerzi CO, Giuliodori AM, Pon CL (2003) Transcriptional and posttranscriptional control of cold-shock genes. J Mol Biol 331:527–539PubMedCrossRefGoogle Scholar
  27. Guo W, Kan JT, Cheng ZY, Chen JF, Shen YQ, Xu J, Wu D, Zhu YZ (2012) Hydrogen sulfide as an endogenous modulator in mitochondria and mitochondria dysfunction. Oxidative Med Cell Longev 2012:878052CrossRefGoogle Scholar
  28. Gussak I, Bjerregaard P, Egan TM, Chaitman BR (1995) ECG phenomenon called the J wave. History, pathophysiology, and clinical significance. J Electrocardiol 28:49–58PubMedCrossRefGoogle Scholar
  29. Hale SL, Kloner RA (2011) Mild hypothermia as a cardioprotective approach for acute myocardial infarction: laboratory to clinical application. J Cardiovasc Pharmacol Ther 16:131–139PubMedCrossRefGoogle Scholar
  30. Harris MB, Milsom WK (1995) Parasympathetic influence on heart rate in euthermic and hibernating ground squirrels. J Exp Biol 198:931–937PubMedPubMedCentralGoogle Scholar
  31. Hoehn KL, Hudachek SF, Summers SA, Florant GL (2004) Seasonal, tissue-specific regulation of Akt/protein kinase B and glycogen synthase in hibernators. Am J Physiol Regul Integr Comp Physiol 286:R498–R504PubMedCrossRefPubMedCentralGoogle Scholar
  32. Horwitz BA, Chau SM, Hamilton JS, Song C, Gorgone J, Saenz M, Horowitz JM, Chen CY (2013) Temporal relationships of blood pressure, heart rate, baroreflex function, and body temperature change over a hibernation bout in Syrian hamsters. Am J Physiol Regul Integr Comp Physiol 305:R759–R768PubMedPubMedCentralCrossRefGoogle Scholar
  33. Houseknecht KL, Baile CA, Matteri RL, Spurlock ME (1998) The biology of leptin: a review. J Anim Sci 76:1405–1420PubMedCrossRefPubMedCentralGoogle Scholar
  34. Humphries MM, Thomas DW, Kramer DL (2003) The role of energy availability in mammalian hibernation: a cost-benefit approach. Physiol Biochem Zool 76:165–179PubMedCrossRefPubMedCentralGoogle Scholar
  35. Iliff BW, Swoap SJ (2012) Central adenosine receptor signaling is necessary for daily torpor in mice. Am J Physiol Regul Integr Comp Physiol 303:R477–R484PubMedCrossRefPubMedCentralGoogle Scholar
  36. Ivanov KP (2000) Physiological blocking of the mechanisms of cold death: theoretical and experimental considerations. J Therm Biol 25:467–479PubMedCrossRefPubMedCentralGoogle Scholar
  37. Jackson DC, Ultsch GR (2010) Physiology of hibernation under the ice by turtles and frogs. J Exp Zool A Ecol Genet Physiol 313:311–327PubMedCrossRefPubMedCentralGoogle Scholar
  38. Jakab B, Helyes Z, Varga A, Bölcskei K, Szabó A, Sándor K, Elekes K, Börzsei R, Keszthelyi D, Pintér E, Petho G, Németh J, Szolcsányi J (2005) Pharmacological characterization of the TRPV1 receptor antagonist JYL1421 (SC0030) in vivo and in vitro in the rat. Eur J Pharmacol 517:35–44PubMedCrossRefPubMedCentralGoogle Scholar
  39. Jinka TR, Tøien Ø, Drew KL (2011) Season primes the brain in an arctic hibernator to facilitate entrance into torpor mediated by adenosine A1 receptors. J Neurosci 31:10752–10758PubMedPubMedCentralCrossRefGoogle Scholar
  40. Johansson BW (1985) Ventricular repolarization and fibrillation threshold in hibernating species. Eur Heart J 6(Suppl D):53–62PubMedCrossRefPubMedCentralGoogle Scholar
  41. Johansson BW (1996) The hibernator heart–nature’s model of resistance to ventricular fibrillation. Cardiovasc Res 31:826–832PubMedPubMedCentralGoogle Scholar
  42. Jones WK, Fan GC, Liao S, Zhang JM, Wang Y, Weintraub NL, Kranias EG, Schultz JE, Lorenz J, Ren X (2009) Peripheral nociception associated with surgical incision elicits remote nonischemic cardioprotection via neurogenic activation of protein kinase C signaling. Circulation 120(suppl 1):S1–S9PubMedPubMedCentralCrossRefGoogle Scholar
  43. Kilduff TS, Krilowicz B, Milsom WK, Trachsel L, Wang LC (1993) Sleep and mammalian hibernation: homologous adaptations and homologous processes? Sleep 16:372–386PubMedCrossRefPubMedCentralGoogle Scholar
  44. Kobbe S, Dausmann K (2009) Hibernation in Malagasy mouse lemurs as a strategy to counter environmental challenge. Naturwissenschaften 96:1221–1227PubMedCrossRefPubMedCentralGoogle Scholar
  45. Kobbe S, Ganzhorn J, Dausmann K (2011) Extreme individual flexibility of heterothermy in free-ranging Malagasy mouse lemurs (Microcebus griseorufus). J Comp Physiol B 181:165–173PubMedCrossRefPubMedCentralGoogle Scholar
  46. Kojima M, Takamatsu N, Ishii T, Kondo N, Shiba T (2000) HNF-4 plays a pivotal role in the liver-specific transcription of the chipmunk HP-25 gene. Eur J Biochem 267:4635–4641PubMedCrossRefPubMedCentralGoogle Scholar
  47. Kojima M, Shiba T, Kondo N, Takamatsu N (2001) The tree squirrel HP-25 gene is a pseudogene. Eur J Biochem 268:5997–6002PubMedCrossRefPubMedCentralGoogle Scholar
  48. Kokoz YM, Grichenko AS, Korystova AF, Lankina DA, Pimenov OY, Markevich NI (2000) The regulation of L-type Ca2+ currents in cardiac myocytes of hibernating animals. Membr Cell Biol 14:277–284PubMedPubMedCentralGoogle Scholar
  49. Kondo N (1987) Identification of a pre-hibernating state in myocardium from nonhibernating chipmunks. Experientia 43:873–875PubMedCrossRefPubMedCentralGoogle Scholar
  50. Kondo N (2007) Endogenous circannual clock and HP complex in a hibernation control system. Cold Spring Harb Symp Quant Biol 72:607–613PubMedCrossRefPubMedCentralGoogle Scholar
  51. Kondo N, Kondo J (1992) Identification of novel blood proteins specific for mammalian hibernation. J Biol Chem 267:473–478PubMedPubMedCentralGoogle Scholar
  52. Kondo N, Shibata S (1984) Calcium source for excitation-contraction coupling in myocardium of nonhibernating and hibernating chipmunks. Science 225:641–643PubMedCrossRefPubMedCentralGoogle Scholar
  53. Kondo N, Sekijima T, Kondo J, Takamatsu N, Tohya K, Ohtsu T (2006) Circannual control of hibernation by HP complex in the brain. Cell 125:161–172PubMedCrossRefPubMedCentralGoogle Scholar
  54. Kronfeld-Schor N, Richardson C, Silvia BA, Kunz TH, Widmaier EP (2000) Dissociation of leptin secretion and adiposity during prehibernatory fattening in little brown bats. Am J Physiol Regul Integr Comp Physiol 279:R1277–R1281PubMedCrossRefPubMedCentralGoogle Scholar
  55. Kurihara S (1994) Regulation of cardiac muscle contraction by intracellular Ca2+. Jpn J Physiol 44:591–611PubMedCrossRefPubMedCentralGoogle Scholar
  56. Lakatta EG, Guarnieri T (1993) Spontaneous myocardial calcium oscillations: are they linked to ventricular fibrillation? J Cardiovasc Electrophysiol 4:473–489PubMedCrossRefPubMedCentralGoogle Scholar
  57. Lee M, Choi I, Park K (2002) Activation of stress signaling molecules in bat brain during arousal from hibernation. J Neurochem 82:867–873PubMedCrossRefPubMedCentralGoogle Scholar
  58. Liu B, Wang LC, Belke DD (1991) Effect of low temperature on the cytosolic free Ca2+ in rat ventricular myocytes. Cell Calcium 12:11–18PubMedCrossRefPubMedCentralGoogle Scholar
  59. Lleonart ME (2010) A new generation of proto-oncogenes: cold-inducible RNA binding proteins. Biochim Biophys Acta 1805:43–52PubMedPubMedCentralGoogle Scholar
  60. Lovegrove BG, Génin F (2008) Torpor and hibernation in a basal placental mammal, the Lesser Hedgehog Tenrec Echinops telfairi. J Comp Physiol B 178:691–698PubMedCrossRefGoogle Scholar
  61. Malan A (2014) The evolution of mammalian hibernation: lessons from comparative acid-base physiology. Integr Comp Biol 54:484–496PubMedCrossRefPubMedCentralGoogle Scholar
  62. Malhotra J, Gupta YK (1997) Effect of adenosine receptor modulation on pentylenetetrazole-induced seizures in rats. Br J Pharmacol 120:282–288PubMedPubMedCentralCrossRefGoogle Scholar
  63. Mertens A, Stiedl O, Steinlechner S, Meyer M (2008) Cardiac dynamics during daily torpor in the Djungarian hamster (Phodopus sungorus). Am J Physiol Regul Integr Comp Physiol 294:R639–R650PubMedCrossRefPubMedCentralGoogle Scholar
  64. Milner RE, Michalak M, Wang LC (1991) Altered properties of calsequestrin and the ryanodine receptor in the cardiac sarcoplasmic reticulum of hibernating mammals. Biochim Biophys Acta 1063:120–128PubMedCrossRefPubMedCentralGoogle Scholar
  65. Milsom WK, Zimmer MB, Harris MB (1999) Regulation of cardiac rhythm in hibernating mammals. Comp Biochem Physiol A Mol Integr Physiol 124:383–391PubMedCrossRefPubMedCentralGoogle Scholar
  66. Miyazawa S, Shimizu Y, Shiina T, Hirayama H, Morita H, Takewaki T (2008) Central A1-receptor activation associated with onset of torpor protects the heart against low temperature in the Syrian hamster. Am J Physiol Regul Integr Comp Physiol 295:R991–R996PubMedCrossRefPubMedCentralGoogle Scholar
  67. Montell C, Caterina MJ (2007) Thermoregulation: channels that are cool to the core. Curr Biol 17:R885–R887PubMedCrossRefPubMedCentralGoogle Scholar
  68. Mzilikazi N, Lovegrove BG, Ribble DO (2002) Exogenous passive heating during torpor arousal in free-ranging rock elephant shrews, Elephantulus myurus. Oecologia (Berl) 133:307–314CrossRefGoogle Scholar
  69. Nikodijevic O, Sarges R, Daly JW, Jacobson KA (1991) Behavioral effects of A1- and A2-selective adenosine agonists and antagonists: evidence for synergism and antagonism. J Pharmacol Exp Ther 259:286–294PubMedPubMedCentralGoogle Scholar
  70. Nishino S, Fujiki N, Ripley B, Sakurai E, Kato M, Watanabe T, Mignot E, Yanai K (2001) Decreased brain histamine content in hypocretin/orexin receptor-2 mutated narcoleptic dogs. Neurosci Lett 313:125–128PubMedCrossRefGoogle Scholar
  71. Nishiyama H, Itoh K, Kaneko Y, Kishishita M, Yoshida O, Fujita J (1997) A glycinerich RNA-binding protein mediating cold-inducible suppression of mammalian cell growth. J Cell Biol 137:899–908PubMedPubMedCentralCrossRefGoogle Scholar
  72. Peretti D, Bastide A, Radford H, Verity N, Molloy C, Martin MG, Moreno JA, Steinert JR, Smith T, Dinsdale D, Willis AE, Mallucci GR (2015) RBM3 mediates structural plasticity and protective effects of cooling in neurodegeneration. Nature 518:236–239PubMedPubMedCentralCrossRefGoogle Scholar
  73. Radulovacki M, Miletich RS, Green RD (1982) N6 (L-phenylisopropyl) adenosine (L-PHA) increases slow-wave sleep (S2) and decreases wakefulness in rats. Brain Res 246:178–180PubMedCrossRefGoogle Scholar
  74. Ruf T, Geiser F (2015) Daily torpor and hibernation in birds and mammals. Biol Rev Camb Philos Soc 90:891–926PubMedCrossRefGoogle Scholar
  75. Saito K, Fukuda N, Matsumoto T, Iribe Y, Tsunemi A, Kazama T, Yoshida-Noro C, Hayashi N (2010) Moderate low temperature preserves the stemness of neural stem cells and suppresses apoptosis of the cells via activation of the cold inducible RNA binding protein. Brain Res 1358:20–29PubMedCrossRefGoogle Scholar
  76. Saitongdee P, Milner P, Becker DL, Knight GE, Burnstock G (2000) Increased connexin43 gap junction protein in hamster cardiomyocytes during cold acclimatization and hibernation. Cardiovasc Res 47:108–115PubMedCrossRefGoogle Scholar
  77. Sano Y, Shiina T, Naitou K, Nakamori H, Shimizu Y (2015) Hibernation-specific alternative splicing of the mRNA encoding cold-inducible RNA-binding protein in the hearts of hamsters. Biochem Biophys Res Commun 462:322–325PubMedCrossRefGoogle Scholar
  78. Serkova NJ, Rose JC, Epperson LE, Carey HV, Martin SL (2007) Quantitative analysis of liver metabolites in three stages of the circannual hibernation cycle in 13-lined ground squirrels by NMR. Physiol Genomics 31:15–24PubMedCrossRefGoogle Scholar
  79. Shao C, Liu Y, Ruan H, Li Y, Wang H, Kohl F, Goropashnaya AV, Fedorov VB, Zeng R, Barnes BM, Yan J (2010) Shotgun proteomic analysis of hibernating arctic ground squirrels. Mol Cell Proteomics 9:313–326PubMedCrossRefGoogle Scholar
  80. Shimaoka H, Kawaguchi T, Morikawa K, Sano Y, Naitou K, Nakamori H, Shiina T, Shimizu Y (2018) Induction of hibernation-like hypothermia by central activation of the A1 adenosine receptor in a non-hibernator, the rat. J Physiol Sci 68:425–430PubMedCrossRefGoogle Scholar
  81. Shintani M, Tamura Y, Monden M, Shiomi H (2005) Thyrotropin-releasing hormone induced thermogenesis in Syrian hamsters: site of action and receptor subtype. Brain Res 1039:22–29PubMedCrossRefGoogle Scholar
  82. Sugimoto K, Jiang H (2008) Cold stress and light signals induce the expression of cold-inducible RNA binding protein (cirp) in the brain and eye of the Japanese treefrog (Hyla japonica). Comp Biochem Physiol A Mol Integr Physiol 151:628–636PubMedCrossRefGoogle Scholar
  83. Swanson DM, Dubin AE, Shah C, Nasser N, Chang L, Dax SL, Jetter M, Breitenbucher JG, Liu C, Mazur C, Lord B, Gonzales L, Hoey K, Rizzolio M, Bogenstaetter M, Codd EE, Lee DH, Zhang SP, Chaplan SR, Carruthers NI (2005) Identification and biological evaluation of 4-(3-trifluoromethylpyridin-2-yl)amide, a high affinity TRPV1 (VR1) vanilloid receptor antagonist. J Med Chem 48:1857–1872PubMedCrossRefGoogle Scholar
  84. Takamatsu N, Ohba K, Kondo J, Kondo N, Shiba T (1993) Hibernation-associated gene regulation of plasma proteins with a collagen-like domain in mammalian hibernators. Mol Cell Biol 13:1516–1521PubMedPubMedCentralCrossRefGoogle Scholar
  85. Tamura Y, Shintani M, Nakamura A, Monden M, Shiomi H (2005) Phase-specific central regulatory systems of hibernation in Syrian hamsters. Brain Res 1045:88–96PubMedCrossRefGoogle Scholar
  86. Tamura Y, Monden M, Shintani M, Kawai A, Shiomi H (2006) Neuroprotective effects of hibernation-regulating substances against low-temperature-induced cell death in cultured hamster hippocampal neurons. Brain Res 1108:107–116PubMedCrossRefGoogle Scholar
  87. Tamura Y, Shintani M, Inoue H, Monden M, Shiomi H (2012) Regulatory mechanism of body temperature in the central nervous system during the maintenance phase of hibernation in Syrian hamsters: involvement of β-endorphin. Brain Res 1448:63–70PubMedCrossRefGoogle Scholar
  88. Tansey EA, Johnson CD (2015) Recent advances in thermoregulation. Adv Physiol Educ 39:139–148PubMedCrossRefGoogle Scholar
  89. Ticho SR, Radulovacki M (1991) Role of adenosine in sleep and temperature regulation in the preoptic area of rats. Pharmacol Biochem Behav 40:33–40PubMedCrossRefGoogle Scholar
  90. Tissier R, Ghaleh B, Cohen MV, Downey JM, Berdeaux A (2012) Myocardial protection with mild hypothermia. Cardiovasc Res 94:217–225PubMedCrossRefGoogle Scholar
  91. Tong G, Endersfelder S, Rosenthal LM, Wollersheim S, Sauer IM, Bührer C, Berger F, Schmitt KR (2013) Effects of moderate and deep hypothermia on RNA-binding proteins RBM3 and CIRP expressions in murine hippocampal brain slices. Brain Res 1504:74–84PubMedCrossRefGoogle Scholar
  92. Tsukamoto D, Ito M, Takamatsu N (2017) HNF-4 participates in the hibernation-associated transcriptional regulation of the chipmunk hibernation-related protein gene. Sci Rep 7:44279. CrossRefPubMedPubMedCentralGoogle Scholar
  93. Tupone D, Madden CJ, Morrison SF (2013) Central activation of the A1 adenosine receptor (A1AR) induces a hypothermic, torpor-like state in the rat. J Neurosci 33:14512–14525PubMedPubMedCentralCrossRefGoogle Scholar
  94. Wang LCH, Lee TF (1996) Torpor and hibernation in mammals: metabolic, physiological, and biochemical adaptations. In: Fregley MJ, Blatteis CM (eds) Handbook of physiology: environmental physiology. Oxford University Press, New York, pp 507–532Google Scholar
  95. Wang SQ, Zhou ZQ (1999) Alpha-stat calibration of indo-1 fluorescence and measurement of intracellular free calcium in rat ventricular cells at different temperatures. Life Sci 65:871–877PubMedCrossRefGoogle Scholar
  96. Wang LC, Belke D, Jourdan ML, Lee TF, Westly J, Nurnberger F (1988) The “hibernation induction trigger”: specificity and validity of bioassay using the 13-lined ground squirrel. Cryobiology 1988 25:355–362PubMedCrossRefGoogle Scholar
  97. Wang SQ, Lakatta EG, Cheng H, Zhou ZQ (2002) Adaptive mechanisms of intracellular calcium homeostasis in mammalian hibernators. J Exp Biol 205:2957–2962PubMedGoogle Scholar
  98. Wauquier A, Van Belle H, Van den Broeck WA, Janssen PA (1987) Sleep improvement in dogs after oral administration of mioflazine, a nucleoside transport inhibitor. Psychopharmacology (Berlin) 91:434–439CrossRefGoogle Scholar
  99. Williams DR, Epperson LE, Li W, Hughes MA, Taylor R, Rogers J, Martin SL, Cossins AR, Gracey AY (2005) Seasonally hibernating phenotype assessed through transcript screening. Physiol Genomics 24:13–22PubMedCrossRefGoogle Scholar
  100. Yan J, Barnes BM, Kohl F, Marr TG (2008) Modulation of gene expression in hibernating arctic ground squirrels. Physiol Genomics 32:170–181PubMedCrossRefGoogle Scholar
  101. Yatani A, Kim SJ, Kudej RK, Wang Q, Depre C, Irie K, Kranias EG, Vatner SF, Vatner DE (2004) Insights into cardioprotection obtained from study of cellular Ca2+ handling in myocardium of true hibernating mammals. Am J Physiol Heart Circ Physiol 286:H2219–H2228PubMedCrossRefGoogle Scholar
  102. Yu LC, Cai YP (1993a) Arousal following intra-preoptic area administration of naltrexone, ICI 174864 or nor-BNI in hibernating ground squirrels. Behav Brain Res 57:31–35PubMedCrossRefGoogle Scholar
  103. Yu LC, Cai YP (1993b) Effects of opioid receptors antagonists administration to suprachiasmatic nucleus on hibernation of ground squirrels Citellus dauricus. Comp Biochem Physiol C 104:249–252PubMedCrossRefGoogle Scholar
  104. Zervanos SM, Maher CR, Florant GL (2014) Effect of body mass on hibernation strategies of woodchucks (Marmota monax). Integr Comp Biol 54:443–451PubMedCrossRefGoogle Scholar
  105. Zhu X, Bührer C, Wellmann S (2016) Cold-inducible proteins CIRP and RBM3, a unique couple with activities far beyond the cold. Cell Mol Life Sci 73:3839–3859PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Yuuki Horii
    • 1
  • Takahiko Shiina
    • 1
  • Yasutake Shimizu
    • 1
    Email author
  1. 1.Department of Basic Veterinary Science, Laboratory of Physiology, The United Graduate School of Veterinary SciencesGifu UniversityGifuJapan

Personalised recommendations