Advertisement

Development and Application of Cryoprotectants

  • Robin Rajan
  • Kazuaki Matsumura
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1081)

Abstract

Cryopreservation involves the preservation of biological materials, including cells, embryos, tissues, and organs, at ultra-low temperatures (in a state of suspended animation), for a long period of time, and in a way that allows them to be restored whenever required. Freezing of biological samples is generally accompanied by numerous undesirable outcomes such as intra- and extracellular freezing damage and osmotic stress. To prevent these adverse effects, cryoprotective agents (CPAs) are added to biological materials before freezing. Over the years, a number of CPAs have been identified and developed and have been employed successfully for numerous applications. Here, we review the history and development of cryoprotectants and the current understanding of the cryopreservation process. We conclude with a discussion about the application of cryopreservation for various clinical and academic studies.

Keywords

Cryopreservation Vitrification Polymers Cells Tissues 

Abbreviations

ART

Assisted reproductive technology

COOH-PLL

Carboxylated poly-l-lysine

CPA

Cryoprotective agent

DMSO

Dimethyl sulfoxide

HES

Hydroxyethyl starch

PLL

Poly-l-lysine

PVP

Polyvinylpyrrolidone

References

  1. ACOG (2014) Oocyte cryopreservation. Committee opinion no. 584. American College of Obstetricians and Gynecologists (ACOG). Obstet Gynecol 123:221–222CrossRefGoogle Scholar
  2. Archer DL (2004) Freezing: an underutilized food safety technology? Int J Food Microbiol 90:127–138CrossRefGoogle Scholar
  3. Ashwood-Smith MJ, Warby C, Connor KW, Becker G (1972) Low-temperature preservation of mammalian cells in tissue culture with polyvinylpyrrolidone (PVP), dextrans, and hydroxyethyl starch (HES). Cryobiology 9:441–449CrossRefGoogle Scholar
  4. Beattie GM, Crowe JH, Lopez AD, Cirulli V, Ricordi C, Hayek A (1997) Trehalose: a cryoprotectant that enhances recovery and preserves function of human pancreatic islets after long-term storage. Diabetes 46:519 LP–523CrossRefGoogle Scholar
  5. Behrman SJ, Sawada Y (2017) Heterologous and homologous inseminations with human semen frozen and stored in a liquid-nitrogen refrigerator. Fertil Steril 17:457–466CrossRefGoogle Scholar
  6. Benson JD, Woods EJ, Walters EM, Critser JK (2012) The cryobiology of spermatozoa. Theriogenology 78:1682–1699CrossRefGoogle Scholar
  7. Bernard A, Fuller BJ (1996) Cryopreservation of human oocytes: a review of current problems and perspectives. Hum Reprod Update 2:193CrossRefGoogle Scholar
  8. Birdgeye C, Fitzgerald GA (1932) History and present importance of quick freezing. Ind Eng Chem 24:676–678CrossRefGoogle Scholar
  9. Buchanan SS, Gross SA, Acker JP, Toner M, Carpenter JF, Pyatt DW (2004) Cryopreservation of stem cells using trehalose: evaluation of the method using a human hematopoietic cell line. Stem Cells Dev 13:295–305CrossRefGoogle Scholar
  10. Bunge RG, Sherman JK (1953) Fertilizing capacity of frozen human spermatozoa. Nature 172:767–768CrossRefGoogle Scholar
  11. Chen C (1986) Pregnancy after human oocyte cryopreservation. Lancet 327:884–886CrossRefGoogle Scholar
  12. Choi RS, Vacanti JP (1997) Preliminary studies of tissue-engineered intestine using isolated epithelial organoid units on tubular synthetic biodegradable scaffolds. Transplant Proc 29:848–851CrossRefGoogle Scholar
  13. Cobo A, Kuwayama M, Perez S, Ruiz A, Pellicer A, Remohi J (2008) Comparison of concomitant outcome achieved with fresh and cryopreserved donor oocytes vitrified by the Cryotop method. Fertil Steril 89:1657–1664CrossRefGoogle Scholar
  14. Cobo A, Meseguer M, Remohi J, Pellicer A (2010) Use of cryo-banked oocytes in an ovum donation programme: a prospective, randomized, controlled, clinical trial. Hum Reprod 25:2239–2246CrossRefGoogle Scholar
  15. Connor W, Ashwood-Smith MJ (1973) Cryoprotection of mammalian cells in tissue culture with polymers; possible mechanisms. Cryobiology 10:488–496CrossRefGoogle Scholar
  16. Damjanovic V, Thomas D (1974) The use of polyvinylpyrrolidone as a cryoprotectant in the freezing of human lymphocytes. Cryobiology 11:312–316CrossRefGoogle Scholar
  17. Day JG, McLellan MR (1995) Cryopreservation and freeze-drying protocols. Humana Press, TotowaCrossRefGoogle Scholar
  18. Di Santo M, Tarozzi N, Nadalini M, Borini A (2012) Human sperm cryopreservation: update on techniques, effect on DNA integrity, and implications for ART. Adv Urol 2012:854837Google Scholar
  19. Donnelly ET, McClure N, Lewis SE (2001) Cryopreservation of human semen and prepared sperm: effects on motility parameters and DNA integrity. Fertil Steril 76:892–900CrossRefGoogle Scholar
  20. Elder E, Chen Z, Ensley A, Nerem R, Brockbank K, Song Y (2005) Enhanced tissue strength in cryopreserved, collagen-based blood vessel constructs. Transplant Proc 37:4625–4629CrossRefGoogle Scholar
  21. Eroglu A, Russo MJ, Bieganski R, Fowler A, Cheley S, Bayley H, Toner M (2000) Intracellular trehalose improves the survival of cryopreserved mammalian cells. Nat Biotechnol 18:163–167CrossRefGoogle Scholar
  22. Findlay JK, Gear ML, Illingworth PJ, Junk SM, Kay G, Mackerras AH, Pope A, Rothenfluh HS, Wilton L (2007) Human embryo: a biological definition. Hum Reprod 22:905–911CrossRefGoogle Scholar
  23. Fuller BJ (2004) Cryoprotectants: the essential antifreezes to protect life in the frozen state. CryoLetters 25:375–388PubMedGoogle Scholar
  24. Garzon AA, Cheng C, Lerner B, Lichtenstein S, Karlson KE (1967) Hydroxyethyl starch (HES) and bleeding: an experimental investigation of its effect on hemostasis. J Trauma Acute Care Surg 7:757–766CrossRefGoogle Scholar
  25. Hincha DK, Popova AV, Cacela C (2006) Chapter 6 effects of sugars on the stability and structure of embranes during drying. Adv Planar Lipid Bilayers Liposomes 3:189–217CrossRefGoogle Scholar
  26. Hossain AM, Osuamkpe CO (2007) Sole use of sucrose in human sperm cryopreservation. Arch Androl 53:99–10sCrossRefGoogle Scholar
  27. Hredzak R, Ostro A, Zdilova V, Toporcerova S, Kacmarik J (2005) Clinical experience with a modified method of human embryo vitrification. Ces Gynekol 70:99–103Google Scholar
  28. Hsueh AJ, Billig H, Tsafriri A (1994) Ovarian follicle atresia: a hormonally controlled apoptotic process. Endocr Rev 15:707–724PubMedGoogle Scholar
  29. Hunter JE (1995) Cryopreservation of human gametes. Day JG, McLellan MR Cryopreservation and freeze-drying protocols. Humana Press, Totowa, 221–234CrossRefGoogle Scholar
  30. Jain M, Rajan R, Hyon S-H, Matsumura K (2014) Hydrogelation of dextran-based polyampholytes with cryoprotective properties via click chemistry. Biomater Sci 2:308–317CrossRefGoogle Scholar
  31. Katenz E, Vondran FWR, Schwartlander R, Pless G, Gong X, Cheng X, Neuhaus P, Sauer IM (2007) Cryopreservation of primary human hepatocytes: the benefit of trehalose as an additional cryoprotective agent. Liver Transpl 13:38–45CrossRefGoogle Scholar
  32. Kenmochi T, Asano T, Maruyama M, Saigo K, Akutsu N, Iwashita C, Ohtsuki K, Suzuki A, Miyazaki M (2008) Cryopreservation of human pancreatic islets from non-heart-beating donors using hydroxyethyl starch and dimethyl sulfoxide as cryoprotectants. Cell Transplant 17:61–67CrossRefGoogle Scholar
  33. Kim K-J, Lee Y-A, Kim B-J, Kim Y-H, Kim B-G, Kang H-G, Jung S-E, Choi S-H, Schmidt JA, Ryu B-Y (2015) Cryopreservation of putative pre-pubertal bovine spermatogonial stem cells by slow freezing. Cryobiology 70:175–183CrossRefGoogle Scholar
  34. Knorpp CT, Merchant WR, Gikas PW, Spencer HH, Thompson NW (1967) Hydroxyethyl starch: extracellular cryophylactic agent for erythrocytes. Science 157:1312–1313CrossRefGoogle Scholar
  35. Koch E, Larak M, Ellendorff F (1991) Comparative studies on in vitro reactivity of fresh and cryopreserved pig lymphocytes. Cryobiology 28:405–412CrossRefGoogle Scholar
  36. Konc J, Kanyó K, Kriston R, Somoskői B, Cseh S (2014) Cryopreservation of embryos and oocytes in human assisted reproduction. Biomed Res Int 2014:1–9CrossRefGoogle Scholar
  37. Körber C, Scheiwe MW (1980) The cryoprotective properties of hydroxyethyl starch investigated by means of differential thermal analysis. Cryobiology 17:54–65CrossRefGoogle Scholar
  38. Kuleshova L, Hutmacher D (2008) Cryobiology. In: Blitterswijk C, Thomsen P, Lindahl A, Hubbell J, Williams DF, Cancedda R, de Bruijn JD, Sohier J (eds) Tissue engineering. Academic, Burlington, pp 363–401CrossRefGoogle Scholar
  39. Kuleshova L, Gianaroli L, Magli C, Ferraretti A, Trounson A (1999) Birth following vitrification of a small number of human oocytes: case report. Hum Reprod 14:3077–3079CrossRefGoogle Scholar
  40. Kuleshova LL, Gouk SS, Hutmacher DW (2007) Vitrification as a prospect for cryopreservation of tissue-engineered constructs. Biomaterials 28:1585–1596CrossRefGoogle Scholar
  41. Leibo SP, Songsasen N (2002) Cryopreservation of gametes and embryos of non-domestic species. Theriogenology 57:303–326CrossRefGoogle Scholar
  42. Leibo SP, Martino A, Kobayashi S, Pollard JW (1996) Stage-dependent sensitivity of oocytes and embryos to low temperatures. Anim Reprod Sci 42:45–53CrossRefGoogle Scholar
  43. Li Y, Chen Z, Yang H, Zhong W, Ma S, Li M (2007) Comparison of vitrification and slow-freezing of human day 3 cleavage stage embryos: post-vitrification development and pregnancy outcomes. Zhonghua Fu Chan Ke Za Zhi 42:753–755PubMedGoogle Scholar
  44. Lionetti FJ, Hunt SM, Gore JM, Curby WA (1975) Cryopreservation of human granulocytes. Cryobiology 12:181–191CrossRefGoogle Scholar
  45. Liebermann J, Dietl J, Vanderzwalmen P, Tucker MJ (2003) Recent developments in human oocyte, embryo and blastocyst vitrification: where are we now? Reprod Biomed Online 7:623–633CrossRefGoogle Scholar
  46. Lovelock JE (1953a) Het mechanism of the protective action of glycerol against haemolysis by freezing and thawing. Biochim Biophys Acta 11:28–36CrossRefGoogle Scholar
  47. Lovelock JE (1953b) The haemolysis of human red blood-cells by freezing and thawing. Biochim Biophys Acta 10:414–426CrossRefGoogle Scholar
  48. Lovelock JE (1954) The protective action of neutral solutes against haemolysis by freezing and thawing. Biochem J 56:265–270CrossRefGoogle Scholar
  49. Lovelock JE, Bishop MWH (1959) Prevention of freezing damage to jiving cells by dimethyl sulphoxide. Nature 183:1394–1395CrossRefGoogle Scholar
  50. Luyet BJ (1937) The vitrification of organic colloids and of protoplasm. Biodynamica 1:1–14Google Scholar
  51. Mahajan RK, Renapurkar DM (1993) Cryopreservation of Angiostrongylus cantonensis third-stage larvae. J Helminthol 67:233–237CrossRefGoogle Scholar
  52. Matsumura K, Hyon S-H (2009) Polyampholytes as low toxic efficient cryoprotective agents with antifreeze protein properties. Biomaterials 30:4842–4849CrossRefGoogle Scholar
  53. Matsumura K, Bae JY, Hyon SH (2010) Polyampholytes as cryoprotective agents for mammalian cell cryopreservation. Cell Transplant 19:691–699CrossRefGoogle Scholar
  54. Matsumura K, Hayashi F, Nagashima T, Hyon SH (2013) Long-term cryopreservation of human mesenchymal stem cells using carboxylated poly-l-lysine without the addition of proteins or dimethyl sulfoxide. J Biomater Sci Polym Ed 24:1484–1497CrossRefGoogle Scholar
  55. Matsumura K, Jain M, Rajan R (2015) Cell and materials interface in cryobiology and cryoprotection. In: Vrana NE (ed) Cell and material interface, 1st edn. CRC Press, pp 163–186Google Scholar
  56. Matsumura K, Kawamoto K, Takeuchi M, Yoshimura S, Tanaka D, Hyon S-H (2016) Cryopreservation of a two-dimensional monolayer using a slow vitrification method with polyampholyte to inhibit ice crystal formation. ACS Biomater Sci Eng 2:1023–1029CrossRefGoogle Scholar
  57. Maximow NA (1912) 7. N. A. Maximow: Chemische Schutzmittel der Pflanzen gegen Erfrieren. I. Ber Dtsch Bot Ges 30:52–65Google Scholar
  58. Mazur P (1977) The role of intracellular freezing in the death of cells cooled at supraoptimal rates. Cryobiology 14:251–272CrossRefGoogle Scholar
  59. Mazur P, Leibo SP, Chu EHY (1972) A two-factor hypothesis of freezing injury. Exp Cell Res 71:345–355CrossRefGoogle Scholar
  60. Meryman HT (1964) Preservation of blood by freezing: a review. Cryobiology 51:52–56CrossRefGoogle Scholar
  61. Miyaoka R, Esteves SC (2013) Predictive factors for sperm retrieval and sperm injection outcomes in obstructive azoospermia: do etiology, retrieval techniques and gamete source play a role? Clinics 68:111–119CrossRefGoogle Scholar
  62. Muthukumarappan K, Tiwari B (2010) Refrigeration and freezing preservation of vegetables. In: Sinha N, Hui YH, Evranuz EÖ, Siddiq M, Ahmed J (eds) Handbook of vegetables and vegetable processing. Wiley-Blackwell, Hoboken, pp 259–277Google Scholar
  63. Nawroth F, Isachenko V, Dessole S, Rahimi G, Farina M, Vargiu N, Mallmann P, Dattena M, Capobianco G, Peters D, Orth I, Isachenko E (2002) Vitrification of human spermatozoa without cryoprotectants. CryoLetters 23:93–102PubMedGoogle Scholar
  64. Nelson LM (2009) Clinical practice. Primary ovarian insufficiency. N Engl J Med 360:606–614CrossRefGoogle Scholar
  65. Pan C, Y S, Zhang P, Wang B, Zhu Z, Liu Y, Zeng W (2017) Effect of sucrose on cryopreservation of pig spermatogonial stem cells. J Integr Agric 16:1120–1129CrossRefGoogle Scholar
  66. Parmegiani L, Cognigni GE, Bernardi S, Cuomo S, Ciampaglia W, Infante FE, Tabarelli de Fatis C, Arnone A, Maccarini AM, Filicori M (2011) Efficiency of aseptic open vitrification and hermetical cryostorage of human oocytes. Reprod Biomed Online 23:505–512CrossRefGoogle Scholar
  67. Pegg DE, Wusteman MC, Boylan S (1997) Fractures in cryopreserved elastic arteries. Cryobiology 34:183–192CrossRefGoogle Scholar
  68. Pegg DE, Wang L, Vaughan D (2006) Cryopreservation of articular cartilage. Part 3: the liquidus-tracking method. Cryobiology 52:360–368CrossRefGoogle Scholar
  69. Persidsky M, Richards V (1962) Mode of protection with polyvinylpyrrolidone in freezing of bone marrow. Nature 196:585–586CrossRefGoogle Scholar
  70. Polge C (1977) The freezing of mammalian embryos: perspectives and possibilities. In: Elliott K, Whelan J (eds) Ciba foundation symposium 52 – the freezing of mammalian embryos. Wiley, Hoboken, pp 3–18Google Scholar
  71. Polge C, Smith AU, Parkes AS (1949) Revival of spermatozoa after vitrification and dehydration at low temperatures. Nature 164:666CrossRefGoogle Scholar
  72. Rajan R, Jain M, Matsumura K (2013) Cryoprotective properties of completely synthetic polyampholytes via reversible addition-fragmentation chain transfer (RAFT) polymerization and the effects of hydrophobicity. J Biomater Sci Polym Ed 24:37–41CrossRefGoogle Scholar
  73. Rajan R, Hayashi F, Nagashima T, Matsumura K (2016) Toward a molecular understanding of the mechanism of cryopreservation by polyampholytes: cell membrane interactions and hydrophobicity. Biomacromolecules 17:1882–1893CrossRefGoogle Scholar
  74. Rall WF, Fahy GM (1985) Ice-free cryopreservation of mouse embryos at −196 °C by vitrification. Nature 313:573–575CrossRefGoogle Scholar
  75. Rama Raju GA, Haranath GB, Krishna KM, Prakash GJ, Madan K (2005) Vitrification of human 8-cell embryos, a modified protocol for better pregnancy rates. Reprod Biomed Online 11:434–437CrossRefGoogle Scholar
  76. Richards V, Persidsky M (1961) Studies in the preservation of bone marrow. Surgery 50:288–298PubMedGoogle Scholar
  77. Rienzi L, Romano S, Albricci L, Maggiulli R, Capalbo A, Baroni E, Colamaria S, Sapienza F, Ubaldi F (2010) Embryo development of fresh “versus” vitrified metaphase II oocytes after ICSI: a prospective randomized sibling-oocyte study. Hum Reprod 25:66–73CrossRefGoogle Scholar
  78. Rumsey SC, Galeano NF, Arad Y, Deckelbaum RJ (1992) Cryopreservation with sucrose maintains normal physical and biological properties of human plasma low density lipoproteins. J Lipid Res 33:1551–1561PubMedGoogle Scholar
  79. Sherman JK (1990) Cryopreservation of human semen. In: Keel BA, Webster BW (eds) Handbook of the laboratory diagnosis and treatment of infertility. CRC Press, Boca Raton, pp 229–259Google Scholar
  80. Smith AU (1950) Prevention of haemolysis during freezing and thawing of red blood-cells. Lancet 256:910–911CrossRefGoogle Scholar
  81. Song YC, An YH, Kang QK, Li C, Boggs JM, Chen Z, Taylor MJ, Brockbank KGM (2004) Vitreous preservation of articular cartilage grafts. J Investig Surg 17:65–70CrossRefGoogle Scholar
  82. Spallanzani L (1776) Osservazioni e spezienze interno ai vermicelli spermatici dell’ uomo e degli animali. In: Opusculi di Fisica Animale e Vegetabile, Opusculo II. ModenaGoogle Scholar
  83. Spurrier RG, Grikscheit TC (2013) Tissue engineering the small intestine. Clin Gastroenterol Hepatol 11:354–358CrossRefGoogle Scholar
  84. Spurrier RG, Speer AL, Grant CN, Levin DE, Grikscheit TC (2014) Vitrification preserves murine and human donor cells for generation of tissue-engineered intestine. J Surg Res 190:399–406CrossRefGoogle Scholar
  85. Stolzing A, Naaldijk Y, Fedorova V, Sethe S (2012) Hydroxyethyl starch in cryopreservation – mechanisms, benefits and problems. Transfus Apher Sci 46:137–147CrossRefGoogle Scholar
  86. Takahashi T, Hirsh A, Erbe E, Williams RJ (1988) Mechanism of cryoprotection by extracellular polymeric solutes. Biophys J 54:509–518CrossRefGoogle Scholar
  87. Trounson A, Mohr L (1983) Human pregnancy following cryopreservation, thawing and transfer of an eight-cell embryo. Nature 305:707–709CrossRefGoogle Scholar
  88. Vajta G, Holm P, Kuwayama M, Booth PJ, Jacobsen H, Greve T, Callesen H (1998) Open pulled straw (OPS) vitrification: a new way to reduce cryoinjuries of bovine ova and embryos. Mol Reprod Dev 51:53–58CrossRefGoogle Scholar
  89. Vincent C, Johnson MH (1992) Cooling, cryoprotectants, and the cytoskeleton of the mammalian oocyte. Oxf Rev Reprod Biol 14:73–100PubMedGoogle Scholar
  90. Vorontsov DA, Sazaki G, Hyon S-H, Matsumura K, Furukawa Y (2014) Antifreeze effect of carboxylated ε-poly-l-lysine on the growth kinetics of ice crystals. J Phys Chem B 118:10240–10249CrossRefGoogle Scholar
  91. Wang P, Li Y, Hu X, Cai X-L, Hou L-P, Wang Y-F, Hu J-H, Li Q-W, Suo L-J, Fan Z-G, Zhang B (2014) Cryoprotective effects of low-density lipoproteins, trehalose and soybean lecithin on murine spermatogonial stem cells. Zygote 22:158–163CrossRefGoogle Scholar
  92. Watanabe H, Kohaya N, Kamoshita M, Fujiwara K, Matsumura K, Hyon S-H, Ito J, Kashiwazaki N (2013) Efficient production of live offspring from mouse oocytes vitrified with a novel cryoprotective agent, carboxylated ε-poly-L-lysine. PLoS One 8:e83613CrossRefGoogle Scholar
  93. Welt CK (2008) Primary ovarian insufficiency: a more accurate term for premature ovarian failure. Clin Endocrinol 68:499–509CrossRefGoogle Scholar
  94. Whittingham DG (1971) Survival of mouse embryos after freezing and thawing. Nature 233:125–126CrossRefGoogle Scholar
  95. Whittingham DG (1975) Survival of rat embryos after freezing and thawing. J Reprod Fertil 43:575–578CrossRefGoogle Scholar
  96. Whittingham DG, Adams CE (1976) Low temperature preservation of rabbit embryos. J Reprod Fertil 47:269–274CrossRefGoogle Scholar
  97. Whittingham DG, Wales RG (1969) Storage of two-cell mouse embryos in vitro. Aust J Biol Sci 22:1065–1068CrossRefGoogle Scholar
  98. Whittingham DG, Leibo SP, Mazur P (1972) Survival of mouse embryos frozen to −196 degrees and −269 degrees C. Science 178:411–414CrossRefGoogle Scholar
  99. Willadsen SM, Polge C, Rowson LE, Moor RM (1976) Deep freezing of sheep embryos. J Reprod Fertil 46:151–154CrossRefGoogle Scholar
  100. Wilmut I, Rowson LE (1973) The successful low-temperature preservation of mouse and cow embryos. J Reprod Fertil 33:352–353CrossRefGoogle Scholar
  101. Yin H, Cui L, Liu G, Cen L, Cao Y (2009) Vitreous cryopreservation of tissue engineered bone composed of bone marrow mesenchymal stem cells and partially demineralized bone matrix. Cryobiology 59:180–187CrossRefGoogle Scholar
  102. Zhang X, Khimji I, Shao L, Safaee H, Desai K, Keles HO, Gurkan UA, Kayaalp E, Nureddin A, Anchan RM, Maas RL, Demirci U (2012) Nanoliter droplet vitrification for oocyte cryopreservation. Nanomedicine (Lond) 7:553–564CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.School of Materials ScienceJapan Advanced Institute of Science and TechnologyNomiJapan

Personalised recommendations