Advertisement

Physicochemical Aspects of the Biological Functions of Trehalose and Group 3 LEA Proteins as Desiccation Protectants

  • Takao Furuki
  • Minoru Sakurai
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1081)

Abstract

In this review, we first focus on the mechanism by which the larva of the sleeping chironomid, Polypedilum vanderplanki, survives an extremely dehydrated state and describe how trehalose and probably late embryogenesis abundant (LEA) proteins work as desiccation protectants. Second, we summarize the solid-state and solution properties of trehalose and discuss why trehalose works better than other disaccharides as a desiccation protectant. Third, we describe the structure and function of two model peptides based on group 3 LEA proteins after a short introduction of native LEA proteins themselves. Finally, we present our conclusions and a perspective on the application of trehalose and LEA model peptides to the long-term storage of biological materials.

Keywords

Anhydrobiosis Vitrification Water replacement model Entropy Disaccharide Late embryogenesis abundant protein LEA peptide Sleeping chironomid 

Abbreviations

BDG

β-D-galactosidase

G3LEA

Group 3 late embryogenesis abundant

IDP

Intrinsically disordered protein

LDH

Lactate dehydrogenase

MD

Molecular dynamics

POPC

1-palmitoyl 2-oleoyl-sn-glycero-3-phosphatidylcholine

Notes

Acknowledgments

This work was supported in part by JSPS KAKENHI JP15H02378.

References

  1. Akao K, Okubo Y, Ikeda T, Inoue Y, Sakurai M (1998) Infrared spectroscopic study on the structural property of a trehalose-water complex. Chem Lett 27:759–760CrossRefGoogle Scholar
  2. Aldous BJ, Affret AD, Franks F (1995) Crystallisation of hydrates from amorphous carbohydrates. CryoLetters 16:181–186Google Scholar
  3. Banno M, Watanabe HC, Furuta T, Sakurai M (2015) Analysis of free energy and structural change of G3LEA peptide in the binding process to a POPC bilayer. Cryobiol Cryotechol 61:105–109Google Scholar
  4. Belton PS, Gil AH (1994) IR and Raman spectroscopic studies of the interaction of trehalose with hen egg white lysozyme. Biopolymers 34:957–961CrossRefGoogle Scholar
  5. Boswell LC, Menze MA, Hand SC (2014) Group 3 late embryogenesis abundant proteins from embryos of Artemia franciscana: structural properties and protective abilities during desiccation. Physiol Biochem Zool 87:640–651CrossRefGoogle Scholar
  6. Chakrabortee S, Boschetti C, Walton LJ, Sarkar S, Rubinsztein DC, Tunnacliffe A (2007) Hydrophilic protein associated with desiccation tolerance exhibits broad protein stabilization function. Proc Natl Acad Sci U S A 104:18073–18078CrossRefGoogle Scholar
  7. Chakrabortee S, Tripathi R, Watson M, Gabriele S, Schierle K, Kurniawan DP, Kaminski CF, Wise MJ, Tunnacliffe A (2012) Intrinsically disordered proteins as molecular shields. Mol BioSyst 8:210–219CrossRefGoogle Scholar
  8. Choi Y, Cho KW, Jeong K, Jung S (2006) Molecular dynamics simulations of trehalose as a ‘dynamic reducer’ for solvent water molecules in the hydration shell. Carbohydr Res 341:1020–1028CrossRefGoogle Scholar
  9. Clegg JS (2001) Cryptobiosis a peculiar state of biological organization. Comp Biochem Physiol 128B:613–624CrossRefGoogle Scholar
  10. Crowe LM (2002) Lessons from nature: the role of sugars in anhydrobiosis. Comp Biochem Physiol 131A:505–513CrossRefGoogle Scholar
  11. Crowe JH, Hoekstra FA, Crowe L (1992) Anhydrobiosis. Annu Rev Physiol 54:579–599CrossRefGoogle Scholar
  12. Crowe LM, Reid DS, Crowe JH (1996) Is trehalose special for preserving dry biomaterials? Biophys J 71:2087–2093CrossRefGoogle Scholar
  13. Crowe JH, Carpenter JF, Crowe L (1998) The role of vitrification in Anhydrobiosis. Annu Rev Physiol 60:73–103CrossRefGoogle Scholar
  14. Dowd MK, Reilly PJ, French AD (1992) Conformational analysis of trehalose disaccharides and analogues using MM3. J Comput Chem 13:102–114CrossRefGoogle Scholar
  15. Dure L III (1993) A repeating 11-mer amino acid motif and plant desiccation. Plant J 3:363–369CrossRefGoogle Scholar
  16. Dure L III, Greenway SC, Galau GA (1981) Developmental biochemistry of cottonseed embryogenesis and germination: changing messenger ribonucleic acid populations as shown by in vitro and in vivo protein synthesis. Biochemistry 20:4162–4168CrossRefGoogle Scholar
  17. Elbein AD, Pan YT, Pastuszak I, Carroll D (2003) New insights on trehalose: a multifunctional molecule. Glyocobiology 13:17R–27RCrossRefGoogle Scholar
  18. Furuki T, Sakurai M (2014) Group 3 LEA protein model peptides protect liposomes during desiccation. Biochim Biophys Acta 1838:2757–2766CrossRefGoogle Scholar
  19. Furuki T, Sakurai M (2016) Group 3 LEA protein model peptides protect enzymes against desiccation stress. Biochim Biophys Acta 1864:1237–1243CrossRefGoogle Scholar
  20. Furuki T, Sakurai M (2017) Protective effect of group 3 LEA model peptides on the thermal denaturation of proteins. Cryobiol Cryotechnol 63:139–142Google Scholar
  21. Furuki T, Kishi A, Sakurai M (2005) De- and rehydration behavior of α,α-trehalose dehydrate under humidity-controlled atmospheres. Carbohydr Res 340:429–438CrossRefGoogle Scholar
  22. Furuki T, Abe R, Kawaji H, Atake T, Sakurai M (2006) Thermodynamic functions of α,α-trehalose dihydrate and of α,β-trehalose monohydrate at temperatures from 13 K to 300 K. J Chem Thermodyn 38:1612–1619CrossRefGoogle Scholar
  23. Furuki T, Abe R, Kawaji H, Atake T, Sakurai M (2008) Effect of atmospheric pressure on the phase transitions of a, a-trehalose dehydrate. DTA study of the dehydration behavior in open systems. J Therm Anal Calorim 93:561–567CrossRefGoogle Scholar
  24. Furuki T, Ito T, Asakawa N, Inoue Y, Sakurai M (2009) Effects of trehalose on the swelling behavior of hydrogel –visualization of the preferential hydration of disaccharides. Chem Lett 38:264–265CrossRefGoogle Scholar
  25. Furuki T, Shimizu T, Kikawada T, Okuda T, Sakurai M (2011) Salt effects on the structural and thermodynamic properties of group 3 late embryogenesis abundant protein model peptides. Biochemistry 50:7093–7103CrossRefGoogle Scholar
  26. Furuki T, Shimizu T, Cakrabortee S, Yamakawa K, Hatanaka R, Takahashi T, Kikawada T, Okuda T, Mihara H, Tunnacliffe A, Sakurai M (2012) Effects of group-3 LEA protein model peptides on desiccation-induced protein aggregation. Biochim Biophys Acta 1824:891–897CrossRefGoogle Scholar
  27. Furuki T, Watanabe T, Furuta T, Takano K, Shirakashi R, Sakurai M (2016) The dry preservation of giant vesicles using a Group 3 LEA protein model peptide and its molecular mechanism. Bull Chem Soc Jpn 89:1493–1499CrossRefGoogle Scholar
  28. Galema SA, Høiland H (1991) Stereochemical aspects of hydration of carbohydrates in aqueous solutions. 3. Density and ultrasound measurement. J Phys Chem 95:5321–5326CrossRefGoogle Scholar
  29. Goyal K, Tisi L, Basran A, Browne J, Burnell A, Zurdo J, Tunnacliffe A (2003) Transition from natively unfolded to folded state induced by desiccation in an anhydrobiotic nematode protein. J Biol Chem 278:12977–12984CrossRefGoogle Scholar
  30. Goyal K, Walton LJ, Tunnacliffe A (2005) LEA proteins prevent protein aggregation due to water stress. Biochem J 388:151–157CrossRefGoogle Scholar
  31. Grelet J, Benamar A, Teyssier E, Avelange-Macharel M-H, Grunwald D, Macherel D (2005) Identification in pea seed mitochondria of a late embryogenesis abundant protein able to protect enzymes from drying. Plant Physiol 137:157–167CrossRefGoogle Scholar
  32. Gusev O, Suetsugu Y, Cornette R, Kawashima T, Logacheva MD, Kondrashov AS, Penin AA, Hatanaka R, Kikuta S, Shimura S, Kanamori H, Katayose Y, Matsumoto T, Shagimardanova E, Alexeev D, Govorun V, Wisecaver J, Mikheyev A, Koyanagi R, Fujie M, Nishiyama T, Shigenobu S, Shibata TF, Golygina V, Hasebe M, Okuda T, Satoh N, Kikawada T (2014) Comparative genome sequencing reveals genomic signature of extreme desiccation tolerance in the anhydrobiotic midge. Nat Commun 5:4784–4793CrossRefGoogle Scholar
  33. Hand SC, Menze MA, Toner M, Boswell L, Moore D (2011) LEA proteins during water stress: not just for plants anymore. Annu Rev Physiol 73:115–134CrossRefGoogle Scholar
  34. Hatanaka R, Hagiwara-Komoda Y, Furuki T, Kanamori Y, Fujita M, Cornette R, Sakurai M, Okuda T, Kikawada T (2013) An abundant LEA protein in the anhydrobiotic midge, PvLEA4, act as a molecular shield by limiting growth of aggregating protein particles. Insect Biochem Mol Biol 43:1055–1067CrossRefGoogle Scholar
  35. Hatanaka R, Gusev O, Cornette R, Shimura S, Kikuta S, Okada J, Okuda T, Kikawada T (2015) Diversity of the expression profiles of late embryogenesis abundant (LEA) protein encoding genes in the anhydrobiotic midge Polypedilum vanderplanki. Planta 242:451–459CrossRefGoogle Scholar
  36. Hengherr S, Heyer AG, Köhler H-R, Schill RO (2008) Trehalose and anhydrobiosis in tardigrades – evidence for divergence in responses to dehydration. FEBS J 275:281–288CrossRefGoogle Scholar
  37. Hincha DK, Thalhammer A (2012) LEA proteins: IDPs with versatile functions in cellular dehydration tolerance. Biochem Soc Trans 40:1000–1003CrossRefGoogle Scholar
  38. Honjoh K, Matsumoto H, Shimizu H, Ooyama K, Tanaka K, Oda Y, Tanaka R, Joh T, Suga K, Miyamoto T, Ito M, Hatano S (2008) Cryoprotective activities of group 3 late embryogenesis abundant proteins from Chlorella vulgaris C-27. Biosci Biotechnol Biochem 64:1656–1663CrossRefGoogle Scholar
  39. Irudayam SJ, Berkowitz ML (2012) Binding and reorientation of melittin in a POPC bilayer: computer simulations. Biochim Biophys Acta 1818:2975–2981CrossRefGoogle Scholar
  40. Jain NK, Roy I (2009) Effect of trehalose on protein structure. Protein Sci 18:24–36PubMedPubMedCentralGoogle Scholar
  41. Kawai H, Sakurai M, Inoue Y, Chûjô R (1992) Hydration of oligosaccharides: anomalous hydration ability of trehalose. Cryobiology 29:599–606CrossRefGoogle Scholar
  42. Kawasaki N, Furuki T, Sakurai M (2006) Molecular dynamics simulation on the glassy states of trehalose and neotrehalose. Cryobiol Cryotechnol 52:121–124Google Scholar
  43. Kikawada T, Nakahara Y, Kanamori Y, Iwata K, Watanabe M, McGee B, Tunnacliffe A, Okuda T (2006) Dehydration-induced expression of LEA proteins in an anhydrobiotic chironomid. Biochim Biophys Res Comm 384:56–61CrossRefGoogle Scholar
  44. Kilburn D, Townrow S, Meunier V, Richardson R, Alam A, Ubbink J (2006) Organization and mobility of water in amorphous and crystalline trehalose. Nat Mater 5:632–635CrossRefGoogle Scholar
  45. Lapinski J, Tunnacliffe A (2003) Anhydrobiosis without trehalose in bdelloid rotifers. FEBS Lett 553:387–390CrossRefGoogle Scholar
  46. Li S, Chakraborty N, Botcar A, Menze MA, Toner M, Hand SC (2012) Late embryogenesis abundant proteins protect human hepatoma cells during acute desiccation. Proc Natl Acad Sci U S A 109:20859–20864CrossRefGoogle Scholar
  47. Liu Y, Zheng Y (2005) PM2, a group 3 LEA protein from soybean, and its 22-mer repeating region confer salt tolerance in Escherichia coli. Biochem Biophys Res Commun 331:325–332CrossRefGoogle Scholar
  48. Liu Y, Zheng Y, Zhang Y, Wang W, Li R (2010) Soybean PM2 protein (LEA3) confers the tolerance of Escherichia coli and stabilization of enzyme activity under diverse stresses. Curr Microbiol 60:373–378CrossRefGoogle Scholar
  49. Liu Y, Chakrabortee S, Li R, Zheng Y, Tunnacliffe A (2011) Both plant and animal LEA proteins act as kinetic stabilizers of polyglutamine-dependent protein aggregation. FEBS Lett 585:630–634CrossRefGoogle Scholar
  50. Magazú S, Villari V, Migliardo P, Maisano G, Telling MTF (2001) Diffusive dynamics of water in the presence of homologous disaccharides: a comparative study by quasi elastic neutron scattering. IV. J Phys Chem B 105:1851–1855CrossRefGoogle Scholar
  51. Moore DS, Hansen R, Hand SC (2016) Liposomes with diverse compositions are protected during desiccation by LEA proteins from Artemia franciscana and trehalose. Biochim Biophys Acta 1858:104–115CrossRefGoogle Scholar
  52. Nagase H, Endo T, Ueda H, Nakagaki M (2002) An anhydrous polymorphic form of trehalose. Carbohydr Res 337:167–173CrossRefGoogle Scholar
  53. Nagase H, Ogawa N, Endo T, Shiro M, Ueda H, Sakurai M (2008) Crystal structure of an anhydrous form of trehalose: structure of water channels of trehalose polymorphism. J Phys Chem B 112:9105–9111CrossRefGoogle Scholar
  54. Nishimoto T, Furuta T, Sakurai M (2017) Study of desiccation-induced structural changes of G3LEA peptides using replica exchange molecular dynamics simulation. Cryobiol Cryotechnol 63:119–123Google Scholar
  55. Ohtake S, Wang YJ (2011) Trehalose: current use and future applications. J Pharm Sci 100:2020–2053CrossRefGoogle Scholar
  56. Oku K, Watanabe H, Kubota M, Fukuda S, Kurimoto M, Tsujisaka Y, Komori M, Inoue Y, Sakurai M (2003) NMR and quantum chemical study on the OH∙∙∙π and CH∙∙∙O interactions between trehalose and unsaturated fatty acids. Implication for the mechanism of antioxidant function of trehalose. J Am Chem Soc 125:12739–12748CrossRefGoogle Scholar
  57. Oku K, Kubota M, Fukuda S, Kurimoto M, Tsujisaka Y, Sakurai M (2004) Glass transition temperature of glycosyltrehalose. Cryobiol Cryotechnol 50:97–102Google Scholar
  58. Oliver AE, Hinacha DK, Crowe JH (2002) Looking beyond sugars: the role of amphiphilic solutes in preventing adventitious reactions in anhydrobiotes at low water contents. Comp Biochem Biophysiol 131A:515–525Google Scholar
  59. Perić-Hassler L, Hansen HS, Baron R, Hünenberger P (2010) Conformational properties of glucose-based disaccharides investigated using molecular dynamics simulations with local elevation umbrella sampling. Carbohydr Res 345:1781–1801CrossRefGoogle Scholar
  60. Popova AV, Rausch S, Hundertmark M, Gibon Y, Hincha DK (2015) The intrinsically disordered protein LEA7 from Arabidopsis thaliana protects the isolated enzyme lactate dehydrogenase and enzymes in a soluble leaf proteome during freezing and drying. Biochim Biophys Acta 1854:1517–1525CrossRefGoogle Scholar
  61. Portmann M-O, Birch G (1995) Sweet taste and solution properties of α,α,-trehalose. J Sci Food Agric 69:275–281CrossRefGoogle Scholar
  62. Pouchkina-Stantcheva NN, McGee BM, Boschetti C, Tolleter D, Chakrabortee S, Popova AV, Meersman F, Macherel D, Hincha DK, Tunnacliffe A (2007) Functional divergence of former alleles in an ancient asexual invertebrate. Science 318:268–271CrossRefGoogle Scholar
  63. Sakakura K, Okabe A, Oku K, Sakurai M (2011) Experimental and theoretical study on the intermolecular complex formation between trehalose and benzene compounds in aqueous solution. J Phys Chem B 115:9823–9830CrossRefGoogle Scholar
  64. Sakurai M (2009) Biological functions of trehalose as a substitute for water. In: Kuwajima K, Goto Y, Hirata F, Kataoka M, Terazima M (eds) Water and biomolecules: physical chemistry of life phenomena. Springer, Berlin, pp 219–241CrossRefGoogle Scholar
  65. Sakurai M, Furuki T, Akao K, Tanaka D, Nakahara Y, Kikawada T, Watanabe M, Okuda T (2008) Vitrification is essential for anhydrobiosis in an African chironomid, Polypedilum vanderplanki. Proc Natl Acad Sci U S A 105:5093–5098CrossRefGoogle Scholar
  66. Shih M-D, Hoekstra FA, Hsing YC (2008) Late embryogenesis abundant proteins. Adv Bot Res 48:212–255Google Scholar
  67. Shimizu T, Kanamori Y, Furuki T, Kikawada T, Okuda T, Takahashi T, Mihara H, Sakurai M (2010) Desiccation-induced structuralization and glass formation of Group-3 late embryogenesis abundant (G3LEA) protein model peptides. Biochemistry 49:1093–1104CrossRefGoogle Scholar
  68. Shiraga K, Suzuki T, Kondo N, De Baerdemaeker J, Ogawa Y (2015) Quantitative characterization of hydration state and destructuring effect of monosaccharides and disaccharides on water hydrogen bond network. Carbohydr Res 406:46–54CrossRefGoogle Scholar
  69. Shrödinger E (1967) What is life? Cambridge University Press, Cambridge, pp 67–75Google Scholar
  70. Tolleter D, Hincha DK, Macherel D (2010) A mitochondrial late embryogenesis abundant protein stabilized model membranes in the dry state. Biochim Biophys Acta 1798:1926–1933CrossRefGoogle Scholar
  71. Tunnacliffe A, Wise MJ (2007) The continuing conundrum of the LEA proteins. Naturwissenschafften 94:791–812CrossRefGoogle Scholar
  72. Tunnacliffe A, Hincha DK, Leprince O, Macherel D (2010) LEA proteins: versatility of form and function. In: Lubzens E, Cerdà J, Clark MS (eds) Dormancy and resistance in harsh environments. Springer-Verlag, Berlin, pp 91–108CrossRefGoogle Scholar
  73. Uedaira H, Ikura M, Uedaira H (1989) Natural-abundance oxygen-17 magnetic relaxation in aqueous solutions of carbohydrates. Bull Chem Soc Jpn 62:1–4CrossRefGoogle Scholar
  74. Usui M, Furuki T, Furuta T, Sakuirai M (2014) Analysis of group 3 LEA model peptide-protein interactions by molecular dynamics simulation. Cryobiol Cryotechnol 60:89–92Google Scholar
  75. Uversky VN, Gillespie JR, Fink AL (2000) Why are “natively unfolded” proteins unstructured under physiologic conditions? Proteins 41:415–427CrossRefGoogle Scholar
  76. Watanabe M, Kikawada T, Minagawa N, Yukuhiro F, Okuda T (2002) Mechanism allowing an insect to survive complete dehydration and extreme temperatures. J Exp Biol 205:2799–2802PubMedPubMedCentralGoogle Scholar
  77. Watanabe M, Kikawada T, Okuda T (2003) Increase of internal ion concentration triggers trehalose synthesis associated with cryptobiosis in larvae of Polypedilum vanderplanki. J Exp Biol 206:2281–2286CrossRefGoogle Scholar
  78. Wise J, Tunnacliffe A (2004) POPP the question: what do LEA proteins do? Trends Plant Sci 9:13–17CrossRefGoogle Scholar
  79. Wolkers WF, McCready S, Brandt W, Lindsey GG, Hoekstra FA (2001) Isolation and characterization of a D-7 LEA protein from pollen that stabilizes glasses in vitro. Biochim Biophys Acta 1544:196–206CrossRefGoogle Scholar
  80. Yamakawa K, Furuki T, Furuta T, Hatanaka R, Kikawada T, Niwa T, Taguchi H, Furusawa H, Okahata Y, Sakurai M (2013) Experimental study on the mechanism underlying the anti-aggregation function of a group 3 LEA peptide. Cryobiol Cryotechol 59:95–99Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Center for Biological Resources and InformaticsTokyo Institute of TechnologyYokohamaJapan

Personalised recommendations