Advertisement

Regulatory Gene Networks in Drought Stress Responses and Resistance in Plants

  • Fuminori Takahashi
  • Takashi Kuromori
  • Hikaru Sato
  • Kazuo Shinozaki
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1081)

Abstract

Plant responses to drought stress have been analyzed extensively to reveal complex regulatory gene networks, including the detection of water deficit signals, as well as the physiological, cellular, and molecular responses. Plants recognize water deficit conditions at their roots and transmit this signal to their shoots to synthesize abscisic acid (ABA) in their leaves. ABA is a key phytohormone that regulates physiological and molecular responses to drought stress, such as stomatal closure, gene expression, and the accumulation of osmoprotectants and stress proteins. ABA transporters function as the first step for propagating synthesized ABA. To prevent water loss, ABA influx in guard cells is detected by several protein kinases, such as SnRK2s and MAPKs that regulate stomatal closure. ABA mediates a wide variety of gene expression machineries with stress-responsive transcription factors, including DREBs and AREBs, to acquire drought stress resistance in whole tissues. In this chapter, we summarize recent advances in drought stress signaling, focusing on gene networks in cellular and intercellular stress responses and drought resistance.

Keywords

Dehydration Abscisic acid (ABA) Root-to-shoot signaling Stomatal closure Gene expression 

Abbreviations

ABA

Abscisic acid

ABCG

ATP-binding cassette G

AREB

ABRE-binding protein

CBLs

Calcineurin B-like proteins

CDPKs/CPKs

Ca2+-dependent protein kinases

CIPKs

CBL-interacting protein kinases

DREB

DRE-binding protein

HK

Histidine kinase

MAPKs/MPKs

Mitogen-activated protein kinase

PYL

PYR1-like

PYR

Pyrabactin resistance

RCAR

Regulatory component of ABA receptors

SnRK2

SNF1-related protein kinase 2

WUE

Water use efficiency

Notes

Acknowledgments

This work was supported by JSPS KAKENHI Grant Numbers JP15K18563 (F.T.), JP16H01475 (F.T.), JP18H04792 (F.T.), JP17K07458 (T.K.), and JP16K21626 (H.S.).

References

  1. Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15:63–78PubMedPubMedCentralCrossRefGoogle Scholar
  2. Acharya BR, Jeon BW, Zhang W, Assmann SM (2013) Open stomata 1 (OST1) is limiting in abscisic acid responses of Arabidopsis guard cells. New Phytol 200:1049–1063PubMedCrossRefGoogle Scholar
  3. Addicott FT, Lyon JL, Ohkuma K, Thiessen WE, Carns HR, Smith OE, Cornforth JW, Milborrow BV, Ryback G, Wareing PF (1968) Abscisic acid: a new name for Abscisin 2 (Dormin). Science 159:1493PubMedCrossRefPubMedCentralGoogle Scholar
  4. Asano T, Hayashi N, Kikuchi S, Ohsugi R (2012) CDPK-mediated abiotic stress signaling. Plant Signal Behav 7:817–821PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bauer H, Ache P, Lautner S, Fromm J, Hartung W, Al-Rasheid KA, Sonnewald S, Sonnewald U, Kneitz S, Lachmann N et al (2013) The stomatal response to reduced relative humidity requires guard cell-autonomous ABA synthesis. Curr Biol 23:53–57PubMedCrossRefPubMedCentralGoogle Scholar
  6. Boudsocq M, Barbier-Brygoo H, Lauriere C (2004) Identification of nine sucrose nonfermenting 1-related protein kinases 2 activated by hyperosmotic and saline stresses in Arabidopsis thaliana. J Biol Chem 279:41758–41766PubMedCrossRefPubMedCentralGoogle Scholar
  7. Boursiac Y, Leran S, Corratge-Faillie C, Gojon A, Krouk G, Lacombe B (2013) ABA transport and transporters. Trends Plant Sci 18:325–333PubMedCrossRefPubMedCentralGoogle Scholar
  8. Brandt B, Brodsky DE, Xue SW, Negi J, Iba K, Kangasjarvi J, Ghassemian M, Stephan AB, Hu HH, Schroeder JI (2012) Reconstitution of abscisic acid activation of SLAC1 anion channel by CPK6 and OST1 kinases and branched ABI1 PP2C phosphatase action. Proc Natl Acad Sci U S A 109:10593–10598PubMedPubMedCentralCrossRefGoogle Scholar
  9. Burla B, Pfrunder S, Nagy R, Francisco RM, Lee Y, Martinoia E (2013) Vacuolar transport of abscisic acid glucosyl ester is mediated by ATP-binding cassette and proton-antiport mechanisms in Arabidopsis. Plant Physiol 163:1446–1458PubMedPubMedCentralCrossRefGoogle Scholar
  10. Busch W, Benfey PN (2010) Information processing without brains – the power of intercellular regulators in plants. Development 137:1215–1226PubMedPubMedCentralCrossRefGoogle Scholar
  11. Cai ZY, Liu JJ, Wang HJ, Yang CJ, Chen YX, Li YC, Pan SJ, Dong R, Tang GL, Barajas-Lopez JD et al (2014) GSK3-like kinases positively modulate abscisic acid signaling through phosphorylating subgroup III SnRK2s in Arabidopsis. Proc Natl Acad Sci U S A 111:9651–9656PubMedPubMedCentralCrossRefGoogle Scholar
  12. Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103:551–560PubMedCrossRefPubMedCentralGoogle Scholar
  13. Chen H, Lai Z, Shi J, Xiao Y, Chen Z, Xu X (2010) Roles of arabidopsis WRKY18, WRKY40 and WRKY60 transcription factors in plant responses to abscisic acid and abiotic stress. BMC Plant Biol 10:281.  https://doi.org/10.1186/1471-2229-10-281 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Cheong YH, Pandey GK, Grant JJ, Batistic O, Li L, Kim BG, Lee SC, Kudla J, Luan S (2007) Two calcineurin B-like calcium sensors, interacting with protein kinase CIPK23, regulate leaf transpiration and root potassium uptake in Arabidopsis. Plant J 52:223–239PubMedCrossRefPubMedCentralGoogle Scholar
  15. Chiba Y, Shimizu T, Miyakawa S, Kanno Y, Koshiba T, Kamiya Y, Seo M (2015) Identification of Arabidopsis thaliana NRT1/PTR FAMILY (NPF) proteins capable of transporting plant hormones. J Plant Res 128:679–686PubMedCrossRefPubMedCentralGoogle Scholar
  16. Chinnusamy V, Zhu JK (2009) Epigenetic regulation of stress responses in plants. Curr Opin Plant Biol 12:133–139PubMedPubMedCentralCrossRefGoogle Scholar
  17. Choi HI, Park HJ, Park JH, Kim S, Im MY, Seo HH, Kim YW, Hwang I, Kim SY (2005) Arabidopsis calcium-dependent protein kinase AtCPK32 interacts with ABF4, a transcriptional regulator of abscisic acid-responsive gene expression, and modulates its activity. Plant Physiol 139:1750–1761PubMedPubMedCentralCrossRefGoogle Scholar
  18. Choi WG, Toyota M, Kim SH, Hilleary R, Gilroy S (2014) Salt stress-induced Ca2+ waves are associated with rapid, long-distance root-to-shoot signaling in plants. Proc Natl Acad Sci U S A 111:6497–6502PubMedPubMedCentralCrossRefGoogle Scholar
  19. Christmann A, Weiler EW, Steudle E, Grill E (2007) A hydraulic signal in root-to-shoot signalling of water shortage. Plant J 52:167–174PubMedCrossRefPubMedCentralGoogle Scholar
  20. Christmann A, Grill E, Huang J (2013) Hydraulic signals in long-distance signaling. Curr Opin Plant Biol 16:293–300PubMedCrossRefPubMedCentralGoogle Scholar
  21. Colaneri AC, Jones AM (2013) Genome-wide quantitative identification of DNA differentially methylated sites in Arabidopsis seedlings growing at different water potential. PLoS One 8:e59878.  https://doi.org/10.1371/journal.pone.0059878 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR (2010) Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol 61:651–679PubMedCrossRefGoogle Scholar
  23. Danquah A, de Zelicourt A, Boudsocq M, Neubauer J, Frei Dit Frey N, Leonhardt N, Pateyron S, Gwinner F, Tamby JP, Ortiz-Masia D, Marcote MJ, Hirt H, Colcombet J (2015) Identification and characterization of an ABA-activated MAP kinase cascade in Arabidopsis thaliana. Plant J 82:232–244PubMedCrossRefPubMedCentralGoogle Scholar
  24. Davies WJ, Kudoyarova G, Hartung W (2005) Long-distance ABA signaling and its relation to other signaling pathways in the detection of soil drying and the mediation of the plant's response to drought. J Plant Growth Regul 24:285–295CrossRefGoogle Scholar
  25. Des Marais DL, Auchincloss LC, Sukamtoh E, McKay JK, Logan T, Richards JH, Juenger TE (2014) Variation in MPK12 affects water use efficiency in Arabidopsis and reveals a pleiotropic link between guard cell size and ABA response. Proc Natl Acad Sci U S A 111:2836–2841PubMedPubMedCentralCrossRefGoogle Scholar
  26. Desikan R, Cheung MK, Bright J, Henson D, Hancock JT, Neill SJ (2004) ABA, hydrogen peroxide and nitric oxide signalling in stomatal guard cells. J Exp Bot 55:205–212PubMedCrossRefPubMedCentralGoogle Scholar
  27. Ding Y, Avramova Z, Fromm M (2011) The Arabidopsis trithorax-like factor ATX1 functions in dehydration stress responses via ABA-dependent and ABA-independent pathways. Plant J 66:735–744PubMedCrossRefPubMedCentralGoogle Scholar
  28. Ding Y, Fromm M, Avramova Z (2012) Multiple exposures to drought ‘train’ transcriptional responses in Arabidopsis. Nat Commun 3:740.  https://doi.org/10.1038/ncomms1732 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Dong T, Park Y, Hwang I (2015) Abscisic acid: biosynthesis, inactivation, homoeostasis and signalling. Plant Hormon Signal 58:29–48Google Scholar
  30. Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L (2010) MYB transcription factors in Arabidopsis. Trends Plant Sci 15:573–581PubMedCrossRefPubMedCentralGoogle Scholar
  31. Endo A, Koshiba T, Kamiya Y, Nambara E (2008a) Vascular system is a node of systemic stress responses: competence of the cell to synthesize abscisic acid and its responsiveness to external cues. Plant Signal Behav 3:1138–1140PubMedPubMedCentralCrossRefGoogle Scholar
  32. Endo A, Sawada Y, Takahashi H, Okamoto M, Ikegami K, Koiwai H, Seo M, Toyomasu T, Mitsuhashi W, Shinozaki K, Nakazono M, Kamiya Y, Koshiba T, Nambara E (2008b) Drought induction of Arabidopsis 9-cis-epoxycarotenoid dioxygenase occurs in vascular parenchyma cells. Plant Physiol 147:1984–1993PubMedPubMedCentralCrossRefGoogle Scholar
  33. Feller A, Machemer K, Braun EL, Grotewold E (2011) Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. Plant J 66:94–116PubMedCrossRefPubMedCentralGoogle Scholar
  34. Fuchs EE, Livingston NJ (1996) Hydraulic control of stomatal conductance in Douglas fir [Pseudotsuga menziesii (Mirb) Franco] and alder [Alnus rubra (Bong)] seedlings. Plant Cell Environ 19:1091–1098CrossRefGoogle Scholar
  35. Fujii H, Verslues PE, Zhu JK (2007) Identification of two protein kinases required for abscisic acid regulation of seed germination, root growth, and gene expression in Arabidopsis. Plant Cell 19:485–494PubMedPubMedCentralCrossRefGoogle Scholar
  36. Fujita Y, Fujita M, Satoh R, Maruyama K, Parvez MM, Seki M, Hiratsu K, Ohme-Takagi M, Shinozaki K, Yamaguchi-Shinozaki K (2005) AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis. Plant Cell 17:3470–3488PubMedPubMedCentralCrossRefGoogle Scholar
  37. Fujita Y, Nakashima K, Yoshida T, Katagiri T, Kidokoro S, Kanamori N, Umezawa T, Fujita M, Maruyama K, Ishiyama K, Kobayashi M, Nakasone S, Yamada K, Ito T, Shinozaki K, Yamaguchi-Shinozaki K (2009) Three SnRK2 protein kinases are the main positive regulators of abscisic acid signaling in response to water stress in Arabidopsis. Plant Cell Physiol 50:2123–2132PubMedCrossRefPubMedCentralGoogle Scholar
  38. Furihata T, Maruyama K, Fujita Y, Umezawa T, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K (2006) Abscisic acid-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1. Proc Natl Acad Sci U S A 103:1988–1993PubMedPubMedCentralCrossRefGoogle Scholar
  39. Geiger D, Scherzer S, Mumm P, Stange A, Marten I, Bauer H, Ache P, Matschi S, Liese A, Al-Rasheid KA, Grill E, Tomeis T, Hedrich R (2009) Activity of guard cell anion channel SLAC1 is controlled by drought-stress signaling kinase-phosphatase pair. Proc Natl Acad Sci U S A 106:21425–21430PubMedPubMedCentralCrossRefGoogle Scholar
  40. Geiger D, Scherzer S, Mumm P, Marten I, Ache P, Matschi S, Liese A, Wellmann C, Al-Rasheid KA, Grill E et al (2010) Guard cell anion channel SLAC1 is regulated by CDPK protein kinases with distinct Ca2+ affinities. Proc Natl Acad Sci U S A 107:8023–8028PubMedPubMedCentralCrossRefGoogle Scholar
  41. Goeres DC, Van Norman JM, Zhang W, Fauver NA, Spencer ML, Sieburth LE (2007) Components of the Arabidopsis mRNA decapping complex are required for early seedling development. Plant Cell 19:1549–1564PubMedPubMedCentralCrossRefGoogle Scholar
  42. Goodger JQ, Schachtman DP (2010) Re-examining the role of ABA as the primary long-distance signal produced by water-stressed roots. Plant Signal Behav 5:1298–1301PubMedPubMedCentralCrossRefGoogle Scholar
  43. Goyal K, Walton LJ, Tunnacliffe A (2005) LEA proteins prevent protein aggregation due to Water use efficiency. Biochem J 388:151–157PubMedPubMedCentralCrossRefGoogle Scholar
  44. Grimes CA, Jope RS (2001) The multifaceted roles of glycogen synthase kinase 3beta in cellular signaling. Prog Neurobiol 65:391–426PubMedCrossRefPubMedCentralGoogle Scholar
  45. Hamel LP, Sheen J, Seguin A (2014) Ancient signals: comparative genomics of green plant CDPKs. Trends Plant Sci 19:79–89PubMedCrossRefPubMedCentralGoogle Scholar
  46. Han SK, Sang Y, Rodrigues A, Wu MF, Rodriguez PL, Wagner D, F2010 B (2012) The SWI2/SNF2 chromatin remodeling ATPase BRAHMA represses abscisic acid responses in the absence of the stress stimulus in Arabidopsis. Plant Cell 24:4892–4906PubMedPubMedCentralCrossRefGoogle Scholar
  47. Harris JC, Hrmova M, Lopato S, Langridge P (2011) Modulation of plant growth by HD-Zip class I and II transcription factors in response to environmental stimuli. New Phytol 190:823–837PubMedCrossRefPubMedCentralGoogle Scholar
  48. Hedrich R, Marten I (1993) Malate-induced feedback-regulation of plasma-membrane anion channels could provide a CO2 sensor to guard cells. EMBO J 12:897–901PubMedPubMedCentralCrossRefGoogle Scholar
  49. Hedrich R, Marten I, Lohse G, Dietrich P, Winter H, Lohaus G, Heldt HW (1994) Malate-sensitive anion channels enable guard-cells to sense changes in the ambient CO2 concentration. Plant J 6:741–748CrossRefGoogle Scholar
  50. Himmelbach A, Hoffmann T, Leube M, Hohener B, Grill E (2002) Homeodomain protein ATHB6 is a target of the protein phosphatase ABI1 and regulates hormone responses in Arabidopsis. EMBO J 21:3029–3038PubMedPubMedCentralCrossRefGoogle Scholar
  51. Himuro Y, Ishiyama K, Mori F, Gondo T, Takahashi F, Shinozaki K, Kobayashi M, Akashi R (2014) Arabidopsis galactinol synthase AtGolS2 improves drought tolerance in the monocot model Brachypodium distachyon. J Plant Physiol 171:1127–1131PubMedCrossRefPubMedCentralGoogle Scholar
  52. Hincha DK, Thalhammer A (2012) LEA proteins: IDPs with versatile functions in cellular dehydration tolerance. Biochem Soc Trans 40:1000–1003PubMedCrossRefGoogle Scholar
  53. Holbrook NM, Shashidhar VR, James RA, Munns R (2002) Stomatal control in tomato with ABA-deficient roots: response of grafted plants to soil drying. J Exp Bot 53:1503–1514PubMedPubMedCentralGoogle Scholar
  54. Horak H, Sierla M, Toldsepp K, Wang C, Wang YS, Nuhkat M, Valk E, Pechter P, Merilo E, Salojarvi J, Overmyer K, Loog M, Brosché M, Schroeder JI, Kangasjärvi J, Kollista H (2016) A dominant mutation in the HT1 kinase uncovers roles of MAP kinases and GHR1 in CO2-induced stomatal closure. Plant Cell 28:2493–2509PubMedPubMedCentralCrossRefGoogle Scholar
  55. Hua D, Wang C, He J, Liao H, Duan Y, Zhu Z, Guo Y, Chen Z, Gong Z (2012) A plasma membrane receptor kinase, GHR1, mediates abscisic acid- and hydrogen peroxide-regulated stomatal movement in Arabidopsis. Plant Cell 24:2546–2561PubMedPubMedCentralCrossRefGoogle Scholar
  56. Hubbard KE, Siegel RS, Valerio G, Brandt B, Schroeder JI (2012) Abscisic acid and CO2 signalling via calcium sensitivity priming in guard cells, new CDPK mutant phenotypes and a method for improved resolution of stomatal stimulus-response analyses. Ann Bot 109:5–17PubMedCrossRefPubMedCentralGoogle Scholar
  57. Ikegami K, Okamoto M, Seo M, Koshiba T (2009) Activation of abscisic acid biosynthesis in the leaves of Arabidopsis thaliana in response to water deficit. J Plant Res 122:235–243PubMedCrossRefPubMedCentralGoogle Scholar
  58. Imes D, Mumm P, Bohm J, Al-Rasheid KAS, Marten I, Geiger D, Hedrich R (2013) Open stomata 1 (OST1) kinase controls R-type anion channel QUAC1 in Arabidopsis guard cells. Plant J 74:372–382PubMedCrossRefPubMedCentralGoogle Scholar
  59. Iuchi S, Kobayashi M, Taji T, Naramoto M, Seki M, Kato T, Tabata S, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K (2001) Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J 27:325–333PubMedCrossRefPubMedCentralGoogle Scholar
  60. Jakobson L, Vaahtera L, Toldsepp K, Nuhkat M, Wang C, Wang YS, Horak H, Valk E, Pechter P, Sindarovska Y, Tang J, Xiao C, Xu Y, Gerst Talas U, García-Sosa AT, Kangasjärvi S, Maran U, Remm M, Roelfsema MR, Hu H, Kangasjärvi J, Loog M, Schroeder JI, Kollist H, Brosché M (2016) Natural variation in Arabidopsis Cvi-0 accession reveals an important role of MPK12 in guard cell CO2 signaling. PLoS Biol 14:e2000322.  https://doi.org/10.1371/journal.pbio.2000322 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Jammes F, Song C, Shin D, Munemasa S, Takeda K, Gu D, Cho D, Lee S, Giordo R, Sritubtim S, Leonhardte N, Ellisd BE, Murata Y, Kwak JM (2009) MAP kinases MPK9 and MPK12 are preferentially expressed in guard cells and positively regulate ROS-mediated ABA signaling. Proc Natl Acad Sci U S A 106:20520–20525PubMedPubMedCentralCrossRefGoogle Scholar
  62. Jeon J, Kim NY, Kim S, Kang NY, Novak O, Ku SJ, Cho C, Lee DJ, Lee EJ, Strnad M, Kim J (2010) A subset of cytokinin two-component signaling system plays a role in cold temperature stress response in Arabidopsis. J Biol Chem 285:23371–23386PubMedPubMedCentralCrossRefGoogle Scholar
  63. Jia WS, Davies WJ (2007) Modification of leaf apoplastic pH in relation to stomatal sensitivity to root-sourced abscisic acid signals. Plant Physiol 143:68–77PubMedPubMedCentralCrossRefGoogle Scholar
  64. Jia W, Zhang J (2008) Stomatal movements and long-distance signaling in plants. Plant Signal Behav 3:772–777PubMedPubMedCentralCrossRefGoogle Scholar
  65. Jiang F, Hartung W (2008) Long-distance signalling of abscisic acid (ABA): the factors regulating the intensity of the ABA signal. J Exp Bot 59:37–43PubMedCrossRefPubMedCentralGoogle Scholar
  66. Jones AM, Danielson JAH, ManojKumar SN, Lanquar V, Grossmann G, Frommer WB (2014) Abscisic acid dynamics in roots detected with genetically encoded FRET sensors. elife 3.  https://doi.org/10.7554/eLife.01741
  67. Kang J, Hwang JU, Lee M, Kim YY, Assmann SM, Martinoia E, Lee Y (2010) PDR-type ABC transporter mediates cellular uptake of the phytohormone abscisic acid. Proc Natl Acad Sci U S A 107:2355–2360PubMedPubMedCentralCrossRefGoogle Scholar
  68. Kang J, Yim S, Choi H, Kim A, Lee KP, Lopez-Molina L, Martinoia E, Lee Y (2015) Abscisic acid transporters cooperate to control seed germination. Nat Commun 6:8113.  https://doi.org/10.1038/ncomms9113 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Kanno Y, Hanada A, Chiba Y, Ichikawa T, Nakazawa M, Matsui M, Koshiba T, Kamiya Y, Seo M (2012) Identification of an abscisic acid transporter by functional screening using the receptor complex as a sensor. Proc Natl Acad Sci U S A 109:9653–9658PubMedPubMedCentralCrossRefGoogle Scholar
  70. Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17:287–291PubMedPubMedCentralCrossRefGoogle Scholar
  71. Kim TH, Bohmer M, Hu H, Nishimura N, Schroeder JI (2010) Guard cell signal transduction network: advances in understanding abscisic acid, CO2, and Ca2+ signaling. Annu Rev Plant Biol 61:561–591PubMedPubMedCentralCrossRefGoogle Scholar
  72. Kim JS, Mizoi J, Yoshida T, Fujita Y, Nakajima J, Ohori T, Todaka D, Nakashima K, Hirayama T, Shinozaki K, Yamaguchi-Shinozaki K (2011) An ABRE promoter sequence is involved in osmotic stress-responsive expression of the DREB2A gene, which encodes a transcription factor regulating drought-inducible genes in Arabidopsis. Plant Cell Physiol 52:2136–2146PubMedCrossRefPubMedCentralGoogle Scholar
  73. Kim JM, To TK, Ishida J, Matsui A, Kimura H, Seki M (2012) Transition of chromatin status during the process of recovery from drought stress in Arabidopsis thaliana. Plant Cell Physiol 53:847–856PubMedCrossRefPubMedCentralGoogle Scholar
  74. Kim JM, To TK, Matsui A, Tanoi K, Kobayashi NI, Matsuda F, Habu Y, Ogawa D, Sakamoto T, Matsunaga S, Bashir K, Rasheed S, Ando M, Takeda H, Kawaura K, Kusano M, Fukushima A, Endo TA, Kuromori T, Ishida J, Morosawa T, Tanaka M, Torii C, Takebayashi Y, Sakakibara H, Ogihara Y, Saito K, Shinozaki K, Devoto A, Seki M (2017) Acetate-mediated novel survival strategy against drought in plants. Nat Plants 3:17097.  https://doi.org/10.1038/nplants.2017.97 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Kinoshita N, Wang H, Kasahara H, Liu J, Macpherson C, Machida Y, Kamiya Y, Hannah MA, Chua NH (2012) IAA-Ala Resistant3, an evolutionarily conserved target of miR167, mediates Arabidopsis root architecture changes during high osmotic stress. Plant Cell 24:3590–3602PubMedPubMedCentralCrossRefGoogle Scholar
  76. Klimecka M, Muszynska G (2007) Structure and functions of plant calcium-dependent protein kinases. Acta Biochim Pol 54:219–233PubMedPubMedCentralGoogle Scholar
  77. Kobayashi Y, Murata M, Minami H, Yamamoto S, Kagaya Y, Hobo T, Yamamoto A, Hattori T (2005) Abscisic acid-activated SNRK2 protein kinases function in the gene-regulation pathway of ABA signal transduction by phosphorylating ABA response element-binding factors. Plant J 44:939–949PubMedCrossRefPubMedCentralGoogle Scholar
  78. Kuromori T, Shinozaki K (2010) ABA transport factors found in Arabidopsis ABC transporters. Plant Signal Behav 5:1124–1126PubMedPubMedCentralCrossRefGoogle Scholar
  79. Kuromori T, Miyaji T, Yabuuchi H, Shimizu H, Sugimoto E, Kamiya A, Moriyama Y, Shinozaki K (2010) ABC transporter AtABCG25 is involved in abscisic acid transport and responses. Proc Natl Acad Sci U S A 107:2361–2366PubMedPubMedCentralCrossRefGoogle Scholar
  80. Kuromori T, Sugimoto E, Shinozaki K (2014) Intertissue signal transfer of abscisic acid from vascular cells to guard cells. Plant Physiol 164:1587–1592PubMedPubMedCentralCrossRefGoogle Scholar
  81. Kuromori T, Fujita M, Urano K, Tanabata T, Sugimoto E, Shinozaki K (2016) Overexpression of AtABCG25 enhances the abscisic acid signal in guard cells and improves plant water use efficiency. Plant Sci 251:75–81PubMedCrossRefPubMedCentralGoogle Scholar
  82. Lacombe B, Achard P (2016) Long-distance transport of phytohormones through the plant vascular system. Curr Opin Plant Biol 34:1–8PubMedCrossRefPubMedCentralGoogle Scholar
  83. Lee SC, Lan W, Buchanan BB, Luan S (2009) A protein kinase-phosphatase pair interacts with an ion channel to regulate ABA signaling in plant guard cells. Proc Natl Acad Sci U S A 106:21419–21424PubMedPubMedCentralCrossRefGoogle Scholar
  84. Leung J, Giraudat J (1998) Abscisic acid signal transduction. Annu Rev Plant Physiol Plant Mol Biol 49:199–222PubMedCrossRefPubMedCentralGoogle Scholar
  85. Li WX, Oono Y, Zhu J, He XJ, Wu JM, Iida K, Lu XY, Cui X, Jin H, Zhu JK (2008) The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance. Plant Cell 20:2238–2251PubMedPubMedCentralCrossRefGoogle Scholar
  86. Li Y, Cai H, Liu P, Wang C, Gao H, Wu C, Yan K, Zhang S, Huang J, Zheng C (2017) Arabidopsis MAPKKK18 positively regulates drought stress resistance via downstream MAPKK3. Biochem Biophys Res Commun 484:292–297PubMedCrossRefPubMedCentralGoogle Scholar
  87. Liu YK (2012) Roles of mitogen-activated protein kinase cascades in ABA signaling. Plant Cell Rep 31:1–12PubMedCrossRefPubMedCentralGoogle Scholar
  88. Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1406PubMedPubMedCentralCrossRefGoogle Scholar
  89. Liu N, Fromm M, Avramova Z (2014) H3K27me3 and H3K4me3 chromatin environment at super-induced dehydration stress memory genes of Arabidopsis thaliana. Mol Plant 7:502–513PubMedCrossRefPubMedCentralGoogle Scholar
  90. Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y, Christmann A, Grill E (2009) Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324:1064–1068PubMedPubMedCentralGoogle Scholar
  91. Madhavan S, Sarath G, Lee BH, Pegden RS (1995) Guard-cell protoplasts contain acetylcholinesterase activity. Plant Sci 109:119–127CrossRefGoogle Scholar
  92. Malcheska F, Ahmad A, Batool S, Muller HM, Ludwig-Muller J, Kreuzwieser J, Randewig D, Hansch R, Mendel RR, Hell R et al (2017) Drought-enhanced xylem sap sulfate closes stomata by affecting ALMT12 and guard cell ABA synthesis. Plant Physiol 174:798–814PubMedPubMedCentralCrossRefGoogle Scholar
  93. Maldonado-Bonilla LD (2014) Composition and function of P bodies in Arabidopsis thaliana. Front Plant Sci 5:201.  https://doi.org/10.3389/fpls.2014.00201 CrossRefPubMedPubMedCentralGoogle Scholar
  94. Manzi M, Lado J, Rodrigo MJ, Zacarias L, Arbona V, Gomez-Cadenas A (2015) Root ABA accumulation in long-term water-stressed plants is sustained by hormone transport from aerial organs. Plant Cell Physiol 56:2457–2466PubMedCrossRefPubMedCentralGoogle Scholar
  95. Manzi M, Lado J, Rodrigo MJ, Arbona V, Gomez-Cadenas A (2016) ABA accumulation in water-stressed Citrus roots does not rely on carotenoid content in this organ. Plant Sci 252:151–161PubMedCrossRefPubMedCentralGoogle Scholar
  96. Maruyama K, Todaka D, Mizoi J, Yoshida T, Kidokoro S, Matsukura S, Takasaki H, Sakurai T, Yamamoto YY, Yoshiwara K, Kojima M, Sakakibara H, Shinozaki K, Yamaguchi-Shinozaki K (2012) Identification of cis-acting promoter elements in cold- and dehydration-induced transcriptional pathways in Arabidopsis, rice, and soybean. DNA Res 19:37–49PubMedCrossRefPubMedCentralGoogle Scholar
  97. Matsuoka D, Yasufuku T, Furuya T, Nanmori T (2015) An abscisic acid inducible Arabidopsis MAPKKK, MAPKKK18 regulates leaf senescence via its kinase activity. Plant Mol Biol 87:565–575PubMedCrossRefPubMedCentralGoogle Scholar
  98. Mattioli R, Falasca G, Sabatini S, Altamura MM, Costantino P, Trovato M (2009) The proline biosynthetic genes P5CS1 and P5CS2 play overlapping roles in Arabidopsis flower transition but not in embryo development. Physiol Plant 137:72–85PubMedCrossRefPubMedCentralGoogle Scholar
  99. McAdam SA, Brodribb TJ, Ross JJ (2016a) Shoot-derived abscisic acid promotes root growth. Plant Cell Environ 39:652–659PubMedCrossRefPubMedCentralGoogle Scholar
  100. McAdam SA, Manzi M, Ross JJ, Brodribb TJ, Gomez-Cadenas A (2016b) Uprooting an abscisic acid paradigm: shoots are the primary source. Plant Signal Behav 11:e1169359.  https://doi.org/10.1080/15592324.2016.1169359 CrossRefPubMedPubMedCentralGoogle Scholar
  101. McConnell JR, Emery J, Eshed Y, Bao N, Bowman J, Barton MK (2001) Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. Nature 411:709–713PubMedCrossRefPubMedCentralGoogle Scholar
  102. Merilo E, Jalakas P, Laanemets K, Mohammadi O, Horak H, Kollist H, Brosche M (2015) Abscisic acid transport and homeostasis in the context of stomatal regulation. Mol Plant 8:1321–1333PubMedCrossRefPubMedCentralGoogle Scholar
  103. Miao Y, Lv D, Wang P, Wang XC, Chen J, Miao C, Song CP (2006) An Arabidopsis glutathione peroxidase functions as both a redox transducer and a scavenger in abscisic acid and drought stress responses. Plant Cell 18:2749–2766PubMedPubMedCentralCrossRefGoogle Scholar
  104. Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33:453–467PubMedCrossRefPubMedCentralGoogle Scholar
  105. Mitula F, Tajdel M, Ciesla A, Kasprowicz-Maluski A, Kulik A, Babula-Skowronska D, Michalak M, Dobrowolska G, Sadowski J, Ludwikow A (2015) Arabidopsis ABA-activated kinase MAPKKK18 is regulated by protein phosphatase 2C ABI1 and the ubiquitin-proteasome pathway. Plant Cell Physiol 56:2351–2367PubMedPubMedCentralCrossRefGoogle Scholar
  106. Mori IC, Murata Y, Yang Y, Munemasa S, Wang YF, Andreoli S, Tiriac H, Alonso JM, Harper JF, Ecker JR et al (2006) CDPKs CPK6 and CPK3 function in ABA regulation of guard cell S-type anion- and ca(2+)-permeable channels and stomatal closure. PLoS Biol 4:e327.  https://doi.org/10.1371/journal.pbio.0040327 CrossRefPubMedPubMedCentralGoogle Scholar
  107. Nakagawa Y, Katagiri T, Shinozaki K, Qi Z, Tatsumi H, Furuichi T, Kishigami A, Sokabe M, Kojima I, Sato S, Kato T, Tabata S, Iida K, Terashima A, Nakano M, Ikeda M, Yamanaka T, Iida H (2007) Arabidopsis plasma membrane protein crucial for Ca2+ influx and touch sensing in roots. Proc Natl Acad Sci U S A 104:3639–3644PubMedPubMedCentralCrossRefGoogle Scholar
  108. Negi J, Matsuda O, Nagasawa T, Oba Y, Takahashi H, Kawai-Yamada M, Uchimiya H, Hashimoto M, Iba K (2008) CO2 regulator SLAC1 and its homologues are essential for anion homeostasis in plant cells. Nature 452:483–486PubMedCrossRefPubMedCentralGoogle Scholar
  109. Nishiyama R, Watanabe Y, Fujita Y, Le DT, Kojima M, Werner T, Vankova R, Yamaguchi-Shinozaki K, Shinozaki K, Kakimoto T, Sakakibara H, Schmülling T, Tran LS (2011) Analysis of cytokinin mutants and regulation of cytokinin metabolic genes reveals important regulatory roles of cytokinins in drought, salt and abscisic acid responses, and abscisic acid biosynthesis. Plant Cell 23:2169–2183PubMedPubMedCentralCrossRefGoogle Scholar
  110. Nishizawa A, Yabuta Y, Shigeoka S (2008) Galactinol and raffinose constitute a novel function to protect plants from oxidative damage. Plant Physiol 147:1251–1263PubMedPubMedCentralCrossRefGoogle Scholar
  111. Osakabe Y, Arinaga N, Umezawa T, Katsura S, Nagamachi K, Tanaka H, Ohiraki H, Yamada K, Seo SU, Abo M, Yoshimura E, Shinozaki K, Yamaguchi-Shinozaki K (2013) Osmotic stress responses and plant growth controlled by potassium transporters in Arabidopsis. Plant Cell 25:609–624PubMedPubMedCentralCrossRefGoogle Scholar
  112. Park SY, Fung P, Nishimura N, Jensen DR, Fujii H, Zhao Y, Lumba S, Santiago J, Rodrigues A, Chow TF, Alfred SE, Bonetta D, Finkelstein R, Provart NJ, Desveaux D, Rodriguez PL, McCourt P, Zhu JK, Schroeder JI, Volkman BF, Cutler SR (2009) Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324:1068–1071PubMedPubMedCentralGoogle Scholar
  113. Patonnier MP, Peltier JP, Marigo G (1999) Drought-induced increase in xylem malate and mannitol concentrations and closure of Fraxinus excelsior L-stomata. J Exp Bot 50:1223–1229CrossRefGoogle Scholar
  114. Peirats-Llobet M, Han SK, Gonzalez-Guzman M, Jeong CW, Rodriguez L, Belda-Palazon B, Wagner D, Rodriguez PL (2016) A direct link between abscisic acid sensing and the chromatin-remodeling ATPase BRAHMA via core ABA signaling pathway components. Mol Plant 9:136–147PubMedCrossRefPubMedCentralGoogle Scholar
  115. Peiter E, Maathuis FJM, Mills LN, Knight H, Pelloux J, Hetherington AM, Sanders D (2005) The vacuolar Ca2+-activated channel TPC1 regulates germination and stomatal movement. Nature 434:404–408PubMedCrossRefPubMedCentralGoogle Scholar
  116. Perea-Resa C, Carrasco-Lopez C, Catala R, Tureckova V, Novak O, Zhang W, Sieburth L, Jimenez-Gomez JM, Salinas J (2016) The LSM1-7 complex differentially regulates arabidopsis tolerance to abiotic stress conditions by promoting selective mRNA decapping. Plant Cell 28:505–520PubMedPubMedCentralCrossRefGoogle Scholar
  117. Puranik S, Sahu PP, Srivastava PS, Prasad M (2012) NAC proteins: regulation and role in stress tolerance. Trends Plant Sci 17:369–381PubMedPubMedCentralCrossRefGoogle Scholar
  118. Qin F, Sakuma Y, Tran LS, Maruyama K, Kidokoro S, Fujita Y, Fujita M, Umezawa T, Sawano Y, Miyazono K, Tanokura M, Shinozaki K, Yamaguchi-Shinozaki K (2008) Arabidopsis DREB2A-interacting proteins function as RING E3 ligases and negatively regulate plant drought stress-responsive gene expression. Plant Cell 20:1693–1707PubMedPubMedCentralCrossRefGoogle Scholar
  119. Raghavendra AS, Gonugunta VK, Christmann A, Grill E (2010) ABA perception and signalling. Trends Plant Sci 15:395–401PubMedCrossRefGoogle Scholar
  120. Ren H, Gao Z, Chen L, Wei K, Liu J, Fan Y, Davies WJ, Jia W, Zhang J (2007) Dynamic analysis of ABA accumulation in relation to the rate of ABA catabolism in maize tissues under water deficit. J Exp Bot 58:211–219PubMedCrossRefPubMedCentralGoogle Scholar
  121. Ren X, Chen Z, Liu Y, Zhang H, Zhang M, Liu Q, Hong X, Zhu JK, Gong Z (2010) ABO3, a WRKY transcription factor, mediates plant responses to abscisic acid and drought tolerance in Arabidopsis. Plant J 63:417–429PubMedPubMedCentralCrossRefGoogle Scholar
  122. Reyes JL, Chua NH (2007) ABA induction of miR159 controls transcript levels of two MYB factors during Arabidopsis seed germination. Plant J 49:592–606PubMedCrossRefPubMedCentralGoogle Scholar
  123. Rushton DL, Tripathi P, Rabara RC, Lin J, Ringler P, Boken AK, Langum TJ, Smidt L, Boomsma DD, Emme NJ, Chen X, Finer JJ, Shen QJ, Rushton PJ (2012) WRKY transcription factors: key components in abscisic acid signalling. Plant Biotechnol J 10:2–11PubMedCrossRefPubMedCentralGoogle Scholar
  124. Saidi Y, Hearn TJ, Coates JC (2012) Function and evolution of ‘green’ GSK3/shaggy-like kinases. Trends Plant Sci 17:39–46PubMedCrossRefPubMedCentralGoogle Scholar
  125. Sakuma Y, Maruyama K, Osakabe Y, Qin F, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006a) Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. Plant Cell 18:1292–1309PubMedPubMedCentralCrossRefGoogle Scholar
  126. Sakuma Y, Maruyama K, Qin F, Osakabe Y, Shinozaki K, Yamaguchi-Shinozaki K (2006b) Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression. Proc Natl Acad Sci U S A 103:18822–18827PubMedPubMedCentralCrossRefGoogle Scholar
  127. Sakuraba Y, Kim YS, Han SH, Lee BD, Paek NC (2015) The arabidopsis transcription factor NAC016 promotes drought stress responses by repressing AREB1 transcription through a trifurcate feed-forward regulatory loop involving NAP. Plant Cell 27:1771–1787PubMedPubMedCentralCrossRefGoogle Scholar
  128. Saliendra NZ, Sperry JS, Comstock JP (1995) Influence of leaf water status on stomatal response to humidity, hydraulic conductance, and soil drought in Betula occidentalis. Planta 196:357–366CrossRefGoogle Scholar
  129. Santiago J, Dupeux F, Round A, Antoni R, Park SY, Jamin M, Cutler SR, Rodriguez PL, Marquez JA (2009) The abscisic acid receptor PYR1 in complex with abscisic acid. Nature 462:665–668PubMedCrossRefPubMedCentralGoogle Scholar
  130. Saruhashi M, Kumar Ghosh T, Arai K, Ishizaki Y, Hagiwara K, Komatsu K, Shiwa Y, Izumikawa K, Yoshikawa H, Umezawa T, Sakata Y, Takezawa D (2015) Plant Raf-like kinase integrates abscisic acid and hyperosmotic stress signaling upstream of SNF1-related protein kinase2. Proc Natl Acad Sci U S A 112:E6388–E6396PubMedPubMedCentralCrossRefGoogle Scholar
  131. Sato A, Sato Y, Fukao Y, Fujiwara M, Umezawa T, Shinozaki K, Hibi T, Taniguchi M, Miyake H, Goto DB, Uozumi N (2009) Threonine at position 306 of the KAT1 potassium channel is essential for channel activity and is a target site for ABA-activated SnRK2/OST1/SnRK2.6 protein kinase. Biochem J 424:439–448PubMedCrossRefPubMedCentralGoogle Scholar
  132. Sato H, Mizoi J, Tanaka H, Maruyama K, Qin F, Osakabe Y, Morimoto K, Ohori T, Kusakabe K, Nagata M, Shinozaki K, Yamaguchi-Shinozaki K (2014) Arabidopsis DPB3-1, a DREB2A interactor, specifically enhances heat stress-induced gene expression by forming a heat stress-specific transcriptional complex with NF-Y subunits. Plant Cell 26:4954–4973PubMedPubMedCentralCrossRefGoogle Scholar
  133. Sauter A, Dietz KJ, Hartung W (2002) A possible stress physiological role of abscisic acid conjugates in root-to-shoot signalling. Plant Cell Environ 25:223–228PubMedCrossRefPubMedCentralGoogle Scholar
  134. Sebastia CH, Hardin SC, Clouse SD, Kieber JJ, Huber SC (2004) Identification of a new motif for CDPK phosphorylation in vitro that suggests ACC synthase may be a CDPK substrate. Arch Biochem Biophys 428:81–91CrossRefGoogle Scholar
  135. Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Taji T, Yamaguchi-Shinozaki K, PCarninci P, Kawai J, Hayashizaki Y, Shinozaki K (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J 31:279–292PubMedCrossRefPubMedCentralGoogle Scholar
  136. Seki M, Umezawa T, Urano K, Shinozaki K (2007) Regulatory metabolic networks in drought stress responses. Curr Opin Plant Biol 10:296–302PubMedCrossRefPubMedCentralGoogle Scholar
  137. Selvaraj MG, Ishizaki T, Valencia M, Ogawa S, Dedicova B, Ogata T, Yoshiwara K, Maruyama K, Kusano M, Saito K, Takahashi F, Shinozaki K, Nakashima K, Ishitani M (2017) Overexpression of an Arabidopsis thaliana galactinol synthase gene improves drought tolerance in transgenic rice and increased grain yield in the field. Plant Biotechnol J 15:1465–1477PubMedPubMedCentralCrossRefGoogle Scholar
  138. Seo PJ, Xiang F, Qiao M, Park JY, Lee YN, Kim SG, Lee YH, Park WJ, Park CM (2009) The MYB96 transcription factor mediates abscisic acid signaling during drought stress response in Arabidopsis. Plant Physiol 151:275–289PubMedPubMedCentralCrossRefGoogle Scholar
  139. Shang Y, Yan L, Liu ZQ, Cao Z, Mei C, Xin Q, Wu FQ, Wang XF, Du SY, Jiang T, Zhang XF, Zhao R, Sun HL, Liu R, Yu YT, Zhang DP (2010) The Mg-chelatase H subunit of Arabidopsis antagonizes a group of WRKY transcription repressors to relieve ABA-responsive genes of inhibition. Plant Cell 22:1909–1935PubMedPubMedCentralCrossRefGoogle Scholar
  140. Shen Q, Zhang P, Ho TH (1996) Modular nature of abscisic acid (ABA) response complexes: composite promoter units that are necessary and sufficient for ABA induction of gene expression in barley. Plant Cell 8:1107–1119PubMedPubMedCentralCrossRefGoogle Scholar
  141. Shi H, Chen Y, Qian Y, Chan Z (2015) Low temperature-induced 30 (LTI30) positively regulates drought stress resistance in Arabidopsis: effect on abscisic acid sensitivity and hydrogen peroxide accumulation. Front Plant Sci 6:893.  https://doi.org/10.3389/fpls.2015.00893 CrossRefPubMedPubMedCentralGoogle Scholar
  142. Sirichandra C, Gu D, Hu HC, Davanture M, Lee S, Djaoui M, Valot B, Zivy M, Leung J, Merlot S, Kwak JM (2009) Phosphorylation of the Arabidopsis AtrbohF NADPH oxidase by OST1 protein kinase. FEBS Lett 583:2982–2986PubMedCrossRefPubMedCentralGoogle Scholar
  143. Sirichandra C, Davanture M, Turk BE, Zivy M, Valot B, Leung J, Merlot S (2010) The Arabidopsis ABA-activated kinase OST1 phosphorylates the bZIP transcription factor ABF3 and creates a 14-3-3 binding site involved in its turnover. PLoS One 5:e13935.  https://doi.org/10.1371/journal.pone.0013935 CrossRefPubMedPubMedCentralGoogle Scholar
  144. Soma F, Mogami J, Yoshida T, Abekura M, Takahashi F, Kidokoro S, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2017) ABA-unresponsive SnRK2 protein kinases regulate mRNA decay under osmotic stress in plants. Nat Plants 3:16204.  https://doi.org/10.1038/nplants.2016.204 CrossRefPubMedPubMedCentralGoogle Scholar
  145. Stecker KE, Minkoff BB, Sussman MR (2014) Phosphoproteomic analyses reveal early signaling events in the osmotic stress response. Plant Physiol 165:1171–1187CrossRefGoogle Scholar
  146. Steudle E (2001) The cohesion-tension mechanism and the Acquisition of Water by plant roots. Annu Rev Plant Physiol Plant Mol Biol 52:847–875PubMedCrossRefPubMedCentralGoogle Scholar
  147. Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16:2001–2019PubMedPubMedCentralCrossRefGoogle Scholar
  148. Sunkar R, Chinnusamy V, Zhu J, Zhu JK (2007) Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends Plant Sci 12:301–309PubMedCrossRefPubMedCentralGoogle Scholar
  149. Sussmilch FC, Brodribb TJ, McAdam SAM (2017) Up-regulation of NCED3 and ABA biosynthesis occur within minutes of a decrease in leaf turgor but AHK1 is not required. J Exp Bot 68:2913–2918PubMedPubMedCentralCrossRefGoogle Scholar
  150. Taiz L, Zeiger E (2010) Plant physiology, 5th edn. Sinauer Associates, SunderlandGoogle Scholar
  151. Taji T, Ohsumi C, Iuchi S, Seki M, Kasuga M, Kobayashi M, Yamaguchi-Shinozaki K, Shinozaki K (2002) Important roles of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. Plant J 29:417–426PubMedCrossRefPubMedCentralGoogle Scholar
  152. Takahashi F, Yoshida R, Ichimura K, Mizoguchi T, Seo S, Yonezawa M, Maruyama K, Yamaguchi-Shinozaki K, Shinozaki K (2007) The mitogen-activated protein kinase cascade MKK3-MPK6 is an important part of the jasmonate signal transduction pathway in Arabidopsis. Plant Cell 19:805–818PubMedPubMedCentralCrossRefGoogle Scholar
  153. Takahashi F, Mizoguchi T, Yoshida R, Ichimura K, Shinozaki K (2011) Calmodulin-dependent activation of MAP kinase for ROS homeostasis in Arabidopsis. Mol Cell 41:649–660PubMedCrossRefPubMedCentralGoogle Scholar
  154. Takahashi Y, Ebisu Y, Kinoshita T, Doi M, Okuma E, Murata Y, Shimazaki K (2013) bHLH transcription factors that facilitate K+ uptake during stomatal opening are repressed by abscisic acid through phosphorylation. Sci Signal 6:ra48.  https://doi.org/10.1126/scisignal.2003760 CrossRefPubMedPubMedCentralGoogle Scholar
  155. Takasaki H, Maruyama K, Takahashi F, Fujita M, Yoshida T, Nakashima K, Myouga F, Toyooka K, Yamaguchi-Shinozaki K, Shinozaki K (2015) SNAC-As, stress-responsive NAC transcription factors, mediate ABA-inducible leaf senescence. Plant J 84:1114–1123PubMedCrossRefPubMedCentralGoogle Scholar
  156. Tal I, Zhang Y, Jorgensen ME, Pisanty O, Barbosa IC, Zourelidou M, Regnault T, Crocoll C, Olsen CE, Weinstain R, Schwechheimer C, Halkier BA, Nour-Eldin HH, Estelle M, Shani E (2016) The Arabidopsis NPF3 protein is a GA transporter. Nat Commun 7:11486.  https://doi.org/10.1038/ncomms11486 CrossRefPubMedPubMedCentralGoogle Scholar
  157. Tominaga M, Harada A, Kinoshita T, Shimazaki K (2010) Biochemical characterization of calcineurin B-like-interacting protein kinase in Vicia guard cells. Plant Cell Physiol 51:408–421PubMedCrossRefPubMedCentralGoogle Scholar
  158. Tran LS, Urao T, Qin F, Maruyama K, Kakimoto T, Shinozaki K, Yamaguchi-Shinozaki K (2007) Functional analysis of AHK1/ATHK1 and cytokinin receptor histidine kinases in response to abscisic acid, drought, and salt stress in Arabidopsis. Proc Natl Acad Sci U S A 104:20623–20628PubMedPubMedCentralCrossRefGoogle Scholar
  159. Tretyn A, Kendrick RE (1991) Acetylcholine in plants – presence, metabolism and mechanism of action. Bot Rev 57:33–73CrossRefGoogle Scholar
  160. Umezawa T, Fujita M, Fujita Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Engineering drought tolerance in plants: discovering and tailoring genes to unlock the future. Curr Opin Biotechnol 17:113–122PubMedCrossRefGoogle Scholar
  161. Umezawa T, Nakashima K, Miyakawa T, Kuromori T, Tanokura M, Shinozaki K, Yamaguchi-Shinozaki K (2010) Molecular basis of the core regulatory network in ABA responses: sensing, signaling and transport. Plant Cell Physiol 51:1821–1839PubMedPubMedCentralCrossRefGoogle Scholar
  162. Umezawa T, Sugiyama N, Takahashi F, Anderson JC, Ishihama Y, Peck SC, Shinozaki K (2013) Genetics and phosphoproteomics reveal a protein phosphorylation network in the abscisic acid signaling pathway in Arabidopsis thaliana. Sci Signal 6:rs8.  https://doi.org/10.1126/scisignal.2003509 CrossRefPubMedPubMedCentralGoogle Scholar
  163. Uno Y, Furihata T, Abe H, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K (2000) Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc Natl Acad Sci U S A 97:11632–11637PubMedPubMedCentralCrossRefGoogle Scholar
  164. Urano K, Maruyama K, Jikumaru Y, Kamiya Y, Yamaguchi-Shinozaki K, Shinozaki K (2017) Analysis of plant hormone profiles in response to moderate dehydration stress. Plant J 90:17–36PubMedCrossRefPubMedCentralGoogle Scholar
  165. Urao T, Yakubov B, Satoh R, Yamaguchi-Shinozaki K, Seki M, Hirayama T, Shinozaki K (1999) A transmembrane hybrid-type histidine kinase in Arabidopsis functions as an osmosensor. Plant Cell 11:1743–1754PubMedPubMedCentralCrossRefGoogle Scholar
  166. Vahisalu T, Kollist H, Wang YF, Nishimura N, Chan WY, Valerio G, Lamminmaki A, Brosche M, Moldau H, Desikan R, Schroeder JL, Kangasjärvi J (2008) SLAC1 is required for plant guard cell S-type anion channel function in stomatal signalling. Nature 452:487–491PubMedPubMedCentralCrossRefGoogle Scholar
  167. van Dijk K, Ding Y, Malkaram S, Riethoven JJ, Liu R, Yang J, Laczko P, Chen H, Xia Y, Ladunga I, Avramova Z, Fromm M (2010) Dynamic changes in genome-wide histone H3 lysine 4 methylation patterns in response to dehydration stress in Arabidopsis thaliana. BMC Plant Biol 10:238PubMedPubMedCentralCrossRefGoogle Scholar
  168. Vysotskaya LB, Arkhipova TN, Timergalina LN, Dedov AV, Veselov SY, Kudoyarova GR (2004) Effect of partial root excision on transpiration, root hydraulic conductance and leaf growth in wheat seedlings. Plant Physiol Biochem 42:251–255PubMedCrossRefPubMedCentralGoogle Scholar
  169. Waadt R, Hitomi K, Nishimura N, Hitomi C, Adams SR, Getzoff ED, Schroeder JI (2014) FRET-based reporters for the direct visualization of abscisic acid concentration changes and distribution in Arabidopsis. elife 3.  https://doi.org/10.7554/eLife.01739
  170. Wang RS, Pandey S, Li S, Gookin TE, Zhao Z, Albert R, Assmann SM (2011) Common and unique elements of the ABA-regulated transcriptome of Arabidopsis guard cells. BMC Genomics 12:216.  https://doi.org/10.1186/1471-2164-12-216 CrossRefPubMedPubMedCentralGoogle Scholar
  171. Ward JM, Schroeder JI (1994) Calcium-activated K+ channels and calcium-induced calcium release by slow vacuolar ion channels in guard cell vacuoles implicated in the control of stomatal closure. Plant Cell 6:669–683PubMedPubMedCentralGoogle Scholar
  172. Wilkinson S (1999) PH as a stress signal. Plant Growth Regul 29:87–99CrossRefGoogle Scholar
  173. Wilkinson S, Davies WJ (2002) ABA-based chemical signalling: the co-ordination of responses to stress in plants. Plant Cell Environ 25:195–210PubMedCrossRefPubMedCentralGoogle Scholar
  174. Xu J, Chua NH (2011) Processing bodies and plant development. Curr Opin Plant Biol 14:88–93CrossRefGoogle Scholar
  175. Xu J, Chua NH (2012) Dehydration stress activates Arabidopsis MPK6 to signal DCP1 phosphorylation. EMBO J 31:1975–1984PubMedPubMedCentralCrossRefGoogle Scholar
  176. Xu J, Yang JY, Niu QW, Chua NH (2006) Arabidopsis DCP2, DCP1, and VARICOSE form a decapping complex required for postembryonic development. Plant Cell 18:3386–3398PubMedPubMedCentralCrossRefGoogle Scholar
  177. Xu ZY, Kim DH, Hwang I (2013a) ABA homeostasis and signaling involving multiple subcellular compartments and multiple receptors. Plant Cell Rep 32:807–813PubMedCrossRefPubMedCentralGoogle Scholar
  178. Xu ZY, Kim SY, Hyeon do Y, Kim DH, Dong T, Park Y, Jin JB, Joo SH, Kim SK, Hong JC, Hwang D, Hwang I (2013b) The Arabidopsis NAC transcription factor ANAC096 cooperates with bZIP-type transcription factors in dehydration and osmotic stress responses. Plant Cell 25:4708–4724PubMedPubMedCentralCrossRefGoogle Scholar
  179. Yamanaka T, Nakagawa Y, Mori K, Nakano M, Imamura T, Kataoka H, Terashima A, Iida K, Kojima I, Katagiri T, Shinozaki K, Iida H et al (2010) MCA1 and MCA2 that mediate Ca2+ uptake have distinct and overlapping roles in Arabidopsis. Plant Physiol 152:1284–1296PubMedPubMedCentralCrossRefGoogle Scholar
  180. Yan Z, Zhao J, Peng P, Chihara RK, Li J (2009) BIN2 functions redundantly with other Arabidopsis GSK3-like kinases to regulate brassinosteroid signaling. Plant Physiol 150:710–721PubMedPubMedCentralCrossRefGoogle Scholar
  181. Yan L, Liu ZQ, Xu YH, Lu K, Wang XF, Zhang DP (2013) Auto- and cross-repression of three Arabidopsis WRKY transcription factors WRKY18, WRKY40, and WRKY60 negatively involved in ABA signaling. J Plant Growth Regul 32:399–416CrossRefGoogle Scholar
  182. Yin Y, Adachi Y, Nakamura Y, Munemasa S, Mori IC, Murata Y (2016) Involvement of OST1 protein kinase and PYR/PYL/RCAR receptors in methyl jasmonate-induced stomatal closure in Arabidopsis guard cells. Plant Cell Physiol 57:1779–1790PubMedCrossRefPubMedCentralGoogle Scholar
  183. Yoo CY, Pence HE, Jin JB, Miura K, Gosney MJ, Hasegawa PM, Mickelbart MV (2010) The Arabidopsis GTL1 transcription factor regulates water use efficiency and drought tolerance by modulating stomatal density via transrepression of SDD1. Plant Cell 22:4128–4141PubMedPubMedCentralCrossRefGoogle Scholar
  184. Yoshida T, Fujita Y, Sayama H, Kidokoro S, Maruyama K, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2010) AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation. Plant J 61:672–685PubMedCrossRefPubMedCentralGoogle Scholar
  185. Yuan F, Yang H, Xue Y, Kong D, Ye R, Li C, Zhang J, Theprungsirikul L, Shrift T, Krichilsky B, Johnson DM, Swift GB, He Y, James N, Siedow JN, Zhen-Ming Pei ZM (2014) OSCA1 mediates osmotic-stress-evoked Ca2+ increases vital for osmosensing in Arabidopsis. Nature 514:367–371PubMedCrossRefPubMedCentralGoogle Scholar
  186. Zhang J, Davies WJ (1990) Changes in the concentration of ABA in xylem sap as a function of changing soil-water status can account for changes in leaf conductance and growth. Plant Cell Environ 13:277–285CrossRefGoogle Scholar
  187. Zhang H, Zhu H, Pan Y, Yu Y, Luan S, Li L (2014) A DTX/MATE-type transporter facilitates abscisic acid efflux and modulates ABA sensitivity and drought tolerance in Arabidopsis. Mol Plant 7:1522–1532PubMedCrossRefPubMedCentralGoogle Scholar
  188. Zhao B, Ge L, Liang R, Li W, Ruan K, Lin H, Jin Y (2009) Members of miR-169 family are induced by high salinity and transiently inhibit the NF-YA transcription factor. BMC Mol Biol 10:29.  https://doi.org/10.1186/1471-2199-10-29 CrossRefPubMedPubMedCentralGoogle Scholar
  189. Zhao R, Sun HL, Mei C, Wang XJ, Yan L, Liu R, Zhang XF, Wang XF, Zhang DP (2011) The arabidopsis Ca(2+) -dependent protein kinase CPK12 negatively regulates abscisic acid signaling in seed germination and post-germination growth. New Phytol 192:61–73PubMedCrossRefPubMedCentralGoogle Scholar
  190. Zheng Y, Ding Y, Sun X, Xie S, Wang D, Liu X, Su L, Wei W, Pan L, Zhou DX (2016) Histone deacetylase HDA9 negatively regulates salt and drought stress responsiveness in Arabidopsis. J Exp Bot 67:1703–1713PubMedCrossRefPubMedCentralGoogle Scholar
  191. Zhou L, Liu Y, Liu Z, Kong D, Duan M, Luo L (2010) Genome-wide identification and analysis of drought-responsive microRNAs in Oryza sativa. J Exp Bot 61:4157–4168PubMedCrossRefPubMedCentralGoogle Scholar
  192. Zhu SY, Yu XC, Wang XJ, Zhao R, Li Y, Fan RC, Shang Y, Du SY, Wang XF, Wu FQ et al (2007) Two calcium-dependent protein kinases, CPK4 and CPK11, regulate abscisic acid signal transduction in Arabidopsis. Plant Cell 19:3019–3036PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Gene Discovery Research GroupRIKEN Center for Sustainable Resource ScienceTsukubaJapan

Personalised recommendations