Advertisement

Toward the Creation of an Impact Seriousness Indicator to Assist the Designer

  • Florian BratecEmail author
  • Nadege Troussier
  • Rene Diaz-Pichardo
Chapter

Abstract

Ecodesigning a product means reducing its environmental impacts throughout its life cycle. The severity or seriousness of an environmental impact depends in particular on where it occurs. This study proposes a seriousness indicator complementary to the impact indicator, via a spatialization approach, in order to provide new information for decision-making in design.

Keywords

Seriousness Severity Spatialization Life cycle assessment Geographic information system Ecodesign 

References

  1. 1.
    Lilley D, Wilson GT. Integrating ethics into design for sustainable behaviour. J Design Res. 2013;11(3):278–99.CrossRefGoogle Scholar
  2. 2.
    Birkett S. The development of responsibility in product designers. 2010Google Scholar
  3. 3.
    Papanek V. Design for the real world: human ecology and social change. 1971Google Scholar
  4. 4.
    Blessing LT, Chakrabarti A. DRM, a design research methodology: Springer Science & Business Media; 2009.Google Scholar
  5. 5.
    Hauschild M, Jeswiet J, Alting L. From life cycle assessment to sustainable production: status and perspectives. CIRP Annals. 2005;54(2):1–21.CrossRefGoogle Scholar
  6. 6.
    Reap J, Roman F, Duncan S, Bras B. A survey of unresolved problems in life cycle assessment. Int J Life Cycle Assess. 2008;13(5):374.CrossRefGoogle Scholar
  7. 7.
    Souza DM, Teixeira RF, Ostermann OP. Assessing biodiversity loss due to land use with Life Cycle Assessment: are we there yet? Glob Chang Biol. 2015;21(1):32–47.CrossRefGoogle Scholar
  8. 8.
    Geyer R, Stoms DM, Lindner JP, Davis FW, Wittstock B. Coupling GIS and LCA for biodiversity assessments of land use. Int J Life Cycle Assess. 2010;15(5):454–67.CrossRefGoogle Scholar
  9. 9.
    De Rosa M, Vestergaard Odgaard M, Staunstrup JK, Trydeman Knudsen M, Hermansen JE. Identifying land use and land-use changes (LULUC): a global LULUC matrix. Environ Sci Technol. 2017Google Scholar
  10. 10.
    Gasol CM, Gabarrell X, Rigola M, González-García S, Rieradevall J. Environmental assessment:(LCA) and spatial modelling (GIS) of energy crop implementation on local scale. Biomass Bioenergy. 2011;35(7):2975–85.CrossRefGoogle Scholar
  11. 11.
    Roy P-O, Deschênes L, Margni M. Uncertainty and spatial variability in characterization factors for aquatic acidification at the global scale. Int J Life Cycle Assess. 2013.Google Scholar
  12. 12.
    Roy P-O, Huijbregts M, Deschênes L, Margni M. Spatially-differentiated atmospheric source-receptor relationships for nitrogen oxides, sulfur oxides and ammonia emissions at the global scale for life cycle impact assessment. Atmos Environ. 2012;62:74–81.CrossRefGoogle Scholar
  13. 13.
    Helmes R, Huijbregts MAJ, Henderson AD, Jolliet O. Spatially explicit fate factors of freshwater phosphorous emissions at the global scale. Int J Life Cycle Assess. 2012.Google Scholar
  14. 14.
    Hauschild M, Huijbregts M, Jolliet O, Margni M, MacLeod M, van de Meent D, Rosenbaum RK, McKone T. Building a model based on scientific consensus for life cycle impact: assessment of chemicals: the search for harmony and parsimony. Environ Sci Technol. 2008;42(19):7032–6.CrossRefGoogle Scholar
  15. 15.
    Humbert S, Manneh R, Shaked S, Horvath A, Deschênes L, Jolliet O, Margni M. Assessing regional intake fractions and human damage factors in North America. Sci Total Environ. 2009;407:4812–20.CrossRefGoogle Scholar
  16. 16.
    Saad R, Margni M, Koellner T, Wittstock B, Deschênes L. Assessment of land use impacts on soil ecological functions: development of spatially differentiated characterization factors within a Canadian context. Int J Life Cycle Assess. 2011;16(3):198–211.CrossRefGoogle Scholar
  17. 17.
    i Canals LM, Bauer C, Depestele J, Dubreuil A, Knuchel RF, Gaillard G, Michelsen O, Müller-Wenk R, Rydgren B. Key elements in a framework for land use impact assessment within LCA (11 pp). Int J Life Cycle Assess. 2007;12(1):5–15.CrossRefGoogle Scholar
  18. 18.
    Bos U, Horn R, Beck T, Lindner JP, Fischer M. LANCA®-characterization factors for life cycle impact assessment: version 2.0. Fraunhofer Verlag; 2016.Google Scholar
  19. 19.
    Weidema BP, Lindeijer E. Physical impacts of land use in product life cycle assessment. Kongens Lyngby: Technical University of Denmark; 2001. p. 1–52.Google Scholar
  20. 20.
    Doran JW. Soil health and global sustainability: translating science into practice. Agric Ecosyst Environ. 2002;88(2):119–27.CrossRefGoogle Scholar
  21. 21.
    Ellis EC, Antill EC, Kreft H. All is not loss: plant biodiversity in the Anthropocene. PLoS One. 2012;7(1):e30535.CrossRefGoogle Scholar
  22. 22.
    Holdridge LR. Life zone ecology. Life zone ecology, rev. ed. 1967.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Florian Bratec
    • 1
    Email author
  • Nadege Troussier
    • 1
  • Rene Diaz-Pichardo
    • 2
  1. 1.University of Technology of TroyesTroyesFrance
  2. 2.Groupe ESC TroyesTroyesFrance

Personalised recommendations