Advertisement

Recent Progress on Soft Transducers for Sensor Networks

  • Seiki ChibaEmail author
  • Mikio Waki
  • Koji Fujita
  • Zheqiang Song
  • Kazuhiro Ohyama
  • Shijie Zhu
Chapter

Abstract

Moving a society away from mass production and mass disposal to value-adding manufacturing and economical use of resources is no easy task. Toward this endeavor, the development of renewable energy technology will be fundamental. As part of this, some principal undertakings will be to construct a global sensor network, plan the optimization of energy for manufacturing, and determine the need for manufactured goods for waste reduction. This paper discusses dielectric elastomer (DE) sensor network systems using a DE electric generator. We will also discuss their present status and methods for introducing a commercial model.

In our most recent study, DEs have demonstrated substantial potential to harvest energy from a variety of environmental sources, such as ocean waves, wind, water streams (including Karman vortices), solar heat, and human motion. Our study also explored the use of DE sensors with generators for remote monitoring and patient treatment.

Major industries like agriculture, fishery, and forestry have begun to turn to IoT using wireless networks to increase productivity and value. Often used outdoors, these systems must be designed with great consideration for the source and efficiency of their electricity supply. A DE capable of generating electricity from a variety of energy sources can be used to power DE sensor systems.

The combination of DE power-generating systems with various DE sensing systems will also make it possible to conduct sensing on a global scale and may even make significant contributions to the development of systems that protect human lives from disease, natural disasters, and other emergencies.

Keywords

Dielectric elastomer Power generator Sensor Actuator EAP Artificial muscle IoT LCE Global network 

References

  1. 1.
    Pelrine R, and Chiba S. Review of artificial muscle approaches (Invited). In: Proc. Third International Symposium on Micromachine and Human Science, Nagoya, Japan, pp. 1–9. 1992.Google Scholar
  2. 2.
    Kornbluh R, Pelrine R, Pei Q, and Chiba S et al. High-field electrostriction of elastomeric polymer dielectrics for actuation. Proc. SPIE, CA, 1999.Google Scholar
  3. 3.
    Kornbluh R, Pelrine R, Chiba S. Silicon to silicon: stretching the capabilities of micromachines with electroactive polymers. IEEJ Trans SM. 2004;124(8)Google Scholar
  4. 4.
    Chiba S, and Waki M. Actuator, sensor, generator, and medical device using dielectric elastomers” (Key Note Speech), No. 16th Machine Tribology Design Dept., Lecture, JSME, April, 2016.CrossRefGoogle Scholar
  5. 5.
    Chiba SA, Waki M, Tanaka Y, Tsurumi N, Okamoto K, Nagase K, Honma M, Yokota H, Odagiri K, Sato H, Saiki T, Kaneko J. Elastomer transducers. Adv Sci Tech., ISSN: 1662-0356. 2016;97:61–74.CrossRefGoogle Scholar
  6. 6.
    Chiba S et. al. Extending applications of dielectric elastomer artificial muscle. Proc. ,SPIE, San Diego, March 18–22, 2007.Google Scholar
  7. 7.
    Moretti G, Fontana M, Vertechy R. Parallelogram-shaped dielectric elastomer generators: Analytical model and experimental validation. J Intell Mater Syst Struct. 2015;26(6):740–51.CrossRefGoogle Scholar
  8. 8.
    Vertech R, et al. Model and application of inflating circular diaphragm dielectric elastomer generators for wave energy harvesting. J Vib Acoust. 2015;137:011004.CrossRefGoogle Scholar
  9. 9.
    McKay T, et al. Soft generators using dielectric elastomers. Appl Phys Lett. 2011;98(142903):1–3.Google Scholar
  10. 10.
    Anderson I, et al. Multi-functional dielectric elastomer artificial muscles for soft and smart machines. J Appl Phys. 2012;112:041101.CrossRefGoogle Scholar
  11. 11.
    Van Kessel R et al. Analyses and comparison of an energy harvesting system for dielectric elastomer generators using a passive harvesting concept, SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring , International Society for Optics and Photonics. 2015.Google Scholar
  12. 12.
    Vertechy R, et al. Reduced model and application of inflating circular diaphragm dielectric elastomer generators for wave energy harvesting. J Vib Acoust. 2015;137:011004.CrossRefGoogle Scholar
  13. 13.
    Bortot E, et al. Harvesting energy with load-driven dielectric elastomer annular membranes deforming out-of-plane. Extreme Mech Lett. 2015;5:62–73.CrossRefGoogle Scholar
  14. 14.
    Moretti G, et al. Parallelogram-shaped dielectric elastomer generators: analytical model and experimental validation. J Intell Mater Syst Struct. 2015;26(6):740–51.CrossRefGoogle Scholar
  15. 15.
    Zhou J, Jiang L, Khayat RE. Dynamic analysis of a tunable viscoelastic dielectric elastomer oscillator under external excitation. Smart Mater Struct. 2016;25:11–025005.Google Scholar
  16. 16.
    Chiba S, Waki M, Fujita K, Masuda K, Ikoma T. Simple and robust direct drive water power generation system using dielectric elastomers. J Mater Sci Eng. 2017;B7(1–2):39–47.  https://doi.org/10.17265/2161-6213/2017.1-2.005.CrossRefGoogle Scholar
  17. 17.
    Kornbluh R, Bashkin J, Pelrine R, Prahlad H, Chiba S. Medical applications of new electroactive polymer artificial muscles. Seikei-Kakou. 2004;16(10):631–7.Google Scholar
  18. 18.
    Chiba S, Waki M, Kornbluh R, Pelrine R. Current status and future prospects of power generators using dielectric elastomers. Smart Mater Struct. 2011;20(12):124006.CrossRefGoogle Scholar
  19. 19.
    Ashida K, Ichiki M, Tanaka M, and Kitahara T. Power generation using piezo element: energy conversion efficiently of piezo element. Proc. of JAME annual meeting; 2000. pp. 139–140.Google Scholar
  20. 20.
    Jean-Mistral C, Basrour S, Chaillout J. Comparison of electroactive polymer for energy scavenging applications smart materials. Dev Model Appl. 2010;19:085012.Google Scholar
  21. 21.
    Yuan X, Changgeng S, Yan G, Zhenghong Z. Application review of dielectric electroactive polymers (DEAPs) and piezoelectric materials for vibration energy harvesting. J Phys Conf Ser. 2016;744:012077.CrossRefGoogle Scholar
  22. 22.
    Chiba S. Chapter 13: Dielectric elastomers. In: Asaka K, Okuzali H, editors. Soft actuators. Japan: Springer Nature; 2014. ISBN: 978-4-431-54766-2.Google Scholar
  23. 23.
    Chiba S, Waki M. Extending application of dielectric elastomer artificial muscles to wireless communication systems. In:Recent advances in wireless communications and networks, Chapter 20. Croatia: InTech; 2011. p. 435–54.Google Scholar
  24. 24.
    Chiba S. Dielectric elastomer actuators, Chapter 2-2. In: Ataka K, editor. Material, composition, and applied technology of soft actuators. Switzerland: S&T Publication; 2016. ISBN: 907002-61-9-C3058.Google Scholar
  25. 25.
    Chiba S, Sawa T, Yoshida H, Waki M, Kornbluh R, Pelrine R. Electroactive polymer artificial muscle operable in ultra-high hydrostatic pressure environment. IEEE Sen J. 2011;11(1)CrossRefGoogle Scholar
  26. 26.
    Chiba S, Waki M, Kornbluh R, and Pelrine R. Innovative wave power generation system using EPAM. Proceedings of Oceans’ 09, Bremen, Germany, 2009.Google Scholar
  27. 27.
    Chiba S, et al. Innovative power generation system for harvesting wave energy. In:Design for innovative value towards a sustainable society. Dordrecht: Springer Science + Buiness Media; 2012. p. 1002–7. ISBN: 978-94-007-3010-6.CrossRefGoogle Scholar
  28. 28.
    Chiba S, et al. Consistent ocean wave energy harvesting using electroactive (dielectric elastomer) artificial muscle generators. Appl Energy. 2013;104:497–502. ISSN 0306-2619CrossRefGoogle Scholar
  29. 29.
    Moretti G, et al. Modeling of an oscillating wave surge converter with Dielectric Elastomer power take-off (2014) Proc. Offshore Mechanics and Arctic Engineering–OMAE, 9A; 2014.Google Scholar
  30. 30.
    Vertechy R, et al. In-tank tests of a dielectric elastomer generator for wave energy harvesting. Proceedings of SPIE–The International Society for Optical Engineering, 9056, art. no. 90561G; 2014.Google Scholar
  31. 31.
    Chiba S, Hasegawa K, Waki M, Fujita K, Ohyama K, Zhu S. Innovative elastomer transducer driven by Karman vortices in water flow. J Mater Sci Eng A. 2017;7(5–6):121–35.Google Scholar
  32. 32.
    Hasegawa K, Chiba S, Waki M, Wada T. Electric generators using dielectric elastomers driven by karman vortex in water flow. J Japan Inst Energy. 2016;95:874–80.CrossRefGoogle Scholar
  33. 33.
    Chiba S, Waki M, Wada T. Simple solar heat generator using dielectric elastomers, Extended Abstract of MRS-J, A-4, Yokohama, Japan, 2015.Google Scholar
  34. 34.
    Brochu P, Yuan W, Zhang H, Pei Q. Dielectric elastomers for direct wind-to-electricity power generation. Proc. of ASME 2009 Conference on Smart Materials, Adaptive Structures and Intelligent System; 2009.Google Scholar
  35. 35.
    Chiba S, et al. New opportunities in electric generation using electroactive polymer artificial muscle (EPAM). J Japan Inst Energy. 2007;86(9):38–42.CrossRefGoogle Scholar
  36. 36.
    Chiba S, Waki M. Recent progress in dielectric elastomers (harvesting energy mode and high efficient actuation mode). Tokyo, Japan: Clean Tech, Nihon Kogyo Shuppan; 2011.Google Scholar
  37. 37.
    Chiba S, Waki M, Kormbluh R, Pelrine R. Innovative power generators for energy harvesting using electroactive polymer artificial muscles. In: Bar-Cohen Y, editor. Proc. SPIE. Vol. 6927, 692715 (1-9) Electroactive polymer actuators and devices (EAPAD) 2008; 2008.Google Scholar
  38. 38.
    Chiba S, Kornbluh R, Pelrine R, and Waki M. Low-cost hydrogen production from electroactive polymer artificial muscle wave power generators. Proc. of World Hydrogen Energy Conference 2008, Brisbane, Australia, June 16–20; 2008.Google Scholar
  39. 39.
    Chiba S, Waki M, Masuda K, Ikoma T, Osawa H, Suwa Y. Innovative wave power generator using dielectric elastomers artificial muscle. In:Proc. of World Hydrogen Technologies Convention-2011, Scotland; 2011.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Seiki Chiba
    • 1
    Email author
  • Mikio Waki
    • 2
  • Koji Fujita
    • 3
  • Zheqiang Song
    • 4
  • Kazuhiro Ohyama
    • 4
  • Shijie Zhu
    • 4
  1. 1.Chiba Science InstituteTokyoJapan
  2. 2.Wits Inc.SakuraJapan
  3. 3.Japan Aerospace Exploration AgencSagamiharaJapan
  4. 4.Fukuoka Institute of TechnologyFukuokaJapan

Personalised recommendations