Advertisement

Roles of Plants and Bacteria in Bioremediation of Petroleum in Contaminated Soils

  • Abbas Alemzadeh
Chapter

Abstract

Large amounts of petroleum compounds are released into the environment every year as a result of industrial activities causing serious damages to the environment and human health. Various methods may be applied to remove the petroleum pollutants, but bioremediation is a cost-effective and sustainable process to remove these hazardous organic pollutants. The utilization of organisms such as plants and bacteria for biodegradation of pollutants is an inexpensive, environmentally friendly, and efficient approach to clean up polluted soils. Bacteria are ubiquitous in polluted environments and may develop different strategies to utilize pollutants. Plants may also be used to degrade the pollutants; that is called phytoremediation which is a promising method for reclaiming contaminated sites. Most plants associate with different bacteria that live around their roots, and this association can increase the biodegradation rate of organic compounds. In fact, plants and bacteria play pivotal roles in cleaning up the environment and can accelerate the remediation process of petroleum waste.

References

  1. Aanniz T, Ouadghiri M, Melloul M, Swings J, Elfahime E, Ibijbijen J, Ismaili M, Amar M (2015) Thermophilic bacteria in Moroccan hot springs, salt marshes and desert soils. Braz J Microbiol 46:443–453CrossRefPubMedPubMedCentralGoogle Scholar
  2. Adhikari S, Satyanarayana T (2007) Biotechnological applications of thermostable and alkalistable microbial xylanolytic enzymes. In: Kuhad RC, Singh A (eds) Lignocellulose biotechnology, future prospects. I.K. International Publishing, New Delhi, pp 273–306Google Scholar
  3. Ahluwalia AK, Sekhon BS (2012) Bioremediation: current scenario and a necessity in immediate future. Environ Sci 7:349–364Google Scholar
  4. Alisi C, Musella R, Tasso F, Ubaldi C, Manzo S, Cremisini C, Sprocati R (2009) Bioremediation of diesel oil in a co-contaminated soil by bioaugmentation with a microbial formula tailored with native strains selected for heavy metals resistance. Sci Total Environ 407:3024–3032CrossRefGoogle Scholar
  5. Alkorta I, Garbisu C (2001) Phytoremediation of organic contaminants in soils. Bioresour Technol 79:273–276CrossRefGoogle Scholar
  6. Annweiler E, Richnow HH, Antranikian G, Hebenbrock S, Garms C, Franke S, Francke W, Michaelis W (2000) Naphthalene degradation and incorporation of naphthalene-derived carbon into biomass by the thermophile Bacillus thermoleovorans. Appl Environ Microbiol 66:518–523CrossRefPubMedPubMedCentralGoogle Scholar
  7. Anyasi RO, Atagana HI (2011) Biological remediation of polychlorinated biphenyls (PCB) in the environment by microorganisms and plants. Afr J Biotechnol 10:18916–18938CrossRefGoogle Scholar
  8. Atlas RM (1975) Effects of temperature and crude oil composition on petroleum biodegradation. J Appl Microbiol 30(3):396–403Google Scholar
  9. Bartha R, Bossert I (1984) The fate of petroleum in the soil ecosystems. In: Atlas RM (ed) Petroleum microbiology. Macmillan, New York, pp 435–473Google Scholar
  10. Bello YM (2007) Biodegradation of Lagoma crude oil using pig dung. Afr J Biotechnol 6:2821–2825CrossRefGoogle Scholar
  11. Bento FM, Camargo FAO, Okeke BC, Frankenberger WT (2005) Comparative bioremediation of soils contaminated with diesel oil by natural attenuation, biostimulation and bioaugmentation. Bioresour Technol 96:1049–1055CrossRefGoogle Scholar
  12. Boopathy R (2000) Factors limiting bioremediation technologies. Bioresour Technol 74:63–67CrossRefGoogle Scholar
  13. Brandt R, Merkl N, Schultze-Kraft R, Infante C, Broll G (2006) Potential of vetiver (Vetiveria zizanioides (L.) Nash) for phytoremediation of petroleum hydrocarbon-contaminated soils in Venezuela. Int J Phytoremediation 8:273–284CrossRefGoogle Scholar
  14. Curl EA, Truelove B (1986) The rhizosphere. Springer, Berlin, pp 45–67CrossRefGoogle Scholar
  15. Das N, Chandran P (2011) Microbial degradation of petroleum hydrocarbon contaminants: an overreview. Biotechnol Res Int.  https://doi.org/10.4061/2011/941810
  16. El Fantroussi S, Agathos SN (2005) Is bioaugmentation a feasible strategy for pollutant removal and site remediation? Curr Opin Microbiol 8:268–275CrossRefGoogle Scholar
  17. El Fantroussi S, Belkacemi M, Top EM, Mahillon J, Naveau H, Agathos SN (1999) Bioaugmentation of a soil bioreactor designed for pilot-scale anaerobic bioremediation studies. Environ Sci Technol 33:2992–3001CrossRefGoogle Scholar
  18. El Nemr A (2005) Petroleum contamination in warm and cold marine environment. Nova Science Publications, Hauppauge, pp 5–11Google Scholar
  19. Elumalai P, Parthipan P, Karthikeyan OP (2017) Enzyme-mediated biodegradation of long-chain n-alkanes (C32 and C40) by thermophilic bacteria. 3 Biotech.  https://doi.org/10.1007/s13205-017-0773y
  20. Ezezika OC, Singer PA (2010) Genetically engineered oil-eating microbes for bioremediation: prospects and regulatory challenges. Technol Soc 32:331–335CrossRefGoogle Scholar
  21. Fallgren PH, Jin S (2008) Biodegradation of petroleum compounds in soil by a solid-phase circulating bioreactor with poultry manure amendments. J Environ Sci Health A 43:125–131CrossRefGoogle Scholar
  22. Feitkenhauer H, Müller R, Märkl H (2003) Degradation of polycyclic aromatic hydrocarbons and long chain alkanes at 6070 °C by Thermus and Bacillus spp. Biodegradation 14:367–372CrossRefGoogle Scholar
  23. Forsyth JV, Tsao YM, Bleam RD (1995) Bioremediation: when is augmentation needed. In: Hinchee RE, Fredrickson J, Alleman BC (eds) Bioaugmentation for site remediation. Battelle Press, Columbus, pp 1–14Google Scholar
  24. Franco N, Kalkreuth W, Peralba MCR (2010) Geochemical characterization of solid residues, bitumen and expelled oil based on steam pyrolysis experiments from Irati oil shale, Brazil: a preliminary study. Fuel 89:1863–1871CrossRefGoogle Scholar
  25. Frick CM, Farrell RE, Germida JJ (1999) Assessment of phytoremediation as an in-situ technique for cleaning oil-contaminated sites. Petroleum Technology Alliance of Canada, Calgary, p 82Google Scholar
  26. Garcia-Alcántara JA, Maqueda-Gálvez AP, Téllez-Jurado A, Hernández-Martínez R, Lizardi-Jiménez MA (2016) Maya crude-oil degradation by a Bacillus licheniformis consortium isolated from a Mexican thermal source using a bubble column bioreactor. Water Air Soil Pollut 227:413–418CrossRefGoogle Scholar
  27. Ghoreishi G, Alemzadeh A, Mojarrad M, Djavaheri M (2017) Bioremediation capability and characterization of bacteria isolated from petroleum contaminated soils in Iran. Sustain Environ Res 27:195–202CrossRefGoogle Scholar
  28. Gianfreda L, Rao MA (2004) Potential of extra cellular enzymes in remediation of polluted soils: a review. Enzym Microb Technol 35:339–354CrossRefGoogle Scholar
  29. Hamer G (1993) Bioremediation: a response to gross environmental abuse. Trends Biotechnol 11:317–319CrossRefGoogle Scholar
  30. Han I, Lee TK, Han J, Doan TV, Kim SB, Park J (2012) Improved detection of microbial risk of releasing genetically modified bacteria in soil by using massive sequencing and antibiotic resistance selection. J Hazard Mater 227:172–178CrossRefGoogle Scholar
  31. Hesnawi RM, Mogadami FS (2013) Bioremediation of Libyan crude oil-contaminated soil under mesophilic and thermophilic conditions. APCBEE Procedia 5:82–87CrossRefGoogle Scholar
  32. Hou D, Al-Tabbaa A (2014) Sustainability: a new imperative in contaminated land remediation. Environ Sci Pol 39:25–34CrossRefGoogle Scholar
  33. Huesemann MH (1995) Predictive model for estimating the extent of petroleum hydrocarbon biodegradation in contaminated soils. Environ Sci Technol 29:7–18CrossRefGoogle Scholar
  34. Huesemann MH, Truex M (1996) The role of oxygen diffusion in passive bioremediation of petroleum contaminated soils. J Hazard Mater 51:93–113CrossRefGoogle Scholar
  35. Jacques RJS, Okeke BC, Bento FM, Teixeira AS, Peralba MCR, Camargo FAO (2008) Microbial consortium bioaugmentation of a polycyclic aromatic hydrocarbons contaminated soil. Bioresour Technol 99:2637–2643CrossRefGoogle Scholar
  36. Jones RK, Sun WH, Tang CS, Robert FM (2004) Phytoremediation of petroleum hydrocarbons in tropical coastal soils II. Microbial response to plant roots and contaminant. Environ Sci Pollut Res 11:340–346CrossRefGoogle Scholar
  37. Jukic A (2013) Petroleum refining and petrochemical processes. Faculty of Chemical Engineering and Technology. University of Zagreb, pp 1–18Google Scholar
  38. Kaimi E, Mukaidani T, Tamaki T (2007) Screening of twelve plant species for phytoremediation of petroleum hydrocarbon-contaminated soil. Plant Prod Sci 10:211–218CrossRefGoogle Scholar
  39. Kato T, Haruki M, Morikawa M, Kanaya S (2001) Isolation and characterization of long-chain-alkane degrading Bacillus thermoleovorans for deep subterranean petroleum reservoirs. J Biosci Bioeng 91:64–70CrossRefGoogle Scholar
  40. Katsivela E, Moore ERB, Maroukli D, Strömpl C, Pieper D, Kalogerakis N (2005) Bacterial community dynamics during in-situ bioremediation of petroleum waste sludge in landfarming sites. Biodegradation 16:169–180CrossRefGoogle Scholar
  41. Kuhad RC, Gupta R (2009) Biological remediation of petroleum contaminants. In: Singh A, Kuhad RC, Ward OP (eds) Advances in applied bioremediation. Springer, Berlin, pp 173–187CrossRefGoogle Scholar
  42. Labbé D, Margesin R, Schinner F, Whyte L, Greer C (2007) Comparative phylogenetic analysis of microbial communities in pristine and hydrocarbon contaminated alpine soils. FEMS Microbiol Ecol 59:466–475CrossRefGoogle Scholar
  43. Lafortune I, Juteau P, Déziel E, Lépine F, Beaudet R, Villemur R (2009) Bacterial diversity of a consortium degrading high-molecular-weight polycyclic aromatic hydrocarbons in a two-liquid phase biosystem. Microb Ecol 57:455–468CrossRefGoogle Scholar
  44. Leal AJ, Rodrigues EM, Leal PL, Júlio ADL, Fernandes RCR, Borges AC, Tótola MR (2017) Changes in microbial community during bioremediation of gasoline-contaminated soil. Braz J Microbiol 48:342–351CrossRefGoogle Scholar
  45. Lebkowska M, Zborowska E, Karwowska E, Miaskiewicz-Peska E, Muszynski A, Tabernacka A, Naumczyk J, Jeczalik M (2011) Bioremediation of soil polluted with fuels by sequential multiple injection of native microorganisms: field-scale processes in Poland. Ecol Eng 37:1895–1900CrossRefGoogle Scholar
  46. Ledezma-Villanueva A, Adame-Rodríhuez JM, O’Connor–Sánchez IA, Villarreal-Chiu JF, Aréchiga-Carvajal ET (2015) Biodegradation kinetic rates of diesel-contaminated sandy soil samples by two different microbial consortia. Ann Microbiol 66:197–206CrossRefGoogle Scholar
  47. Liu W, Luo Y, Teng Y, Li Z, Christie P (2009) Prepared bed bioremediation of oily sludge in an oilfield in northern China. J Hazard Mater 161:479–484CrossRefGoogle Scholar
  48. Liu W, Luo Y, Teng Y, Li Z, Ma LQ (2010) Bioremediation of oily sludge-contaminated soil by stimulating indigenous microbes. Environ Geochem Health 32:23–29CrossRefGoogle Scholar
  49. Liu B, Ju M, Liu J, Wu W, Li X (2016) Isolation, identification and crude oil degradation characteristics of a high-temperature, hydrocarbon-degrading strain. Mar Pollut Bull.  https://doi.org/10.1016/j.marpolbul.2015.09.053
  50. Lovley DR (2003) Cleaning up with genomics: applying molecular biology to bioremediation. Nat Rev Microbiol 1:35–44CrossRefGoogle Scholar
  51. Margesin R, Schinner F (2001) Biodegradation and bioremediation of hydrocarbons in extreme environments. Appl Microbiol Biotechnol 56:650–663CrossRefGoogle Scholar
  52. Matejicek L (2017) Assessment of energy sources using GIS. Springer, Berlin, pp 111–164CrossRefGoogle Scholar
  53. Mehmannavaz R, Prasher SO, Ahmad D (2002) Rhizospheric effects of alfalfa on biotransformation of polychlorinated biphenyls in a contaminated soil augmented with Sinorhizobium meliloti. Process Biochem 37:955–963CrossRefGoogle Scholar
  54. Meintanis C, Chalkou KI, Kormas KA, Karagouni AD (2006) Biodegradation of crude oil by thermophilic bacteria isolated from a volcano island. Biodegradation 17:105–111CrossRefGoogle Scholar
  55. Merkl N, Schultze-Kraft R, Infante C (2005) Assessment of tropical grasses and legumes for phytoremediation of petroleum-contaminated soils. Water Air Soil Pollut 165:195–209CrossRefGoogle Scholar
  56. Mojarad M, Alemzadeh A, Ghoreishi G, Javaheri M (2016) Kerosene biodegradation ability and characterization bacteria isolated from oil-polluted soil and water. J Environ Chem Eng 4:4323–4329CrossRefGoogle Scholar
  57. Mrozik A, Piotrowska-Seget Z, Labuzek S (2003) Bacterial degradation and bioremediation of polycyclic and aromatic hydrocarbons. Pol J Environ Stud 12:15–25Google Scholar
  58. Mulkins-Phillips GJ, Stewart JE (1974) Distribution of hydrocarbon utilizing bacteria in Northwestern Atlantic waters and coastal sediments. Can J Microbiol 20:955–962CrossRefGoogle Scholar
  59. Nie M, Wang Y, Yu J, Xiao M, Jiang L, Yang J, Fang C, Chen J, Li B (2011) Understanding plant-microbe interactions for phytoremediation of petroleum-polluted soil. PLoS One 6:e17961.  https://doi.org/10.1371/journal.pone.0017961 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Oberoi AS, Philip L, Bhallamudi SM (2015) Biodegradation of various aromatic compounds by enriched bacterial cultures: PartB-nitrogen-,sulfur-, and ocygen-containing heterocyclic aromatic compounds. Appl Biochem Biotechnol 176:1870–1888CrossRefGoogle Scholar
  61. Oh K, Li T, Cheng H, Hu X, He C, Yan L, Shinichi Y (2013) Development of profitable phytoremediation of contaminated soils with biofuel crops. J Environ Prot 4:58–64CrossRefGoogle Scholar
  62. Paixão DAA, Dimitrov MR, Pereira RM, Accorsini FR, Vidotti MB, de Macedo Lemos EG (2010) Molecular analysis of the bacterial diversity in a specialized consortium for diesel oil degradation. Rev Bras Ciênc Solo 34:773–781CrossRefGoogle Scholar
  63. Palanisamy N, Ramya J, Kumar S, Vasanthi NS, Chandran P (2014) Diesel biodegradation capacities of indigenous bacterial species isolated from diesel contaminated soil. J Environ Health Sci Eng 12:142–150CrossRefPubMedPubMedCentralGoogle Scholar
  64. Peng S, Zhou Q, Cai Z, Zhang Z (2009) Phytoremediation of petroleum contaminated soils by Mirabilis Jalapa L. in a greenhouse plot experiment. J Hazard Mater 168:1490–1496CrossRefGoogle Scholar
  65. Perfumo A, Banat IM, Canganella F, Marchant R (2006) Rhamnolipid production by a novel thermophilic hydrocarbon-degrading Pseudomonas aeruginosa AP02-1. Appl Microbiol Biotechnol 72:132–138CrossRefGoogle Scholar
  66. Perfumo A, Banat IM, Marchant R, Vezzulli L (2007) Thermally enhanced approached for bioremediation for hydrocarbons contaminated soils. Chemosphere 66:179–184CrossRefGoogle Scholar
  67. Prasad R, Kumar M, Varma A (2015) Role of PGPR in soil fertility and plant health. In: Egamberdieva D, Shrivastava S, Varma A (eds) Plant Growth-Promoting Rhizobacteria (PGPR) and medicinal plants. Springer International Publishing, Switzerland, pp 247–260Google Scholar
  68. Ripp S, Nivens DE, Ahn Y, Werner C, Jarrell J, Easter JP, Cox CD, Burlage RS, Sayler GS (2000) Controlled field release of a bioluminescent genetically engineered microorganism for bioremediation process monitoring and control. Environ Sci Technol 34:846–853CrossRefGoogle Scholar
  69. Roy AS, Baruah R, Borah M, Singh AK, Boruah HPD, Saikia N, Deka M, Dutta N, Bora TC (2014) Bioremediation potential of native hydrocarbon degrading bacterial strains in crude oil contaminated soil under microcosm study. Int Biodeterior Biodegrad 94:79–89CrossRefGoogle Scholar
  70. Ruberto L, Vazquez SC, Mac Cormack WP (2003) Effectiveness of the natural bacterial flora, biostimulation and bioaugmentation on the bioremediation of a hydrocarbon contaminated Antarctic soil. Int Biodeterior Biodegrad 52:115–125CrossRefGoogle Scholar
  71. Sam K, Coulon F, Prpich G (2017) Management of petroleum hydrocarbon contaminated sites in Nigeria: current challenges and future direction. Land Use Policy 64:133–144CrossRefGoogle Scholar
  72. Shintani M, Nojiri H (2013) Mobile genetic elements (MGEs) carrying catabolic genes. In: Malik A, Grohmann E, Alves M (eds) Management of microbial resources in the environment. Springer, Berlin, pp 167–214CrossRefGoogle Scholar
  73. Shrivastava S, Prasad R, Varma A (2014) Anatomy of root from eyes of a microbiologist. In: Morte A, Varma A (eds) Root Engineering, vol 40. Springer-Verlag, Berlin Heidelberg, pp 3–22CrossRefGoogle Scholar
  74. Siciliano SD, Germida JJ (1998) Mechanisms of phytoremediation: biochemical and ecological interactions between plants and bacteria. Environ Rev 6:65–79CrossRefGoogle Scholar
  75. Singh JS, Abhilash PC, Singh HB, Singh RP, Singh DP (2011) Genetically engineered bacteria: an emerging tool for environmental remediation and future research perspectives. Gene 480:1–9CrossRefGoogle Scholar
  76. Singh P, Jain R, Srivastava N, Borthakur A, Pal D, Singh R, Madhav S, Srivastava P, Tiwary D, Mishra K (2017) Current and emerging trends in bioremediation of petrochemical waste: a review. Crit Rev Environ Sci Technol.  https://doi.org/10.1080/10643389.2017.1318616
  77. Song HG, Peterson TA, Bartha R (1986) Hydrocarbon mineralization in soil: relative bacterial and fungal contribution. Soil Biol Remediat 18:109–111CrossRefGoogle Scholar
  78. Sood N, Lal B (2008) Isolation and characterization of a potential paraffin-wax degrading thermophilic bacterial strain Geobacillus kaustophilus TERI NSM for application in oil wells with paraffin deposition problems. Chemosphere 70:1445–1451CrossRefGoogle Scholar
  79. Sorkhoh NA, Ibrahim AS, Ghannoum MA, Radwan SS (1993) High-temperature hydrocarbon degradation by Bacillus stearothermophilus from oil-polluted Kuwaiti desert. Appl Microbiol Biotechnol 39:123–126CrossRefGoogle Scholar
  80. Stark BC, Pagilla KR, Dikshit KL (2015) Recent applications of Vitreoscilla hemoglobin technology in bioproduct synthesis and bioremediation. Appl Microbiol Biotechnol 99:1627–1636CrossRefGoogle Scholar
  81. Stetter KO (1998) Hyperthermophiles: isolation, classification, and properties. In: Horikoshi K, Grant WD (eds) Extremophiles microbial life in extreme environments. Wiley-Liss, New York, pp 1–24Google Scholar
  82. Suja F, Rahim F, Taha MR, Hambali N, Razali MR, Khalid A, Hamzah A (2014) Effects of local microbial bioaugmentation and biostimulation on the bioremediation of total petroleum hydrocarbons (TPH) in crude oil contaminated soil based on laboratory and field observations. Int Biodeterior Biodegrad 90:115–122CrossRefGoogle Scholar
  83. Taccari M, Milanovic V, Comitini F, Casucci C, Ciani M (2012) Effects of biostimulation and bioaugmentation on diesel removal and bacterial community. Int Biodeterior Biodegrad 66:39–46CrossRefGoogle Scholar
  84. Tahhan RA, Ammari TG, Goussous SJ, Al-Shdaifat HI (2011) Enhancing the biodegradation of total petroleum hydrocarbons in oily sludge by a modified bioaugmentation strategy. Int Biodeterior Biodegrad 65:130–134CrossRefGoogle Scholar
  85. Teng Y, Luo Y, Sun M, Liu Z, Li Z, Christie P (2010) Effect of bioaugmentation by Paracoccus sp. strain HPD-2 on the soil microbial community and removal of polycyclic aromatic hydrocarbons from an aged contaminated soil. Bioresour Technol 101:3437–3443CrossRefGoogle Scholar
  86. Tyagi M, da Fonseca MMR, de Carvalha CCCR (2011) Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation process. Biodegradation 22:231–241CrossRefGoogle Scholar
  87. Ueno A, Ito Y, Yumoto I, Okuyama H (2007) Isolation and characterization of bacteria from soil contaminated with diesel oil and the possible use of these in autochthonous bioaugmentation. World J Microbiol Biotechnol 23:1739–1745CrossRefGoogle Scholar
  88. Urgun-Demirtas M, Stark B, Pagilla K (2006) Use of genetically engineered microorganisms (GEMs) for the bioremediation of contaminants. Crit Rev Biotechnol 26:145–164CrossRefGoogle Scholar
  89. Van der Meer JR (2006) Environmental pollution promotes selection of microbial degradation pathways. Front Ecol Environ 4:35–42CrossRefGoogle Scholar
  90. Van Epps A (2006) Phytoremediation of petroleum hydrocarbons. Environmental Protection Agency, USGoogle Scholar
  91. Van Limbergen H, Top EM, Verstraete W (1998) Bioaugmentation in activated sludge: current features and future perspective. Appl Microbiol Biotechnol 50:16–23CrossRefGoogle Scholar
  92. Vasudevan N, Rajaram P (2001) Bioremediation of oil sludge-contaminated soils. Environ Int 26:409–411CrossRefGoogle Scholar
  93. Vidali M (2001) Bioremediation: an overview. Pure Appl Chem 73:1163–1172CrossRefGoogle Scholar
  94. Vogel TM (1996) Bioaugmentation as a soil bioremediation approach. Curr Opin Biotechnol 7:311–316CrossRefGoogle Scholar
  95. Watts AW, Ballestero TP, Gardner KH (2006) Uptake of polycyclic aromatic hydrocarbons (PAHs) in salt marsh plants Spartina alterniflora grown in contaminated sediments. Chemosphere 62:1253–1260CrossRefGoogle Scholar
  96. Wu M, Chen L, Tian Y, Ding Y, Dick WA (2013) Degradation of polycyclic aromatic hydrocarbons by microbial consortia enriched from three soils using two different culture media. Environ Pollut 178:152–158CrossRefGoogle Scholar
  97. Wu M, Dick WA, Li W, Wang X, Tang Q, Wang T, Xu L, Zhang M, Chen L (2016) Bioaugmentation and biostimulation of hydrocarbon degradation and the microbial community in a petroleum-contaminated soil. Int Biodeterior Biodegrad 107:158–164CrossRefGoogle Scholar
  98. Xu Y, Lu M (2010) Bioremediation of crude oil-contaminated soil: comparison of different biostimulation and bioaugmentation treatments. J Hazard Mater 183:395–401CrossRefGoogle Scholar
  99. Xu X, Chen X, Fan Y (2009) Screening and domestication of high effective microorganisms used in oil containing wastewater remediation. J Water Resour Prot 2:145–151CrossRefGoogle Scholar
  100. Yavari S, Malakahmad A, Sapari NB (2015) A review on phytoremediation of crude oil spills. Water Air Soil Pollut 226:79–297CrossRefGoogle Scholar
  101. Zeigler DR (2014) The Geobacillus paradox: why is a thermophilic bacterial genus so prevalent on a mesophilic planet? Microbiology 160:1–16CrossRefGoogle Scholar
  102. Zeinali M, Vossoughi M, Ardestani SK (2008) Naphthalene metabolism in Nocardia otitidiscaviarum strain TSH1, a moderately thermophilic organism. Chemosphere 72:905–909CrossRefGoogle Scholar
  103. Zekri AY, Chaalal O (2005) Effect of temperature on biodegradation of crude oil. Energy Source 27:233–244CrossRefGoogle Scholar
  104. Zheng C, He J, Wang Y, Wang M, Huang Z (2011) Hydrocarbon degradation and bioemulsifier production by thermophilic Geobacillus pallidus strains. Bioresour Technol 102:9155–9161CrossRefGoogle Scholar
  105. Zhou JF, Gao PK, Dai XU, Cui XY, Tian HM, Xie JJ, Li GQ, Ma T (2016) Heavy hydrocarbon degradation of crude oil by a novel thermophilic Geobacillus stearothermophilus strain A-2. Int Biodeterior Biodegrad.  https://doi.org/10.1016/j.ibiod.2016.09.031

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Crop Production and Plant Breeding, School of AgricultureShiraz UniversityShirazIran

Personalised recommendations