Microbial Assisted Phytoremediation for Heavy Metal Contaminated Soils

  • M. L. Dotaniya
  • S. Rajendiran
  • C. K. Dotaniya
  • Praveen Solanki
  • V. D. Meena
  • J. K. Saha
  • A. K. Patra


Increasing water crisis across the globe, farmers are forced to use marginal quality water for agricultural activities mainly for crop production. Marginal quality water contains lots of contamination load, i.e. microbial population, heavy metals; and caused a range of diseases through food chain contamination. The long- term application of contaminated water accumulate significant amount of heavy metals mostly in industrial regions as well as peri-urban area in developing countries. Use of various phytoremediation technologies for the removal of organic and inorganic pollutant from soil and water are used across the earth boundaries. Among all, bioremediation is a cheaper and more viable technology for the removal of contaminants from contaminated sites. Phytoremediation is a viable, low cost and green technology having a slow process of metal remediation and affecting by the climatic conditions of a particular region. In this regards, use of soil microbial biomass for the decontamination of heavy metals and other contaminated load from soils. The plant-microbe- modulated phytoremediation enhancing the heavy metal remediation, detoxification and mediated the plant nutrient dynamics in a sustainable manner. The soil organic matter decomposition and biogeochemical cycles of plant nutrients are mainly governed by the rhizospheric biomass of the soil. Microbial assisted phytoremediation is a holistic novel approach for the remediation of contaminants. It can use for the location specific contaminant, easy to operate, eco-friendly in nature. In this chapter, described the role and interaction effect of plant assisted microbes in heavy metal removal from contaminated soils.



Authors are highly thankful to Dr. Kuldeep Kumar, ICAR-Indian Institute of Soil and Water Conservation, RS, Kota, India for the needful corrections and valuable suggestions during the writing of the manuscript.


  1. Abou-Shanab RA, Angle JS, Delorme TA, Chaney RL, van Berkum P, Moawad H, Ghanem K, Ghozlan HA (2003) Rhizobacterial effects on nickel extraction from soil and uptake by Alyssum murale. New Phytol 158(1):219–224CrossRefGoogle Scholar
  2. Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ Sci 26:1–20CrossRefGoogle Scholar
  3. Amrawat T, Solanki NS, Sharma SK, Jajoria DK, Dotaniya ML (2013) Phenology growth and yield of wheat in relation to agrometeorological indices under different sowing dates. Afr J Agric Res 8(49):6366–6374Google Scholar
  4. Aref F (2011) Concentration and uptake of zinc and boron in corn leaf as affected by zinc sulfate and boric acid fertilizers in a deficient soil. Life Sci J 8(1):26–32Google Scholar
  5. Assunçao AG, Herrero E, Lin YF, Huettel B, Talukdar S, Smaczniak C et al (2010) Arabidopsis thaliana transcription factors bZIP19 and bZIP23 regulate the adaptation to zinc deficiency. Proc Natl Acad Sci USA 107:10296–10301CrossRefGoogle Scholar
  6. Axelsen KB, Palmgren MG (1998) Evolution of substrate specificities in the P-type ATPase super family. J Mol Evol 46:84–101CrossRefGoogle Scholar
  7. Bahafid W, Joutey NT, Sayel H, Boularab I, Ghachtouli N (2013) Bioaugmentation of chromium-polluted soil microcosms with Candida tropicalis diminishes phyto-available chromium. J Appl Microbiol.
  8. Bell TH, Klironomos JN, Hugh ALH (2010) Seasonal responses of extracellular enzyme activity and microbial biomass to warming and N addition. Soil Sci Soc Am J 74:820–828CrossRefGoogle Scholar
  9. Berntson GM, Bazzaz FA (1997) Nitrogen cycling in microcosms of yellow birch exposed to elevated CO2: simultaneous positive and negative below-ground feedbacks. Glob Chang Biol 3:247–258CrossRefGoogle Scholar
  10. Bharti VS, Dotaniya ML, Shukla SP, Yadav VK (2017) Managing soil fertility through microbes: prospects, challenges and future strategies. In: Singh JS, Seneviratne G (eds) Agro-environmental sustainability. Springer, Cham, pp 81–111CrossRefGoogle Scholar
  11. Bingham FT, Pereyea FJ, Jarrell WM (1986) Metal toxicity to agricultural crops. Met Ions Biol Syst 20:119–156Google Scholar
  12. Bonten LT, Kroes JG, Groenendijk P, Van der Grift B (2012) Modeling diffusive Cd and Zn contaminant emissions from soils to surface waters. J Contam Hydrol 138:113–122CrossRefGoogle Scholar
  13. Bradl H (2002) Heavy metals in the environment: Origin, interaction and remediation. Academic, New YorkGoogle Scholar
  14. Broadley MR, White PJ, Hammond JP, Zelko I, Lux A (2007) Zinc in plants. New Phytol 173(4):677–702CrossRefGoogle Scholar
  15. Bruins MR, Kapil S, Oehme FW (2000) Microbial resistance to metals in the environment. Ecotoxicol Environ Saf 45:198–207CrossRefGoogle Scholar
  16. Bucher AS, Schenk MK (2000) Toxicity level for phytoavailable zinc in compost-peat substrates. Scitia Hort 83(3–4):339–352CrossRefGoogle Scholar
  17. Budnuka AC, Clinton A, Agi-Ottoh C (2015) The effect of unplanned exploitation of environmental resources: the Nigeria’s experience. J Environ Poll Hum Health 3(2):39–45Google Scholar
  18. Bulgarelli D, Schlaeppi K, Spaepen S, VerLorenvanThemaat E, Schulze-Lefert P (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838CrossRefGoogle Scholar
  19. Carrillo-Gonzalez R, Simunek J, Sauve S, Adriano D (2006) Mechanisms and pathways of trace element mobility in soils. Adv Agron 91(06):111–178CrossRefGoogle Scholar
  20. Commission of the European Communities (CEC) (1986) Council direction on the protection of the environment and in particular of the soil when sewage sludge is used inagriculture. Off J Euro Commun 181:6–12Google Scholar
  21. Cooksey DA (1993) Copper uptake and resistance in bacteria. Mol Microbiol 7:1–5CrossRefGoogle Scholar
  22. Coumar MV, Parihar RS, Dwivedi AK, Saha JK, Lakaria BL, Biswas AK, Rajendiran S, Dotaniya ML, Kundu S (2016a) Pigeon pea biochar as a soil amendment to repress copper mobility in soil and its uptake by spinach. Bio Res 11(1):1585–1595Google Scholar
  23. Coumar MV, Parihar RS, Dwivedi AK, Saha JK, Rajendiran S, Dotaniya ML, Kundu S (2016b) Impact of pigeon pea biochar on cadmium mobility in soil and transfer rate to leafy vegetable spinach. Environ Monit Assess 188:31CrossRefGoogle Scholar
  24. DalCorso G, Manara A, Furini A (2013) An over view of heavy metal challenge in plants: from roots to shoots. Metallomics 5:1117–1132CrossRefGoogle Scholar
  25. Dhillon SS, Roy J, Abrams M (1996a) Assessing impact of elevated CO2 on soil microbial activity in a Mediterranean model ecosystem. Plant Soil 187:333–342CrossRefGoogle Scholar
  26. Dhillon SS, Roy J, Abrams M (1996b) Assessing impact of elevated CO2 on soil microbial activity in a Mediterranean model ecosystem. Plant Soil 187:616–617Google Scholar
  27. Dotaniya ML (2013) Impact of various crop residue management practices on nutrient uptake by rice-wheat cropping system. Curr Adv Agric Sci 5(2):269–271Google Scholar
  28. Dotaniya ML (2015) Impact of rising atmospheric CO2 concentration on plant and soil process. In: Mohanty M, Sinha NK, Hati KM, Chaudhary RS, Patra AK (eds) Crop growth simulation modelling and climate change. Scientific Publisher, Jodhpur, pp 69–86Google Scholar
  29. Dotaniya ML, Datta SC (2014) Impact of bagasse and press mud on availability and fixation capacity of phosphorus in an inceptisol of North India. Sugar Tech 16(1):109–112CrossRefGoogle Scholar
  30. Dotaniya ML, Kushwah SK (2013) Nutrients uptake ability of various rainy season crops grown in a vertisol of Central India. Afr J Agric Res 8(44):5592–5598Google Scholar
  31. Dotaniya ML, Meena VD (2013) Rhizosphere effect on nutrient availability in soil and its uptake by plants -a review. Proc Natl Acad Sci India Sec B Biol Sci 85(1):1–12Google Scholar
  32. Dotaniya ML, Meena BP (2017) Rhizodeposition by plants: a boon to soil health. In: Elanchezhian R, Biswas AK, Ramesh K, Patra AK (eds) Advances in nutrient dynamics in soil plant system for improving nutrient use efficiency. New India Publishing Agency, New Delhi, pp 207–224Google Scholar
  33. Dotaniya ML, Meena HM, Lata M, Kumar K (2013a) Role of phytosiderophores in iron uptake by plants. Agric Sci Digest 33(1):73–76Google Scholar
  34. Dotaniya ML, Prasad D, Meena HM, Jajoria DK, Narolia GP, Pingoliya KK, Meena OP, Kumar K, Meena BP, Ram A, Das H, Chari MS, Pal S (2013b) Influence of phytosiderophore on iron and zinc uptake and rhizospheric microbial activity. Afr J Microbiol Res 7(51):5781–5788CrossRefGoogle Scholar
  35. Dotaniya ML, Sharma MM, Kumar K, Singh PP (2013c) Impact of crop residue management on nutrient balance in rice-wheat cropping system in an Aquic hapludoll. J Rural Agric Res 13(1):122–123Google Scholar
  36. Dotaniya ML, Datta SC, Biswas DR, Meena BP (2013d) Effect of solution phosphorus concentration on the exudation of oxalate ions by wheat (Triticum aestivum L.). Proc Natl Acad Sci India Sec B Biol Sci 83(3):305–309CrossRefGoogle Scholar
  37. Dotaniya ML, Das H, Meena VD (2014a) Assessment of chromium efficacy on germination, root elongation, and coleoptile growth of wheat (Triticumaestivum L.) at different growth periods. Environ Monit Assess 186:2957–2963CrossRefGoogle Scholar
  38. Dotaniya ML, Datta SC, Biswas DR, Meena HM, Kumar K (2014b) Production of oxalic acid as influenced by the application of organic residue and its effect on phosphorus uptake by wheat (Triticum aestivum L.) in an Inceptisol of North India. Natl Acad Sci Lett 37(5):401–405CrossRefGoogle Scholar
  39. Dotaniya ML, Meena VD, Das H (2014c) Chromium toxicity on seed germination, root elongation and coleoptile growth of pigeon pea (Cajanuscajan). Legum Res 37(2):225–227Google Scholar
  40. Dotaniya ML, Thakur JK, Meena VD, Jajoria DK, Rathor G (2014d) Chromium pollution: a threat to environment. Agric Rev 35(2):153–157CrossRefGoogle Scholar
  41. Dotaniya ML, Datta SC, Biswas DR, Kumar K (2014e) Effect of organic sources on phosphorus fractions and available phosphorus in TypicHaplustept. J Ind Soc Soil Sci 62(1):80–83Google Scholar
  42. Dotaniya ML, Kushwah SK, Rajendiran S, Coumar MV, Kundu S, Rao AS (2014f) Rhizosphere effect of kharif crops on phosphatases and dehydrogenase activities in a TypicHaplustert. Natl Acad Sci Lett 37(2):103–106CrossRefGoogle Scholar
  43. Dotaniya ML, Saha JK, Meena VD, Rajendiran S, Coumar MV, Kundu S, Rao AS (2014g) Impact of tannery effluent irrigation on heavy metal build up in soil and ground water in Kanpur. Agrotechnology 2(4):77Google Scholar
  44. Dotaniya ML, Datta SC, Biswas DR, Meena HM, Rajendiran S, Meena AL (2015) Phosphorus dynamics mediated by bagasse, press mud and rice straw in inceptisol of North India. Agrochimica 59(4):358–369Google Scholar
  45. Dotaniya ML, Datta SC, Biswas DR, Dotaniya CK, Meena BL, Rajendiran S, Regar KL, Lata M (2016a) Use of sugarcane industrial byproducts for improving sugarcane productivity and soil health-a review. Int J Recycl Org Waste Agric 5(3):185–194CrossRefGoogle Scholar
  46. Dotaniya ML, Meena VD, Kumar K, Meena BP, Jat SL, Lata M, Ram A, Dotaniya CK, Chari MS (2016b) Impact of biosolids on agriculture and biodiversity. Today and Tomorrow’s Printer and Publisher, New Delhi, pp 11–20Google Scholar
  47. Dotaniya ML, Rajendiran S, Meena BP, Meena AL, Meena BL, Jat RL, Saha JK (2016c) Elevated carbon dioxide (CO2) and temperature vis-a-vis carbon sequestration potential of global terrestrial ecosystem. In: Bisht JK, Meena VS, Mishra PK, Pattanayak A (eds) Conservation agriculture: an approach to combat climate change in Indian Himalaya. Springer, Singapore, pp 225–256CrossRefGoogle Scholar
  48. Dotaniya ML, Rajendiran S, Coumar MV, Meena VD, Saha JK, Kundu S, Kumar A, Patra AK (2017a) Interactive effect of cadmium and zinc on chromium uptake in spinach grown on vertisol of Central India. Int J Environ Sci Technol.
  49. Dotaniya ML, Meena VD, Lata M, Meena BL (2017b) Climate change impact on agriculture: adaptation strategies. In: Kumar PS, Kanwat M, Meena PD, Kumar V, Alone RA (eds) Climate change & sustainable agriculture. New India Publishing Agency, New Delhi, pp 27–38Google Scholar
  50. Dotaniya ML, Meena VD, Rajendiran S, Coumar MV, Saha JK, Kundu S, Patra AK (2017c) Geo-accumulation indices of heavy metals in soil and groundwater of Kanpur, India under long term irrigation of tannery effluent. Bull Environ Contam Toxicol 98(5):706–711CrossRefGoogle Scholar
  51. Dotaniya ML, Rajendiran S, Meena VD, Saha JK, Coumar MV, Kundu S, Patra AK (2017d) Influence of chromium contamination on carbon mineralization and enzymatic activities in vertisol. Agric Res 6(1):91–96CrossRefGoogle Scholar
  52. Dotaniya ML, Aparna K, Dotaniya CK, Singh M, Regar KL (2018a) Role of soil enzymes in sustainable crop production. In: Khudus et al (eds) Enzymes in food biotechnology. Springer, pp 1–26Google Scholar
  53. Dotaniya ML, Dotaniya CK, Sanwal RC, Meena HM (2018b) CO2 sequestration and transformation potential of agricultural system. In: Martínez L, Kharissova O, Kharisov B (eds) Handbook of ecomaterials. Springer, Cham. CrossRefGoogle Scholar
  54. Dotaniya ML, Meena VD, Saha JK, Rajendiran S, Patra AK, Dotaniya CK, Meena HM, Kumar K, Meena BP (2018c) Environmental impact measurements: tool and techniques. In: Martínez L, Kharissova O, Kharisov B (eds) Handbook of ecomaterials. Springer, Cham. CrossRefGoogle Scholar
  55. Dotaniya ML, Panwar NR, Meena VD, Regar KL, Lata M, Saha JK (2018d) Bioremediation of metal contaminated soils for sustainable crop production. In: Meena VS (ed) Role of rhizospheric microbes in soil. Springer international, pp 143–173Google Scholar
  56. Dungan RS, Frankenberger JWT (2000) Factors affecting the volatilization of dimethyl selenide by Enterobacter clocae SLD 1a-1. Soil Biol Biochem 32:1353–1358CrossRefGoogle Scholar
  57. Eliopoulos EM, Megremi I, Cathy A, Theodoratou C, Vasilatos C (2013) Spatial evolution of the chromium contamination in soils from the assopos to Thiva Basin and C. Evia (Greece) and potential source(s): anthropogenic versus natural processes. Geoscience 3(2):140–158CrossRefGoogle Scholar
  58. Emamverdian A, Ding Y, Mokhberdoran F, Xie Y (2015) Heavy metal stress and some mechanisms of plant defense response. Sci World J 2015: 756120. 18 pGoogle Scholar
  59. Fahr M, Laplaze L, Bendaou N, Hocher V, Mzibri ME, Bogusz D et al (2013) Effect of lead on root growth. Front Plant Sci 4:175CrossRefPubMedPubMedCentralGoogle Scholar
  60. Fergusson JE (1990) The heavy elements: chemistry, environmental impact and health effects. Pergamon Press, OxfordGoogle Scholar
  61. Fischer AB (2005) Heavy metal in the food chain-lead, cadmium and mercury in foodstuff and population exposures. Proc Indian Natl Sci Acad B71(3&4):109–143Google Scholar
  62. Foster IDL, Charlesworth SM (1996) Heavy metals in the hydrological cycle: trends and explanation. Hydrol Proc 10(2):227–261CrossRefGoogle Scholar
  63. Galeas ML, Zhang LH, Freeman JL, Wegner M, Pilon-Smits EAH (2007) Seasonal fluctuations of selenium and sulphur accumulation in selenium hyperaccumulators and related nonaccumulators. New Phytol 173:517–525CrossRefGoogle Scholar
  64. Gao S, Burau RG (1997) Environmental factors affecting rates of arsine evolution from and mineralization of arsenicals in soil. J Environ Qual 26:753–763CrossRefGoogle Scholar
  65. Gaonkar T, Bhosle S (2013) Effect of metals on a siderophore producing bacterial isolate and its implications on microbial assisted bioremediation of metal contaminated soils. Chemotherapy 93:1835–1843Google Scholar
  66. Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169:30–39CrossRefGoogle Scholar
  67. Groudev SN, Spasova II, Georgiev PS (2001) In situ bioremediation of soils contaminated with radioactive elements and toxic heavy metals. Int J Miner Process 62:301–308CrossRefGoogle Scholar
  68. Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53(366):1–11CrossRefGoogle Scholar
  69. Hapke HJ (1991) Metal accumulation in the food chain and load of feed and food. In: Merian E (ed) Metals and their compounds in the environment. VCH Verlges, WeinheimGoogle Scholar
  70. Hapke JH (1996) Heavy metal transfer in the food chain to humans. Fertil Environ 66:431–436CrossRefGoogle Scholar
  71. Harada E, Kim JA, Meyer AJ, Hell R, Clemens S, Choi YE (2010) Expression profiling of tobacco leaf trichomes identifies genes for biotic and abiotic stresses. Plant Cell Physiol 51(10):1627–1637CrossRefGoogle Scholar
  72. Harris DL, Lottermoser BG (2006) Evaluation of phosphate fertilizers for ameliorating acid mine waste. Appl Geochem 21:1216–1225CrossRefGoogle Scholar
  73. Hartmann A, Schmid M, van Tuinen D, Berg G (2009) Plant-driven selection of microbes. Plant Soil 321:235–257CrossRefGoogle Scholar
  74. Hauser MT (2014) Molecular basis of natural variation and environmental control of trichome patterning. Front Plant Sci 5(320):1–7Google Scholar
  75. He ZL, Yang XE, Stoffella PJ (2005) Trace elements in agroecosystems and impacts on the environment. J Trace Elem Med Biol 92(2&3):125–140CrossRefGoogle Scholar
  76. Hinojosa MB, Carreira JA, Garcła-Rułz R et al (2004) Soilmoisture pre-treatment effects on enzyme activities as indicatorsof heavy metal-contaminated and reclaimed soils[J]. Soil Biol Biochem 36:1559–1568CrossRefGoogle Scholar
  77. Hossain MA, Piyatida P, daSilva JAT, Fujita M (2012a) Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. J Bot 2012:872875Google Scholar
  78. Hossain MA, Hossain MD, Rohman MM, daSilva JAT, Fujita M (2012b) Onion major compounds (flavonoids, organosulfurs) and highly expressed glutathione-related enzymes: possible physiological interaction, gene cloning and abiotic stress response. Onion Consum Health, Nova Science Publishers, New York, pp 49–90Google Scholar
  79. Huang Q, Shindo H (2000) Effects of copper on the activity and kinetics of free and immobilized acid phosphatase. Soil Biol Biochem 32:1885–1892CrossRefGoogle Scholar
  80. Jajoria DK, Sharma SK, Narolia GP, Dotaniya ML (2014) Rainfall variability: a tool for crop planning of Udaipur region of India. Natl Acad Sci Lett 38:95–98CrossRefGoogle Scholar
  81. Kamal S, Prasad R, Varma A (2010) Soil microbial diversity in relation to heavy metals. In: Sherameti I, Varma A (eds) Soil heavy metals, vol 19. Springer, Berlin/Heidelberg, 31–64Google Scholar
  82. Karaca A, Cetin SC, Turgay OC, Kizilkaya R (2009) Effects of heavy metals on soil enzyme activities. Soil Biol 19:237–262CrossRefGoogle Scholar
  83. Karaca A, Cetin SC, Turgay OC(2010) Effects of heavy metals on soil enzymeactivities. In: Sherameti I, Varma A (eds) Soil heavy metals. Soil biol 19, pp 237–262Google Scholar
  84. Karaca A, Cetin SC, Turgay OC, Kizilkaya R (2011) Soilenzymes as indication of soil quality. In: Shukla G, Varma A (eds) Soil enzymology. Springer, Berlin, pp 119–148Google Scholar
  85. Khan MR, Khan MM (2010) Effect of varying concentration of nickel and cobalt on the plant growth and yield of chickpea. Aust J Basic Appl Sci 4(6):1036–1046Google Scholar
  86. Khan S, Cao Q, Hesham AEL, Xia Y, He J (2007) Soil enzymatic activities and microbial community structure with different application rates of Cd and Pb. J Environ Sci 19:834–840CrossRefGoogle Scholar
  87. Kim S, Lim H, Lee I (2010) Enhanced heavy metal phytoextraction by Echinochloa crus-galli using root exudates. J Biosci Bioeng 109:47–50CrossRefGoogle Scholar
  88. Kundu S, Dotaniya ML, Lenka S (2013) Carbon sequestration in Indian agriculture. In: Lenka S, Lenka NK, Kundu S, Rao AS (eds) Climate change and natural resources management. New India Publishing Agency, New Delhi, pp 269–289Google Scholar
  89. Kushwah SK, Dotaniya ML, Upadhyay AK, Rajendiran S, Coumar MV, Kundu S, Rao AS (2014) Assessing carbon and nitrogen partition in kharif crops for their carbon sequestration potential. Natl Acad Sci Lett 37(3):213–217CrossRefGoogle Scholar
  90. Lee S, Moon JS, Domier LL, Korban SS (2002) Molecular characterization of phytochelatin synthase expression in transgenic Arabidopsis. Plant Physiol Biochem 40(9):727–733CrossRefGoogle Scholar
  91. Lenka S, Rajendiran, Coumar MV, Dotaniya ML, Saha JK (2016) Impacts of fertilizers use on environmental quality. In: National seminar on environmental concern for fertilizer usein future at Bidhan Chandra KrishiViswavidyalaya, Kalyani on February 26, 2016Google Scholar
  92. Lloyd JR, Lovley DR (2001) Microbial detoxification of metals and radionuclides. Curr Opi Biotech 12:248–253CrossRefGoogle Scholar
  93. Lokhande RS, Singare PU, Pimple DS (2011) Toxicity study of heavy metals pollutants in waste water effluent samples collected from Taloja industrial estate of Mumbai, India. Resour Environ 1(1):13–19Google Scholar
  94. Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556CrossRefGoogle Scholar
  95. Ma LQ, Komar KM, Tu C, Zhang W, Cai Y, Kennelly ED (2001) A fern that hyperaccumulates arsenic. Nature 409:579CrossRefGoogle Scholar
  96. Ma Y, Rajkumar M, Luo Y, Freitas H (2013) Phytoextraction of heavy metal polluted soils using Sedum plumbizincicola inoculated with metal mobilizing Phyllobacteriummyrsinacearum RC6b. Chemosphere 93:1386–1392CrossRefGoogle Scholar
  97. Ma Y, Oliveira RS, Freitas H, Zhang C (2016) Biochemical and molecular mechanisms of plant-microbe-metal interactions: relevance for phytoremediation. Front Plant Sci 7:918PubMedPubMedCentralGoogle Scholar
  98. Malley C, Nair J, Ho G (2006) Impact of heavy metals on enzymatic activity of substrate and composting worms Eiseniafetida. Bioresour Technol 97:1498–1502CrossRefGoogle Scholar
  99. Mandal S, Das SN, Mandal M (2016) Plasmid mediated antibiotic and heavy metal co-resistance in bacterial isolates from Mahananda River water (Malda, India). Transl Med (Sunnyvale) 6:185–191. CrossRefGoogle Scholar
  100. Mandal A, Thakur JK, Sahu A, Bhattacharjya S, Manna MC, Patra AK (2017) Plant–microbe interaction for the removal of heavy metal from contaminated site. In: Choudhary D, Varma A, Tuteja N (eds) Plant-microbe interaction: an approach to sustainable agriculture. Springer, SingaporeGoogle Scholar
  101. Martino E, Perotto S, Parsons R, Gadd GM (2003) Solubilization of insoluble inorganic zinc compounds by ericoid mycorrhizal fungi derived from heavy metal polluted sites. Soil Biol Biochem 35:133–141CrossRefGoogle Scholar
  102. Maser P, Thomine S, Schroeder JI, Ward JM, Hirschi K, Sze H et al (2001) Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol 126:1646–1667CrossRefPubMedPubMedCentralGoogle Scholar
  103. Meena VD, Dotaniya ML (2017) Climate change, water scarcity and sustainable agriculture for food security. In: Kumar PS, Kanwat M, Meena PD, Kumar V, Alone RA (eds) Climate change & sustainable agriculture. New India Publishing Agency, New Delhi, pp 123–142Google Scholar
  104. Meena VD, Dotaniya ML, Rajendiran S, Coumar MV, Kundu S, Rao AS (2013) A case for silicon fertilization to improve crop yields in tropical soils. Proc Natl Acad Sci India Sec B Biol Sci 84(3):505–518CrossRefGoogle Scholar
  105. Meena VD, Dotaniya ML, Saha JK, Patra AK (2015) Antibiotics and antibiotic resistant bacteria in wastewater: impact on environment, soil microbial activity and human health. Afr J Microbiol Res 9(14):965–978CrossRefGoogle Scholar
  106. Meena BP, Shirale AO, Dotaniya ML, Jha P, Meena AL, Biswas AK, Patra AK (2016) Conservation agriculture: a new paradigm for improving input use efficiency and crop productivity. In: Bisht JK, Meena VS, Mishra PK, Pattanayak A (eds) Conservation agriculture conservation agriculture- an approach to combat climate change in Indian Himalaya. Springer, Singapore, pp 39–69Google Scholar
  107. Meena BL, Meena RL, Kanwat M, Kumar A, Dotaniya ML (2017a) Impact of climate change under coastal ecosystem & adoption strategies. In: Kumar PS, Kanwat M, Meena PD, Kumar V, Alone RA (eds) Climate change & sustainable agriculture. New India Publishing Agency, New Delhi, pp 55–66Google Scholar
  108. Meena BP, Tiwari PK, Dotaniya ML, Shirale AO, Ramesh K (2017b) Precision nutrient management techniques for enhancing nutrient use efficiency. In: Elanchezhian R, Biswas AK, Ramesh K, Patra AK (eds) Advances in nutrient dynamics in soil plant system for improving nutrient use efficiency. New India Publishing Agency, New Delhi, pp 61–74Google Scholar
  109. Mikan CJ, Zak DR, Kubiske ME, Pregitzerm KS (2000) Combined effects of atmospheric CO2 and N availability on the belowground carbon and nitrogen dynamics of aspen mesocosms. Oecologia 124:432–445CrossRefGoogle Scholar
  110. Naseem H, Bano A (2014) Role of plant growth-promoting rhizobacteria and their exopolysaccharide in drought tolerance of maize. J Plant Interact 9:689–701CrossRefGoogle Scholar
  111. Nematshahi N, Lahouti M, Ganjeali A (2012) Accumulation of chromium and its effect on growth of (Allium cepacv. Hybrid). Euro J Exp Biol 2(4):969–974Google Scholar
  112. Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51:730–750CrossRefGoogle Scholar
  113. Nriagu JO (1989) A global assessment of natural sources of atmospheric trace metals. Nature 338:47–49CrossRefGoogle Scholar
  114. Oliveira H (2012) Chromiumas an environmental pollutant: insights on induced plant toxicity. J Bot 2012:375843 8 pGoogle Scholar
  115. Oliveira A, Pampulha ME (2006) Effects of long-term heavy metal contamination on soil microbial characteristics. J Biosci Bioeng 102:157–161CrossRefGoogle Scholar
  116. Pongratz R, Heumann KG (1999) Production of methylated mercury, lead and cadmium by marine bacteria as a significant natural source for atmospheric heavy metals in polar regions. Chemosphere 39:89–102CrossRefGoogle Scholar
  117. Prajapati K, Rejendiran S, Coumar MV, Dotaniya ML, Meena VD, Ajay S, Khamparia NK, Rawat AK, Kundu S (2014) Bio-sequestration of carbon in rice phytoliths. Natl Acad Sci Lett 38:129–133CrossRefGoogle Scholar
  118. Prajapati K, Rajendiran S, Coumar MV, Dotaniya ML, Ajay S, Kundu S, Saha JK, Patra AK (2016) Carbon occlusion potential of rice phytoliths: implications for global carbon cycle and climate change mitigation. Appl Ecold Environ Res 14(2):265–281CrossRefGoogle Scholar
  119. Rajendiran S, Coumar MV, Kundu S, Ajay S, Dotaniya ML, Rao AS (2012) Role of phytolith occluded carbon of crop plants for enhancing soil carbon sequestration in agro-ecosystems. Curr Sci 103(8):911–920Google Scholar
  120. Rajendiran S, Dotaniya ML, Coumar MV, Panwar NR, Saha JK (2015) Heavy metal polluted soils in India: status and countermeasures. JNKVV Res J 49(3):320–337Google Scholar
  121. Rajendiran S, Singh TB, Saha JK, Coumar JK, Dotaniya ML, Kundu S, Patra AK (2018) Spatial distribution and baseline concentration of heavy metals in swell–shrink soils of Madhya Pradesh, India. In: Singh V, Yadav S, Yadava R (eds) Environmental pollution. Water science and technology library, vol 77. Springer, Singapore, pp 135–145Google Scholar
  122. Rajkumar M, Ae N, Prasad MNV, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28:142–149CrossRefGoogle Scholar
  123. Rajkumar M, Sandhya S, Prasad MNV, Freitas H (2012) Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol Adv 30:1562–1574CrossRefPubMedPubMedCentralGoogle Scholar
  124. Razzaq R (2017) Phytoremediation: an environmental friendly technique – a review. J Environ Anal Chem 4:195CrossRefGoogle Scholar
  125. Reeder RJ, Schoonen MA, Lanzirotti A (2006) Metal speciation and its role in bioaccessibility and bioavailability. Rev Mineral Geochem 64(1):59–113CrossRefGoogle Scholar
  126. Rensing C, Ghosh M, Rosen B (1999) Families of soft-metal-ion-transporting ATPases. J Bacteriol 181:5891–5897PubMedPubMedCentralGoogle Scholar
  127. Rozemeijer JC, Broers HP (2007) The groundwater contribution to surface water contamination in a region with intensive agricultural land use (Noord-Brabant, The Netherlands). Environ Pollut 148(3):695–706CrossRefGoogle Scholar
  128. Saha JK, Rajendiran S, Coumar MV, Dotaniya ML, Kundu S, Patra AK (2017a) Soil pollution-an emerging threat to Indian agriculture. Springer, SingaporeCrossRefGoogle Scholar
  129. Saha JK, Rajendiran S, Coumar MV, Dotaniya ML, Kundu S, Patra AK (2017b) Soil and its role in the ecosystem. In: Saha JK, Rajendiran S, Coumar MV, Dotaniya ML, Kundu S, Patra AK (eds) Soil pollution – an emerging threat to agriculture. Springer, Singapore, pp 11–36CrossRefGoogle Scholar
  130. Saha JK, Rajendiran S, Coumar MV, Dotaniya ML, Kundu S, Patra AK (2017c) Industrial activities in India and their impact on agroecosystem. In: Saha JK, Rajendiran S, Coumar MV, Dotaniya ML, Kundu S, Patra AK (eds) Soil pollution – an emerging threat to agriculture. Springer, Singapore, pp 229–249CrossRefGoogle Scholar
  131. Saima K, Roohi M, Ahmad IZ (2013) Isolation of novel chitinolytic bacteria and production optimization of extracellular chitinases. J Genet Eng Biotechnol 11:39–46CrossRefGoogle Scholar
  132. Santini JM, Sly LI, Schnagl RD, Macy JM (2000) A new chemolitoautotrophicarsenite-oxidizing bacterium isolated from a gold-mine: phylogenetic, physiological, and preliminary biochemical studies. Appl Environ Microbiol 66:92–97CrossRefPubMedPubMedCentralGoogle Scholar
  133. Segel IH (1975) Enzyme kinetics. Wiley, New YorkGoogle Scholar
  134. Seshadri B, Bolan NS, Naidu R (2015) Rhizosphere-induced heavy metal (loid) transformation in relation to bioavailability and remediation. J Soil Sci Plant Nutr 15:524–548Google Scholar
  135. Sessitsch A, Kuffner M, Kidd P, Vangronsveld J, Wenzel WW, Fallmann K et al (2013) The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils. Soil Biol Biochem 60:182–194CrossRefPubMedPubMedCentralGoogle Scholar
  136. Sharma PK, Balkvill DL, Frenkel A, Vairavamurthy MA (2000) A new Klebsiellaplanticola strain (Cd-1) grows anaerobically at high cadmium concentrations and precipitates cadmium sulfide. Appl Environ Microbiol 66:3083–3087CrossRefPubMedPubMedCentralGoogle Scholar
  137. Shen G, Lu Y, Zhou Q, Hang J (2005) Interaction of polycyclic aromatic hydrocarbons and heavy metals on soil enzyme. Chemosphere 61:1175–1182CrossRefGoogle Scholar
  138. Singh B (2002) Soil pollution and its control. In: Sekhon GS, Chhonkar PK, Das DK, Goswami NN, Narayanaswamy G, Poonia SR, Rattan RK, Sehgal J (eds) Fundamental of soil science. Ind Soc Soil Sci, New Delhi, pp 499–514Google Scholar
  139. Singh A, Fulekar MH (2012) Phytoremediation of heavy metals by Brassica juncea in aquatic and terrestrial environment. Plant Fam Brassicaceae 21:153–169CrossRefGoogle Scholar
  140. Singh R, Gautam N, Mishra A, Gupta R (2011) Heavy metals and living systems: an overview. Ind J Pharmacol 43(3):246–253CrossRefGoogle Scholar
  141. Singh M, Dotaniya ML, Mishra A, Dotaniya CK, Regar KL (2016a) Role of biofertilizers in conservation agriculture. In: Bisht JK, Meena VS, Mishra PK, Pattanayak A (eds) Conservation agriculture: an approach to combat climate change in Indian Himalaya. Springer, Singapore, pp 113–134CrossRefGoogle Scholar
  142. Singh S, Parihar P, Singh R, Singh VP, Prasad SM (2016b) Heavy metal tolerance in plants: role of transcriptomics, proteomics, metabolomics and lonomics. Fron Plant Sci 6:1143Google Scholar
  143. Singh VS, Meena SK, Verma JP, Kumrar A, Aeron A, Mishra PK, Bisht JK, Pattanayaka A, Naveed M, Dotaniya ML (2017) Plant beneficial rhizospheric microorganism (PBRM) strategies to improve nutrients use efficiency: a review. Ecol Eng 107:8–32CrossRefGoogle Scholar
  144. Sivasankar R, Kalaikandhan R, Vijayarengan P (2012) Phytoremediating capability and nutrient status of four plant species under zinc stress. Int J Res Plant Sci 2(1):8–15Google Scholar
  145. SrinivasaGowd S, Reddy RM, Govil P (2010) Assessment of heavy metal contamination in soils at Jajmau (Kanpur) and Unnao industrial areas of the ganga plain, Uttar Pradesh. India J Hazard Mater 174(1):113–121CrossRefGoogle Scholar
  146. Sundaramoorthy P, Chidambaram A, Ganesh KS, Unnikannan P, Baskaran L (2010) Chromium stress in paddy: (i) nutrient status of paddy under chromium stress;(ii) phytoremediation of chromium by aquatic and terrestrial weeds. C R Biol 333:597–607CrossRefGoogle Scholar
  147. Tabatabai MA (1994) Soil enzymes. In: Weaver RW, Angle JS, Bottomley PS (eds) Methods of soil analysis, part 2. Microbiological and biochemical properties, SSSA Book Series No. 5. Soil Science Society of America, Madison, pp 775–833Google Scholar
  148. Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metals toxicity and the environment. EXS 101:133–164PubMedPubMedCentralGoogle Scholar
  149. Thounaojam TC, Panda P, Mazumdar P, Kumar D, Sharma GD, Sahoo L et al (2012) Excess copper induce doxidative stress and response of antioxidants in rice. Plant Physiol Biochem 53:33–39CrossRefPubMedPubMedCentralGoogle Scholar
  150. Turpeinen R, Pantsar-Kallio M, Kairesalo T (2002) Role of microbes in controlling the speciation of arsenic and production of arsines in contaminated soils. Sci Total Environ 285:133–145CrossRefPubMedPubMedCentralGoogle Scholar
  151. Ullah A, Heng S, Munis MFH, Fahad S, Yang X (2015) Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: a review. Environ Exp Bot 117:28–40CrossRefGoogle Scholar
  152. Verbruggen N, Hermans C, Schat H (2009) Molecular mechanisms of metal hyperaccumulation in plants. New Phytol 181:759–776CrossRefGoogle Scholar
  153. Voet D, Voet JG (1995) Biochemistry: introduction to enzymes, 2nd edn. Wiley, New York, pp 332–344Google Scholar
  154. Wang Y, Li Q, Shi J, Lin Q, Chen X, Wu W, Chen Y (2008) Assessment of mi, crobial activity and bacterial community composition in the rhizosphere of a copper accumulator and a non-accumulator. Soil Biol Biochem 40:1167–1177CrossRefGoogle Scholar
  155. Wani PA, Khan MS, Zaidi A (2007) Effect of metal tolerant plant growth promoting Bradyrhizobium sp. (vigna) on growth, symbiosis, seed yield and metal uptake by greengram plants. Chemosphere 70:36–45CrossRefGoogle Scholar
  156. Wenzel WW, Lombi E, Adriano DC (1999) Biochemical processes in the rhizosphere: role in phytoremediation of metal-polluted soils. In: Prasad MNV, Hagemeyer J (eds) Heavy metal stress in plants: from molecules to ecosystems. Springer, New York, pp 273–303CrossRefGoogle Scholar
  157. Wijngaard RR, Perk MV, Grift BV, Nijs TCM, Bierkens MFP (2017) The impact of climate change on metal transport in a lowland catchment. Water Air Soil Pollut 228:107CrossRefPubMedPubMedCentralGoogle Scholar
  158. Williams LE, Pittman JK, Hall JL (2000) Emerging mechanisms for heavy metal transport in plants. Biochim Biophys Acta 1465:104–126. CrossRefPubMedGoogle Scholar
  159. Wong HL, Sakamoto T, Kawasaki T, Umemura K, Shimamoto K (2004) Down-regulation of metallothionein, a reactive oxygen scavenger, by the small GTPase OsRac1 in rice. Plant Physiol 135(3):1447–1456CrossRefPubMedPubMedCentralGoogle Scholar
  160. Yadav SK (2010) Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. South Afr J Bot 76(2):167–179CrossRefGoogle Scholar
  161. Yang XE, Long XX, Ni WZ (2002) Physiological and molecular mechanisms of heavy metal uptake by hyperaccumulating plant species. J Plant Nutr Fertil 8:8–15Google Scholar
  162. Yang ZX, Liu SQ, Zheng DW, Feng SD (2006) Effects of cadium, zinc and lead on soil enzyme activities. J Environ Sci (China) 18(6):1135–1141CrossRefGoogle Scholar
  163. Yao Q, Zhu HH, Chen JZ (2005) Growth responses and endogenous IAA and iPAs changes of litchi (Litchi chinensisSonn.) seedlings induced by arbuscular mycorrhizal fungal inoculation. Sci Hortic 105:145–151CrossRefGoogle Scholar
  164. Yuan HM, Xu HH, Liu WC, Lu YT (2013) Copper regulates primary root elongation through PIN1-mediated auxin redistribution. Plant Cell Physiol 54:766–778CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • M. L. Dotaniya
    • 1
  • S. Rajendiran
    • 1
  • C. K. Dotaniya
    • 2
  • Praveen Solanki
    • 3
  • V. D. Meena
    • 1
  • J. K. Saha
    • 1
  • A. K. Patra
    • 1
  1. 1.ICAR-Indian Institute of Soil ScienceBhopalIndia
  2. 2.College of AgricultureSKRAUBikanerIndia
  3. 3.Department of Environmental ScienceGBPUA&TPantnagarIndia

Personalised recommendations