Advertisement

Biocontrol Agents as Strategy of Agro-ecosystem Management to Restitution of Productive Soils for Food Production

  • K. Nathiely Ramírez-Guzmán
  • Cristian Torres-León
  • Salvador Saldaña-Mendoza
  • Gloria Martinez-Medina
  • Marie Tranier
  • Sevastianos Roussos
  • Reynaldo De la Cruz-Quiroz
  • Roberto Parra-Saldívar
  • Adriana C. Flores-Gallegos
  • Raúl Rodríguez-Herrera
  • Cristóbal N. Aguilar
Chapter

Abstract

This chapter analyzes and describes the importance and application of biocontrol agents as an alternative of managing agroecosystem for restitution of productive soils for food production. Also, the ethics, benchmarks, biosafety rules, and the various approaches and explicit features of controlling the production of food in conventional ways and emerging trends for the conservation of foods are included. Biocontrol has an important impact on the maintenance, safeguarding, and security provision on ecological and environmental aspects toward promoting the biosafety for food production. The term biocontrol incorporates the maintenance, conservation, and care of fauna and flora, as well as the native habitat on this earth. The precautionary courses include all those things where biological security must be guaranteed for all forms of life; consequently, the damages and hazards instigated should be minimalized or diminished. In any course or progression where we are employing physicochemical and biological agents, usually there are chances of hidden risk; therefore it becomes very significant for us to understand and look for the preventive measures. Recently, the use of microbial sources as biological agents has become one of the greatest challenges that have captured the attention of everyone globally. This is chiefly owing to the intensified application of biological agents in numerous industries all over the globe, for example, food and feed production, agricultural products, value-added compound production, etc.

References

  1. Albert LA (2004) Panorama de los plaguicidas en México. Rev Toxicol Línea 1–17. http://www.sertox.com.Ar/retel/default.htm
  2. Ananda J, Herath G (2003) Soil erosion in developing countries: a socio-economic appraisal. J Environ Manage 68(4):343–353CrossRefGoogle Scholar
  3. Andersen L, Kühn BF, Bertelsen M, Bruus M, Larsen SE, Strandberg M (2013) Alternatives to herbicides in an apple orchard, effects on yield, earthworms and plant diversity. Agric Ecosyst Environ 172:1–5CrossRefGoogle Scholar
  4. Arora NK, Verma M, Prakash J, Mishra J (2016) Regulation of biopesticides: global concerns and policies. In: Arora NK, Mehnaz S, Balestrini R (eds) Bioformulations: for sustainable agriculture. Springer, New Delhi, pp 283–299Google Scholar
  5. Atwa AA (2014) Entomopathogenic nematodes as biopesticides. In: Sahayaraj K (ed) Basic and applied aspects of biopesticides. Springer, New Delhi, pp 69–98Google Scholar
  6. Aziz A, Mahmood T, Islam KR (2013) Effect of long term no-till and conventional tillage practices on soil quality. Soil Tillage Res 131:28–35CrossRefGoogle Scholar
  7. Baker BP, Benbrook CM, Groth E III, Benbrook KL (2002) Pesticide residues in conventional, integrated pest management (IPM)-grown and organic foods: insights from three US data sets. Food Addit Contam 19(5):427–446. https://doi.org/10.1080/02652030110113799CrossRefPubMedGoogle Scholar
  8. Balasubramanian S, Tyagi R (2016) Biopesticide production from solid wastes. In: Wong JWC, Tyagi RD, Pandey A (eds) Current developments in biotechnology and bioengineering: solid waste management. Elsevier, Kolkata, pp 43–50Google Scholar
  9. Barbosa PRR, Michaud JP, Bain CL, Torres J (2017) Toxicity of three aphicides to the generalist predators Chrysoperla carnea (Neuroptera: Chrysopidae) and Orius insidiosus (Hemiptera: Anthocoridae). Ecotoxicology 26(5):589–599CrossRefGoogle Scholar
  10. BASF (2017) El uso de la tecnología para una agricultura precisaGoogle Scholar
  11. Bayer Crop Science (2017) Crop scienceGoogle Scholar
  12. Beris EI, Papachristos DP, Fytrou A, Antonatos SΑ, Kontodimas DC (2013) Pathogenicity of three entomopathogenic fungi on pupae and adults of the Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae). J Pest Sci 86:275–284CrossRefGoogle Scholar
  13. Bernard E, Larkin RP, Tavantzis S, Erich MS, Alyokhin A, Gross SD (2014) Rapeseed rotation, compost and biocontrol amendments reduce soilborne diseases and increase tuber yield in organic and conventional potato production systems. Plant Soil 374:611–627CrossRefGoogle Scholar
  14. Blaser WJ, Oppong J, Yeboah E, Six J (2017) Shade trees have limited benefits for soil fertility in cocoa agroforests. Agric Ecosyst Environ 243:83–91. https://doi.org/10.1016/j.agee.2017.04.007CrossRefGoogle Scholar
  15. Bohra A, Sahrawat KL, Kumar S, Joshi R, Parihar AK, Singh U, Singh D, Singh NP (2015) Genetics- and genomics-based interventions for nutritional enhancement of grain legume crops: status and outlook. J Appl Genet 56(2):151–161. https://doi.org/10.1007/s13353-014-0268-zCrossRefPubMedGoogle Scholar
  16. Bonato O, Deschamps C, Hamdi F, Ridray G, Chadoeuf J (2011) Spatiotemporal distribution of macrolophus caliginosus in protected tomato crop (Heteroptera: Miridae). Entomologia Generalis 33:91–102CrossRefGoogle Scholar
  17. Bruemmer B (2003) Food biosecurity. J Am Dietetic Assoc 103(6):687–691CrossRefGoogle Scholar
  18. Carling DE, Baird RE, Gitaitis RD, Brainard KA, Kuninaga S (2002) Characterization of AG-13, a newly reported anastomosis group of Rhizoctonia solani. Phytopathology 92:893–899CrossRefGoogle Scholar
  19. Chandler D, Bailey AS, Tatchell GM, Davidson G, Greaves J, Grant WP (2011) The development, regulation and use of biopesticides for integrated pest management. Philos Trans R Soc B Biol Sci 366:1987–1998CrossRefGoogle Scholar
  20. Chattopadhyay P, Banerjee G, Mukherjee S (2017) Recent trends of modern bacterial insecticides for pest control practice in integrated crop management system. 3 Biotech 7:60–65CrossRefPubMedPubMedCentralGoogle Scholar
  21. Chavarría-Hernández N, Pérez-Pérez N, Chavarría-Hernández J, Barahona-Pérez L, Rodríguez-Hernández A (2014) Specific oxygen uptake of the entomopathogenic nematode, Steinernema carpocapsae CABA01, in submerged culture. Biocontrol Sci Tech 24:723–733CrossRefGoogle Scholar
  22. Cutler J, Hughes K, Rae R (2017) Susceptibility of cockroaches (Gromphadorhina portentosa, Nauphoeta cinerea and Blaptica dubia) exposed to entomopathogenic nematodes. Biocontrol Sci Tech 4:556–564CrossRefGoogle Scholar
  23. de Azevedo AGC, Steinwender BM, Eilenberg J, Sigsgaard L (2017) Interactions among the predatory midge aphidoletes Aphidimyza (Diptera: Cecidomyiidae), the fungal pathogen Metarhizium brunneum (Ascomycota: Hypocreales), and maize infesting aphids in greenhouse mesocosms. Insects 8(2):44–51CrossRefPubMedPubMedCentralGoogle Scholar
  24. De Brida AL, Rosa JMO, De Oliveira CMG, De Castro E, Castro BM, Serrão JE, Zanuncio JC, Leite LG, Wilcken SRS (2017) Entomopathogenic nematodes in agricultural areas in Brazil. Sci Rep 7:45254CrossRefPubMedPubMedCentralGoogle Scholar
  25. De la Cruz Quiroz R, Roussos S, Hernández D, Rodríguez R, Castillo F, Aguilar CN (2015) Challenges and opportunities of the bio-pesticides production by solid-state fermentation: filamentous fungi as a model. Crit Rev Biotechnol 35:326–333CrossRefGoogle Scholar
  26. de Morais MR, Zanardi OZ, Rugno GR, Yamamoto PT (2016) Impact of five insecticides used to control citrus pests on the parasitoid Ageniaspis citricola Longvinovskaya (Hymenoptera: Encyrtidae). Ecotoxicology 25:1011–1020CrossRefGoogle Scholar
  27. De Schutter O (2010) Agroecology and the right to food. http://www.srfood.org/en/report-agroecology-and-the-right-to-food
  28. Del Valle EE, Frizzo LS, Lax P, Bonora JS, Palma L, Bernardi Desch NP, Pietrobón M, Doucet ME (2017) Biological control of Diloboderus abderus (Coleoptera: Scarabaeidae) larvae using Steinernema rarum CUL (Nematoda: Steinernematidae) and Heterorhabditis bacteriophora SMC (Nematoda: Heterorhabditidae). Crop Prot 98:184–190CrossRefGoogle Scholar
  29. Desai S, Kumar GP, Amalraj ELD, Talluri VR, Peter AJ (2016) Challenges in regulation and registration of biopesticides: an overview. In: Singh DP, Singh HB, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity, Vol. 2: Functional applications. Springer, New Delhi, pp 301–308CrossRefGoogle Scholar
  30. Droby S, Wisniewski M, Teixidó N, Spadaro D, Jijakli MH (2016) The science, development, and commercialization of postharvest biocontrol products. Postharvest Biol Technol 122:22–29CrossRefGoogle Scholar
  31. du Jardin P (2015) Plant biostimulants: definition, concept, main categories and regulation. Sci Hortic 196:3–14CrossRefGoogle Scholar
  32. Dubovyk O (2017) The role of remote sensing in land degradation assessments: opportunities and challenges. Eur J Remote Sens 50:601–613CrossRefGoogle Scholar
  33. Duke SO, Owens DK, Dayan FE (2014) The Growing Need for Biochemical Bioherbicides. In: Gross AD, Coats JR, Duke SO, Seibe JN (eds) Biopesticides: State of the Art and Future Opportunities, vol 1172. ACS Symposium Series, USA, pp 31–43Google Scholar
  34. EPA (2017) What are biopesticides? United States of America. https://www.epa.gov/pesticides/biopesticides
  35. Eski A, Demir İ, Sezen K, Demirbağ Z (2017) A new biopesticide from a local Bacillus thuringiensis var. tenebrionis (Xd3) against alder leaf beetle (Coleoptera: Chrysomelidae). World J Microbiol Biotechnol 33:95CrossRefGoogle Scholar
  36. FAO (2006) Conservación de los recursos naturales para una Agricultura sostenible, pp 1–28Google Scholar
  37. FAO, FIDA y PMA (2015) El estado de la inseguridad alimentaria en el mundo 2015.Cumplimiento de los objetivos internacionales para 2015 en relación con el hambre: balance de los desiguales progresos. FAO, RomaGoogle Scholar
  38. FAO WHO (2001) Procedural manual of the Codex Alimenatrius CommisionGoogle Scholar
  39. FAO/WHO (2004) FAO/WHO Regional Conference on Food Safety for Asia and the Pacific. Foodborne disease monitoring and surveillance system, (May), p 11Google Scholar
  40. FAO/WHO (2010) Food standards programme. ftp://ftp.fao.org/codex/Reports/alinorm10/al33_22e.pdf
  41. Fernandes ÉKK, Bittencourt VREP, Roberts DW (2012) Perspectives on the potential of entomopathogenic fungi in biological control of ticks. Exp Parasitol 130:300–305CrossRefPubMedPubMedCentralGoogle Scholar
  42. Fernández MM, Colomer I, Medina P, Fereres A, Del Estal P, Viñuela E (2017) Efficacy of a long-lasting bifenthrin-treated net against horticultural pests and its compatibility with the predatory mite Amblyseius swirskii and the parasitic wasp Eretmocerus mundus. Pest Manag Sci 13(8):1689–1697. https://doi.org/10.1002/ps.4515CrossRefGoogle Scholar
  43. Francis C, Lieblien G, Gliessman S, Breland TA, Creamer N, Harwood R, Salomonsson N, Helenius J, Rickerl D, Salvador R, Wiedengoeft M, Simmons S, Allen P, Altieri M, Flora C, Poincelot R (2003) Agroecology: the ecology of food systems. J Sustain Agric 22(3):99–118CrossRefGoogle Scholar
  44. Fusco V, den Bestan HMW, Logrieco AF, Rodriguex FP, Skandamis PN, Stessl B, Teixeira P (2015) Food safety aspects on ethnic foods: toxicological and microbial risks. Curr Opin Food Sci 6:24–32CrossRefGoogle Scholar
  45. Gallegos MG, Cepeda SM, Olayo PRP (2004) Entomopatógenos. Editorial Trillas, México, pp 9–10Google Scholar
  46. Gasic S, Tanovic B (2013) Biopesticide formulations, possibility of application and future trends. Pesticidi i fitomedicina 28:97–102CrossRefGoogle Scholar
  47. Gil SV, Jose M, Conforto C, March GH (2009) Field assessment of soil biological and chemical quality in response to crop management practices. World J Microbiol Biotechnol 25(3):439–448CrossRefGoogle Scholar
  48. Global food security index (2013) An annual measure of the state of global food security. The Economist Intelligence Unit Limited, Dupont, 42pGoogle Scholar
  49. Goane L, Casmuz A, Salas H, Willink E, Mangeaud A, Valladares G (2015) Impact of natural control agents of the citrus leafminer Phyllocnistis citrella on lemon trees varies among seasons. Bull Entom Res 105:685–693CrossRefGoogle Scholar
  50. Goñi ML, Gañán NA, Herrera JM, Strumia MC, Andreatta AE, Martini RE (2017) Supercritical CO2 iof LDPE films with terpene ketones as biopesticides against corn weevil (Sitophilus zeamais). J Supercrit Fluids 122:18–26CrossRefGoogle Scholar
  51. Guetsky R, Shtienberg D, Elad YY, Dinoor A (2001) Combining biocontrol agents to reduce de variability of biological control. Phytopathology 91:621–627CrossRefPubMedPubMedCentralGoogle Scholar
  52. Gulcu B, Ulug D, Hazir C, Karagoz M, Hazir S (2014) Biological control potential of native entomopathogenic nematodes (Steinernematidae and Heterorhabditidae) against Spodoptera cilium (Lepidoptera: Noctuidae) in turfgrass. Biocontrol Sci Technol 24:965–970CrossRefGoogle Scholar
  53. Gupta S, Dikshit A (2010) Biopesticides: an ecofriendly approach for pest control. J Biopest 3:186–188Google Scholar
  54. Gutiérrez A, Robles A, Santillán C (2013) Control Biológico como Herramienta Sustentable en el Manejo de Plagas y su uso en el Estado de Nayarit, México. Rev Bio Cienc Junio 2(3):102–112. https://doi.org/10.15741/revbioCrossRefGoogle Scholar
  55. Guy A, Gaffney M, Kapranas A, Griffin CT (2017) Conditioning the entomopathogenic nematodes Steinernema carpocapsae and Heterorhabditis megidis by pre-application storage improves efficacy against black vine weevil, Otiorhynchus sulcatus (Coleoptera: Curculionidae) at low and moderate temperatures. Biol Control 108:40–46CrossRefGoogle Scholar
  56. Hanafi A, Bouharroud R, Amouat S, Miftah S (2007) Efficiency of insect nets in excluding whiteflies and their impact on some natural biological control agents. Acta Hortic 747:383–387CrossRefGoogle Scholar
  57. Hazra DK, Patanjali PK, Raza SK (2014) Retracted: formulation, registration, and quality regulation of plant biopesticides. In: Singh D (ed) Advances in plant biopesticides. Springer, New Delhi, pp 381–401CrossRefGoogle Scholar
  58. He Z, Dang F, Fan ZY, Ren SL, Cuthbertson AGS, Ren SX, Qiu BL (2017) Do host species influence the performance of Encarsia formosa, a parasitoid of Bemisia tabaci species complex? Bulletin Insectol 70:9–16Google Scholar
  59. Hernández CFD, Cepeda SM, García CJ, y Pérez Ch A (2001) Grupos de anastomosis de Rhizoctonia solani de la región papera de Toluca estado de México y susceptibilidad in vitro a fungicidas de diferente grupo toxicológico. Agraria Uaaan 17(2): 59–64Google Scholar
  60. Hernández FD, Carvajal CR, Guerrero E, Sánchez A, Gallegos G, Lira RH (2005) Susceptibilidad a fungicidas de grupos de anastomosis del hongo Rhizoctonia solani Kühn colectado en zonas paperas de Chihuahua, Mexico. Rev Int Bot Exp 74:259–269Google Scholar
  61. Heve WK, El-Borai FE, Carrillo D, Duncan LW (2017) Biological control potential of entomopathogenic nematodes for management of Caribbean fruit fly, Anastrepha suspensa Loew (Tephritidae). Pest Manag Sci 73:1220–1228CrossRefGoogle Scholar
  62. Hinchliffe G, Bown DP, Gatehouse JA, Fitches E (2010) Insecticidal activity of recombinant avidin produced in yeast. J Insect Physiol 56:629–639CrossRefPubMedPubMedCentralGoogle Scholar
  63. Honorato R, Barrales L, Peña I, Barrera F (2001) Evaluación del modelo USLE en la estimación de la erosión en seis localidades entre la IV y IX Región de Chile. Cien Inv Agr 28(1):7–14CrossRefGoogle Scholar
  64. Hough P (2014) Sustainable food production includes human and environmental health (Vol. 3). https://doi.org/10.1007/978-94-007-7454-4Google Scholar
  65. Hung TP, Truong LV, Binh ND, Frutos R, Quiquampoix H, Staunton S (2016) Fate of insecticidal Bacillus thuringiensis Cry protein in soil: differences between purified toxin and biopesticide formulation. Pest Manag Sci 72:2247–2253CrossRefPubMedPubMedCentralGoogle Scholar
  66. Isagro SPA (2017) ProductsGoogle Scholar
  67. Kakkar G, Kuma V, Seal DR, Liburd OE, Stansly PA (2016) Predation by Neoseiulus cucumeris and Amblyseius swirskii on Thrips palmi and Frankliniella schultzei on cucumber. Biol Control 92:85–91CrossRefGoogle Scholar
  68. Kamali S, Karimi J, Hosseini M, Campos-Herrera R, Duncan L (2013) Biocontrol potential of the entomopathogenic nematodes Heterorhabditis bacteriophora and Steinernema carpocapsae on cucurbit fly, Dacus ciliatus (Diptera: Tephritidae). Biocontrol Sci Technol 23:1307–1323CrossRefGoogle Scholar
  69. Kim KH, Kabir E, Jahan SA (2017) Exposure to pesticides and the associated human health effects. Sci Total Environ 575:525–535CrossRefPubMedPubMedCentralGoogle Scholar
  70. Koul O (2011) Microbial biopesticides: opportunities and challenges. CAB Rev 6:1–26Google Scholar
  71. Kulasooriya SA, Magana-Arachchi DN (2016) Nitrogen fixing cyanobacteria: their diversity, ecology and utilization with special reference to rice cultivation. J Natl Sci Found Sri Lanka 44:111–128CrossRefGoogle Scholar
  72. Lal R (2014) Soil conservation and ecosystem services. Int Soil Water Conservation Res 2(3):36–47CrossRefGoogle Scholar
  73. Langdale GW, West LT, Bruce RR, Miller WP, Thomas AW (1992) Restoration of eroded soil with conservation tillage. Soil Technol 5(1):81–90CrossRefGoogle Scholar
  74. Larkin RP, Tavantzis S (2013) Use of biocontrol organisms and compost amendments for improved control of soilborne diseases and increased potato production. Am J Potato Res 90:261–270CrossRefGoogle Scholar
  75. Leahy J, Mendelsohn M, Kough J, Jones R, Berckes N (2014) Biopesticide oversight and registration at the U.S. Environmental Protection Agency. Biopesticides: state of the art and future opportunities. Am Chem Soc 3–18Google Scholar
  76. Leite GLD, de Paulo PD, Zanuncio JC, Tavares WDS, Alvarenga AC, Dourado LR, Bispo EPR, Soares MA (2017) Herbicide toxicity, selectivity and hormesis of nicosulfuron on 10 Trichogrammatidae (Hymenoptera) species parasitizing Anagasta (Ephestia) kuehniella (Lepidoptera: Pyralidae) eggs. J Environ Sci Health 52:70–76CrossRefGoogle Scholar
  77. Lenc L, Kwaśna H, Sadowski C, Grabowski A (2015) Microbiota in wheat roots, rhizosphere and soil in crops grown in organic and other production systems. J Phytopathol 163:245–263CrossRefGoogle Scholar
  78. Li R, Tao R, Ling N, Chu G (2017) Chemical, organic and bio-fertilizer management practices effect on soil physicochemical property and antagonistic bacteria abundance of a cotton field: implications for soil biological quality. Soil Tillage Res 167:30–38CrossRefGoogle Scholar
  79. López-González JA, Vargas-García MDC, López MJ, Suárez-Estrella F, Jurado MDM, Moreno J (2015) Biodiversity and succession of mycobiota associated to agricultural lignocellulosic waste-based composting. Bioresour Technol 187:305–313CrossRefGoogle Scholar
  80. López Reyes M (2001) Degradación de suelos en Sonora: el problema de la erosión en los suelos de uso ganadero. Región y sociedad 13(22):73–97Google Scholar
  81. Manrakhan A, Daneel J, Moore S (2014) The impact of naturally occurring entomopathogenic nematodes on false codling moth, Thaumatotibia leucotreta (Lepidoptera: Tortricidae), in citrus orchards. Biocontrol Sci Tech 24:241–245CrossRefGoogle Scholar
  82. Matadamas-Ortiz P, Ruiz-Vega J, Vazquez-Feijoo J, Cruz-Martínez H, Cortés-Martínez C (2014) Mechanical production of pellets for the application of entomopathogenic nematodes: factors that determine survival time of Steinernema glaseri. Biocontrol Sci Tech 24:145–157CrossRefGoogle Scholar
  83. Matthews KA (2014) Regulation of biopesticides by the environmental protection agency general overview of biopesticides regulation. In: Seiber JN, Coats J, Duke SO, Gross AD (eds) Biopesticides state of the art and future opportunities. American Chemical Society, Washington, DC, pp 267–279Google Scholar
  84. Maute K, French K, Story P, Bull CM, Hose GC (2017) Short and long-term impacts of ultra-low-volume pesticide and biopesticide applications for locust control on non-target arid zone arthropods. Agric Ecosyst Environ 240:233–243CrossRefGoogle Scholar
  85. McGraw BA, Schlossberg MJ (2017) Fine-scale spatial analysis of soil moisture and entomopathogenic nematode distribution following release in wetting agent-treated turf. Appl Soil Ecol 114:52–61CrossRefGoogle Scholar
  86. Melo ALDA, Soccol VT, Soccol CR (2016) Bacillus thuringiensis: mechanism of action, resistance, and new applications: a review. Crit Rev Biotechnol 36:317–326CrossRefGoogle Scholar
  87. Miro Specos MM, Garcia JJ, Gutierrez AC, Hermida LG (2017) Application of microencapsulated biopesticides to improve repellent finishing of cotton fabrics. J Textile Institute 108:1454–1460CrossRefGoogle Scholar
  88. Mnif I, Ghribi D (2015) Potential of bacterial derived biopesticides in pest management. Crop Prot 77:52–64CrossRefGoogle Scholar
  89. Moghadasi M, Allahyari H, Saboori A, Zahedi GA (2016) Life table and predation capacity of Phytoseiulus persimilis athias-henriot (Acari: Phytoseiidae) feeding on Tetranychus urticae Koch (Acari: Tetranychidae) on rose. J Agric Sci Technol 18:1279–1288Google Scholar
  90. Mohammadbeigi A, Port G (2013) Efficacy of Beauveria bassiana and Metarhizium anisopliae against Uvarovistia zebra ( Orthoptera : Tettigoniidae ) via contact and ingestion. Int J Agric Crop Sci 5:138–146Google Scholar
  91. Montesinos E (2003) Development, registration and commercialization of microbial pesticides for plant protection. Int Microbiol 6:245–252CrossRefGoogle Scholar
  92. Moshi AP, Matoju I (2017) The status of research on and application of biopesticides in Tanzania. Review Crop Protection 92:16–28CrossRefGoogle Scholar
  93. Mulualem T (2015) Application of bio-fortification through plant breeding to improve the value of staple crops. Biomed Biotechnol 3(1):11–19Google Scholar
  94. Muñiz-Paredes F, Miranda-Hernández F, Loera O (2017) Production of conidia by entomopathogenic fungi: from inoculants to final quality tests. World J Microbiol Biotechnol 33:57–64CrossRefGoogle Scholar
  95. Murphy KA, Tabuloc CA, Cervantes KR, Chiu JC (2016) Ingestion of genetically modified yeast symbiont reduces fitness of an insect pest via RNA interference. Sci Rep 6:22587CrossRefPubMedPubMedCentralGoogle Scholar
  96. Nicolopoulou-Stamati P, Maipas S, Kotampasi C, Stamatis P, Hens L (2016) Chemical pesticides and human health: the urgent need for a new concept in agriculture. Front Public Health 4:148–154CrossRefPubMedPubMedCentralGoogle Scholar
  97. Novozymes A/S (2017) Crop productionGoogle Scholar
  98. Oertel C, Matschullat J, Zurba K, Zimmermann F, Erasmi S (2016) Greenhouse gas emissions from soils-A review. Chemie der Erde – Geochemistry. 76(3):327–352CrossRefGoogle Scholar
  99. Olson S (2015) An analysis of the biopesticide market now and where it is going. Outlooks Pest Manag 26:203–206CrossRefGoogle Scholar
  100. Ongley ED (1996) Food and agriculture organization of the United Nations. Control of water pollution from agriculture. Food and Agriculture Organization of the United Nations. Retrieved from http://www.fao.org/docrep/w2598e/w2598e00.htm#Contents
  101. Otieno JA, Pallmann P, Poehling HM (2017) Additive and synergistic interactions amongst Orius laevigatus (Heteroptera: Anthocoridae), entomopathogens and azadirachtin for controlling western flower thrips (Thysanoptera: Thripidae). BioControl 62:85–95CrossRefGoogle Scholar
  102. Pavela R, Murugan K, Canale A, Benelli G (2017) Saponaria officinalis-synthesized silver nanocrystals as effective biopesticides and oviposition inhibitors against Tetranychus urticae Koch. Ind Crop Prod 97:338–344CrossRefGoogle Scholar
  103. Peleg M, Normand MD, Corradini MG, van Asselt AJ, de Jong P, ter Steeg PF (2008) Estimating the heat resistance parameters of bacterial spores from their survival ratios at the end of UHT and other heat treatments. Crit Rev Food Sci Nutr 48:634–648CrossRefGoogle Scholar
  104. Peng Z, Zheng H, Xie W, Wang S, Wu Q, Zhang Y (2017) Field resistance monitoring of the immature stages of the whitefly Bemisia tabaci to spirotetramat in China. Crop Prot 98:243–247CrossRefGoogle Scholar
  105. Peshin R (2014) Integrated pest management: pesticide problems, vol. 3. https://doi.org/10.1007/978-94-007-7796-5Google Scholar
  106. Pietola L, Horn R, Halla MY (2005) Effects of trampling by cattle on the hydraulic and mechanical properties of soil. Soil Tillage Res 82:99–108CrossRefGoogle Scholar
  107. Plenge-Tellechea F, Sierra-Fonseca J, Castillo-Sosa Y (2007) Riesgos a la salud humana causados por plaguicidas. Tecnociencia 1(3):4–6Google Scholar
  108. Prashar P, Shah S (2013). Impact off fertilizers and pesticides on soil icroflora in agriculture, vol. 12. https://doi.org/10.1007/978-94-007-5961-9Google Scholar
  109. Pucci J (2014) Biopesticides primed for growth. Farm Chemical International. 12 August 2014. Available at: http://www.farmchemicalsinternational.com/crop-protection/biopesticidesprimed-for-growth/
  110. Qin GZ, Tian SP, Liu HB, Xu Y (2003) Biocontrol efficacy of three antagonistic yeasts against Penicillium expansum in harvested apple fruits. Acta Bot Sin Chin Ed 45:417–421Google Scholar
  111. Rakha M, Bouba N, Ramasamy S, Regnard JL, Hanson P (2017) Evaluation of wild tomato accessions (Solanum spp.) for resistance to two-spotted spider mite (Tetranychus urticae Koch) based on trichome type and acylsugar content. Genet Resour Crop Evol 64:1011–1022CrossRefGoogle Scholar
  112. Ren YJ, Cui JX, Wan SQ, Min L, Hong CZ, Fang LY, Jun WJ (2013) Climate change impacts on central China and adaptation measures. Adv Clim Chang Res 4(4):215–222CrossRefGoogle Scholar
  113. Ripa R, Larral P, Rodríguez S (2008) Manejo Integrado de Plagas (MIP). Manejo de Plagas En Paltos Y Cítricos 6(3):41–50Google Scholar
  114. Rodríguez-Álvarez CI, Muñiz M, Nombela G (2017) Effect of plant development (age and size) on the Mi-1-mediated resistance of tomato to whitefly Bemisia tabaci. Bull Entomol Res 11:1–9Google Scholar
  115. Rong X, Rotondo F, Schisler DA, Paul PA, Gardner BBMC (2016) Tracking native and applied populations of Cryptococcus flavescens in the environment. Plant GeneGoogle Scholar
  116. Ros M, Raut I, Santisima-Trinidad AB, Pascual JA (2017) Relationship of microbial communities and suppressiveness of Trichoderma fortified composts for pepper seedlings infected by Phytophthora nicotianae. PLoS One 12:e0174069CrossRefPubMedPubMedCentralGoogle Scholar
  117. Tweddell RJ, Jabaji-Hare SH, Charest PM (1994) Production of chitinases and 13-1,3-glucanases by Stachybotrys elegans, a mycoparasite of Rhizoctonia solani. Appl Environ Microbiol 60(2):489–495PubMedPubMedCentralGoogle Scholar
  118. Santamaría-Romero S, Ferrera-Cerrato R, Almaraz-Suárez JJ, Galvis-Spinola A, Berois-Boullard I (2001) Dynamics and relationship among microorganisms, C-Organic and N-Total during composting and vermicomposting. Agrociencia 35(4):337–384Google Scholar
  119. Sarwar M (2015) Biopesticides: an effective and environmental friendly insect-pests inhibitor line of action. Int J Eng Adv Res Technol 1:10–15Google Scholar
  120. Sathya A, Vijayabharathi R, Gopalakrishnan S (2016) Soil microbes: the invisible managers of soil fertility. In: Singh DP, Singh HB, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity. Springer, New Delhi, pp 1–16Google Scholar
  121. Seiber JN, Coats J, Duke SO, Gross AD (2014) Biopesticides: state of the art and future opportunities. J Agric Food Chem 62:11613–11619CrossRefGoogle Scholar
  122. Seiedy M, Soleymani S, Hakimitabar M (2017) Development and reproduction of the predatory mite Amblyseius swirskii Athias-Henriot (Acari: Phytoseiidae) on Tetranychus urticae Koch (Acari: Tetranychidae) and Bemisia tabaci Gennadius (Heteroptera: Aleyrodidae). Int J Acarol 43:160–164CrossRefGoogle Scholar
  123. Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA (2013) Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springer Plus 2:587–593CrossRefGoogle Scholar
  124. Shields EJ (2015) Utilizing persistent entomopathogenic nematodes in a conservation or a more classical biological control approach. In: Campos-Herrera R (ed) Nematode pathogenesis of insects and other pests: ecology and applied technologies for sustainable plant and crop protection. Springer, Cham, pp 165–184CrossRefGoogle Scholar
  125. Sivila de Cary R, Angulo W (2006) Efecto del descanso agrícola sobre la microbiota del suelo (Patarani – Altiplano Central boliviano). Ecología En Bolivia 41:103–115Google Scholar
  126. Song Q, Zhang Y, Yan L, Wang J, Lu C, Zhang Q, Zhao M (2017) Risk assessment of the endocrine-disrupting effects of nine chiral pesticides. J Hazard Mater 338:57–65. https://doi.org/10.1016/j.jhazmat.2017.05.015CrossRefPubMedGoogle Scholar
  127. Spadaro D, Ciavorella A, Dianpeng Z, Garibaldi A, Gullino ML (2010) Effect of culture media and pH on the biomass production and biocontrol efficacy of a Metschnikowia pulcherrima strain to be used as a biofungicide for postharvest disease control. Can J Microbiol 56:128–137CrossRefGoogle Scholar
  128. Steinhauserova I, Borilova G (2015) New trends towards more effective food safety control. Procedia Food Sci 5:274–277CrossRefGoogle Scholar
  129. Suárez-Estrella F, Jurado MM, Vargas-García MC, López MJ, Moreno J (2013) Isolation of bio-protective microbial agents from eco-composts. Biol Control 67:66–74CrossRefGoogle Scholar
  130. Sudakin DL (2003) Biopesticides. Toxicol Rev 22:83–90CrossRefGoogle Scholar
  131. Suding KN, Hobbs RJ (2009) Threshold models in restoration and conservation: a developing framework. Trends in Ecol Evol 24(5):271–279CrossRefGoogle Scholar
  132. Takada Y, Kawamura S, Tanaka T (2000) Biological characteristics: growth and development of the egg parasitoid Trichogramma dendrolimi (hymenoptera: Trichogrammatidae) on the cabbage armyworm Mamestra brassicae (Lepidoptera: Noctuidae). Appl Entom Zool 35:369–379CrossRefGoogle Scholar
  133. Technavio (2017) Global agricultural biologicals market 2016–2021. Infiniti Research Limited, TorontoGoogle Scholar
  134. Thakore Y (2006) The biopesticide market for global agricultural use. Ind Biotechnol 2:194–208CrossRefGoogle Scholar
  135. Tokpah DP, Li H, Wang L, Liu X, Mulbah QS, Liu H (2016) An assessment system for screening effective bacteria as biological control agents against Magnaporthe grisea on rice. Biol Control 103:21–29. https://doi.org/10.1016/j.biocontrol.2016.07.009CrossRefGoogle Scholar
  136. Torquebiau EF (2000) A renewed perspective on agroforestry concepts and classification. Comptes Rendus de l’Academie Des Sciences – Serie III 323(11):1009–1017. https://doi.org/10.1016/S0764-4469(00)01239-7CrossRefGoogle Scholar
  137. United Nations (2015) World population projected to reach 9.7 billion by 2050. http://www.un.org/en/development/desa/news/population/2015-report.html
  138. Usta C (2013) Microorganisms in biological pest control-a review (bacterial toxin application and effect of environmental factors). In: Silva-Opps M (ed) Current progress in biological research. InTech, Rijeka., Ch. 13, pp 133–147Google Scholar
  139. Valavanidis A, Vlachogianni T (2010) Integrated biomarkers in aquatic organisms as a tool for biomonitoring environmental pollution and improved ecological risk assessment. 02.2010, Available from http://www.researchgate.net/publication/236623090_Integrated_Biomarkers_in_Aquatic_Organisms_as_a_Tool_for_Biomonitoring_Environmental_Pollution_and_Improved_Ecological_Risk_Assessment
  140. van Elsas JD, Chiurazzi M, Mallon CA, Elhottovā D, Krištůfek V, Salles JF (2012) Microbial diversity determines the invasion of soil by a bacterial pathogen. Proc Natl Acad Sci 109:1159–1164CrossRefPubMedPubMedCentralGoogle Scholar
  141. Vilich V, Sikora RA (1998) Diversity in soilborne microbial communities a tool for biological system management of root health. In: Boland GJ, Kuykendall LD (eds) Plant-microbe interactions and biological. control. Marcel Dekker, New York, pp 1–14Google Scholar
  142. Vishwakarma K, Sharma S, Kumar N, Upadhyay N, Devi S, Tiwari A (2016) Contribution of microbial inoculants to soil carbon sequestration and sustainable agriculture. In: Microbial inoculants in sustainable agricultural productivity. Springer, New Delhi, pp 101–113Google Scholar
  143. Vukicevich E, Lowery T, Bowen P, Úrbez-Torres JR, Hart M (2016) Cover crops to increase soil microbial diversity and mitigate decline in perennial agriculture. A review. Agron Sustain Dev 36:48–53CrossRefGoogle Scholar
  144. Wang SX, Fu YB, Zhang ZG (2015) Population growth and the environmental Kuznets curve. China Econ Rev 36:146–165. https://doi.org/10.1016/j.chieco.2015.08.012CrossRefGoogle Scholar
  145. Wang XS, Chen QZ, Zhang SZ, Liu TX (2016) Parasitism, host feeding and immature development of Encarsia formosa reared from Trialeurodes vaporariorum and Bemisia tabaci on Trialeurodes ricini. J Appl Entomol 140:346–352CrossRefGoogle Scholar
  146. Wu S, He Z, Wang E, Xu X, Lei Z (2017) Application of Beauveria bassiana and Neoseiulus barkeri for improved control of Frankliniella occidentalis in greenhouse cucumber. Crop Prot 96:83–87CrossRefGoogle Scholar
  147. Yakhin OI, Lubyanov AA, Yakhin IA, Brown PH (2017) Biostimulants in plant science: a global perspective. Front Plant Sci 26(7):2049. https://doi.org/10.3389/fpls.2016.02049.CrossRefGoogle Scholar
  148. Yang W, Yan H, Zhang J, Meng Y, Wang X, Ji L, Luo Y (2017) Response of rhizosphere microbial diversity and soil physico-chemical properties in a rotation of cucumber with Volvariella volvacea. Biocontrol Sci Tech 27:311–323CrossRefGoogle Scholar
  149. Zapata Y, Díaz A, Grijalba E, Rodríguez F, Elad Y, Cotes AM (2016) Phyllosphere yeasts with potential for biological control of Botrytis cinerea in rose. Int Soc Hortic Sci (ISHS), Leuven, pp 77–84Google Scholar
  150. Zemke JJ (2016) Runoff and soil erosion assessment on forest roads using a small scale rainfall simulator. Hydrology 3(3):25–34CrossRefGoogle Scholar
  151. Zhang C, Hu R, Shi G, Jin Y, Robson MG, Huang X (2015) Overuse or underuse? An observation of pesticide use in China. Sci Total Environ. 538:1–6CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • K. Nathiely Ramírez-Guzmán
    • 1
  • Cristian Torres-León
    • 1
  • Salvador Saldaña-Mendoza
    • 1
  • Gloria Martinez-Medina
    • 1
  • Marie Tranier
    • 2
  • Sevastianos Roussos
    • 3
  • Reynaldo De la Cruz-Quiroz
    • 4
  • Roberto Parra-Saldívar
    • 4
  • Adriana C. Flores-Gallegos
    • 1
  • Raúl Rodríguez-Herrera
    • 1
  • Cristóbal N. Aguilar
    • 1
  1. 1.Food Research Department, School of ChemistryUniversidad Autónoma de Coahuila SaltilloSaltilloMexico
  2. 2.Toulouse White Biotechnology (TWB). Aix-Marseille UniversitéRamonville-Saint-AgneFrance
  3. 3.IMEP- IRD-Biotrans, Facultés des Sciences et Techniques St JérômeAix-Marseille UniversitéMarseilleFrance
  4. 4.Group of BioprocessesTecnologico de MonterreyMonterreyMexico

Personalised recommendations