Omega-3 Fatty Acids and Its Role in Human Health

  • Darshika Nigam
  • Renu Yadav
  • Udita Tiwari


Fats (triglyceride) are the main energy storage macromolecules in case of animal and have served not only as a structural component of cell membrane, in which they are anchored by phospholipid molecules. Fats are esters of fatty acids condensed with glycerol molecules. Fatty acids have been categorized into essential and nonessential fatty acids on the basis of the ability of an organism to biosynthesize them. Essential fatty acids (linolenic, linoleic, and arachidonic acids) cannot be biosynthesized by an organism so must be provided through diet. One of the essential families of fatty acids for humans is the omega-3 fatty acids which include ɑ-linolenic acid (ALA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA). These essential nutrients enhance quality of life by supporting hormones, inflammation, regulating blood coagulation, mental health of an individual. The present chapter explores in detail the biological functions and dietary benefits of the omega-3 fatty acids in regulating metabolism of the body and its protective role in prevention many diseases.


Omega-3 fatty acids, ɑ-linolenic acid Eicosapentaenoic acid Docosahexaenoic acid Human health Functional food 


  1. 1.
    Chan EJ, Leslie C (2009) What can we expect from omega-3 fatty acids? Cleve Clin J Med 76(4):245–251PubMedCrossRefGoogle Scholar
  2. 2.
    Anderson BM, Ma DWL (2009) Are all n-3 polyunsaturated fatty acids created equal? Lipids Health Dis 8:33–39PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Doughman SD, Krupanidhi S, Carani BS (2007) Omega-3 fatty acids for nutrition and medicine: considering microalgae oil as a vegetarian source of EPA and DHA. Curr Diabetes Rev 3(3):198–203PubMedCrossRefGoogle Scholar
  4. 4.
    Fodor JG, Helis E, Yazdekhasti N et al (2014) “Fishing” for the origins of the “Eskimos and Heart Disease” story: facts or wishful thinking? Can J Cardiol 30(8):864–868PubMedCrossRefGoogle Scholar
  5. 5.
    Maillard V, Bougnoux P, Ferrari P et al (2002) N-3 and N-6 fatty acids in breast adipose tissue and relative risk of breast cancer in a case-control study in tours, France. Int J Cancer 98(1):78–83PubMedCrossRefGoogle Scholar
  6. 6.
    Ferrucci L, Cherubini A, Bandinelli S et al (2006) Relationship of plasma polyunsaturated fatty acids to circulating inflammatory markers. J Clin Endocrinol Metab 91(2):439–446PubMedCrossRefGoogle Scholar
  7. 7.
    FAO/WHO Fats and fatty acids in human nutrition. Report of an expert consultation. FAO Food and Nutrition Paper 91 Rome 2011. ISSN:0254-4725Google Scholar
  8. 8.
    Garg ML, Wood LG, Singh H et al (2006) Means of delivering recommended levels of long chain n-3 polyunsaturated fatty acids in human diets. J Food Sci 71(5):66–71CrossRefGoogle Scholar
  9. 9.
    Zaciragic A, Huskic J, Hadzovic-Dzuvo A et al (2007) Serum C-reactive protein concentration and measures of adiposity in patients with type 2 diabetes mellitus. Bosn J Basic Med Sci 7(4):322–327PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Gogus U, Smith C (2010) n-3 Omega fatty acids: a review of current knowledge. Int J Food Sci Technol 45:417–436CrossRefGoogle Scholar
  11. 11.
    Simopoulos AP (2002) The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed Pharmacother 56(8):365–379PubMedCrossRefGoogle Scholar
  12. 12.
    De Lorgeril M, Renaud S, Mamelle N et al (1994) Mediterranean alpha-linolenic acid-rich diet in secondary prevention of coronary heart disease. Lancet 343(8911):1454–1459PubMedCrossRefGoogle Scholar
  13. 13.
    Raheja BS, Sadikot SM, Phatak RB et al (1993) Significance of the N-6/N-3 ratio for insulin action in diabetes. Ann N Y Acad Sci 683:258–271PubMedCrossRefGoogle Scholar
  14. 14.
    Portolesi R, Powell BC, Gibson RA (2007) Competition between 24:5n-3 and ALA for Delta 6 desaturase may limit the accumulation of DHA in HepG2 cell membranes. J Lipid Res 48(7):1592–1598PubMedCrossRefGoogle Scholar
  15. 15.
    Cleland LG, James MJ, Neumann MA et al (1992) Linoleate inhibits EPA incorporation from dietary fish-oil supplements in human subjects. Am J Clin Nutr 55(2):395–399PubMedCrossRefGoogle Scholar
  16. 16.
    Calder PC (2010) Omega-3 fatty acids and inflammatory processes. Nutrients 2:355–374PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Tapiero H, Ba GN, Couvreur P et al (2002) Polyunsaturated fatty acids (PUFA) and eicosanoids in human health and pathologies. Biomed Pharmacother 56:215–222PubMedCrossRefGoogle Scholar
  18. 18.
    Calder PC (2009) Polyunsaturated fatty acids and inflammatory processes: new twists in an old tale. Biochimie 1(6):791–795CrossRefGoogle Scholar
  19. 19.
    Li D, Moorman R, Vanhercke T et al (2016) Classification and substrate head-group specificity of membrane fatty acid desaturases. Comput Struct Biotechnol J 14:341–349PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Liang X, Nazarian A, Erdjument-Bromage H (2001) Heterogeneous fatty acylation of Src family kinases with polyunsaturated fatty acids regulates raft localization and signal transduction. J Biol Chem 276(33):30987–30994PubMedCrossRefGoogle Scholar
  21. 21.
    Carughi A, Huynh LT, Perelman D (2010) Effect of omega-3 fatty acid supplementation on indicators of membrane fluidity. FASEB J (Meeting Abstract Supplement) 939:12Google Scholar
  22. 22.
    Siscovick DS, Raghunathan TE, King I (1995) Dietary intake and cell membrane levels of long-chain n-3 polyunsaturated fatty acids and the risk of primary cardiac arrest. JAMA 274:1363–1367PubMedCrossRefGoogle Scholar
  23. 23.
    Albert CM, Campos H, Stampfer MJ (2002) Blood levels of long-chain n-3 fatty acids and the risk of sudden death. N Engl J Med 346:1113–1118PubMedCrossRefGoogle Scholar
  24. 24.
    Bicknell IR, Darrow R, Barsalou L et al (2002) Alterations in retinal rod outer segment fatty acids and light-damage susceptibility in P23H rats. Mol Vis 8(34):333–340PubMedGoogle Scholar
  25. 25.
    Das UN (1999) Essential fatty acids, lipid peroxidation and apoptosis. Prostaglandins Leukot Essent Fatty Acids 61:157–163PubMedCrossRefGoogle Scholar
  26. 26.
    Yap SC, Choo YM, Hew NF et al (1995) Oxidative susceptibility of low density lipoprotein from rabbits fed atherogenic diets containing coconut, palm, or soybean oils. Lipids 30:1145–1150PubMedCrossRefGoogle Scholar
  27. 27.
    Musiek ES, Brooks JD, Joo M et al (2008) Electrophilic cyclopentenone neuroprostanes are anti-inflammatory mediators formed from the peroxidation of the −3 polyunsaturated fatty acid docosahexaenoic acid. J Biol Chem 283(29):19927–19935PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Komatsu W, Ishihara K, Murata M et al (2003) Docosahexaenoic acid suppresses nitric oxide production and inducible nitric oxide synthase expression in interferon-γ plus lipopolysaccharide-stimulated murine macrophages by inhibiting the oxidative stress. Free Radic Biol Med 34:1006–1016PubMedCrossRefGoogle Scholar
  29. 29.
    Karin M, Ben-Neriah Y (2000) Phosphorylation meets ubiquitination: the control of NF-κB activity. Annu Rev Immunol 18:621–663PubMedCrossRefGoogle Scholar
  30. 30.
    Pogozheva AV, Martynova EA, Samsonov MA (1994) Dietary effects of PUFA omega-3 on lipid peroxidation and antioxidant system in patients with IHD, hyperlipoproteinemia and hypertension. Vopr Pitan 4:40–42Google Scholar
  31. 31.
    Simopoulos AP (1991) Omega-3 fatty acids in health and disease and in growth and development. Am J Clin Nutr 54:438–463PubMedCrossRefGoogle Scholar
  32. 32.
    Li H, Ruan XZ, Powis SH et al (2005) EPA and DHA reduce LPS-induced inflammation responses in HK-2 cells: evidence for a PPAR-gamma-dependent mechanism. Kidney Int 67(3):867–874PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Bernardo A, Levi G, Minghetti L (2000) Role of the peroxisome proliferator-activated receptor-gamma (PPAR-gamma) and its natural ligand 15-deoxy-Delta12, 14-prostaglandin J2 in the regulation of microglial functions. Eur J Neurosci 12(7):2215–2223PubMedCrossRefGoogle Scholar
  34. 34.
    Bogna G (2014) Peroxisome proliferator-activated receptors and their ligands: nutritional and clinical implications – a review. Nutr J 13:17CrossRefGoogle Scholar
  35. 35.
    Jump DB, Tripathy S, Depner CM (2013) Fatty acid–regulated transcription factors in the liver. Annu Rev Nutr 33:249–269PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Rudkowska I, Garenc C, Couture P et al (2009) Omega-3 fatty acids regulate gene expression levels differently in subjects carrying the PPARa L162V polymorphism. Genes Nutr 4:199–205PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Danner M, Kasl SV, Abramson JL et al (2003) Association between depression and elevated C-reactive protein. Psychosom Med 65(3):347–356PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Song C, Li X, Leonard BE et al (2003) Effects of dietary n-3 or n-6 fatty acids on interleukin-1beta-induced anxiety, stress, and inflammatory responses in rats. J Lipid Res 44(10):1984–1991PubMedCrossRefGoogle Scholar
  39. 39.
    James MJ, Gibson RA, Cleland LG (2000) Dietary polyunsaturated fatty acids and inflammatory mediator production. Am J Clin Nutr 71:343S–348SPubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Caughey GE, Mantzioris E, Gibson RA et al (1996) The effect on human tumor necrosis factor alpha and interleukin 1 beta production of diets enriched in n-3 fatty acids from vegetable oil or fish oil. Am J Clin Nutr 63(1):116–122PubMedCrossRefGoogle Scholar
  41. 41.
    Phillips T, Childs AC, Dreon DM et al (2003) A dietary supplement attenuates IL-6 and CRP after eccentric exercise in untrained males. Med Sci Sports Exerc 35(12):2032–2037PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Venkatraman JT, Chu WC (1999) Effects of dietary omega-3 and omega-6 lipids and vitamin E on serum cytokines, lipid mediators and anti-DNA antibodies in a mouse model for rheumatoid arthritis. J Am Coll Nutr 18(6):602–613PubMedCrossRefGoogle Scholar
  43. 43.
    Norris JM, Yin X, Lamb MM et al (2007) Omega-3 polyunsaturated fatty acid intake and islet autoimmunity in children at increased risk for type 1 diabetes. JAMA: J Am Med Assoc 298(12):1420–1428CrossRefGoogle Scholar
  44. 44.
    Rizos EC, Ntzani EE, Bika E, Kostapanos MS et al (2012) Association between Omega-3 fatty acid supplementation and risk of major cardiovascular disease events a systematic review and meta-analysis. JAMA 308(10):1024–1033PubMedCrossRefGoogle Scholar
  45. 45.
    Kwak SM, Myung SK, Lee YJ et al (2012) Efficacy of omega-3 fatty acid supplements (eicosapentaenoic acid and docosahexaenoic acid) in the secondary prevention of cardiovascular disease: a meta-analysis of randomized, double-blind, placebo-controlled trials. Arch Int Med 172(9):686–694CrossRefGoogle Scholar
  46. 46.
    Billman GE (2013) The effects of omega-3 polyunsaturated fatty acids on cardiac rhythm: a critical reassessment. Pharmacol Ther 140(1):53–80PubMedCrossRefGoogle Scholar
  47. 47.
    Miller PE, Van Elswyk M, Alexander DD (2014) Long-chain omega-3 fatty acids eicosapentaenoic acid and docosahexaenoic acid and blood pressure: a meta-analysis of randomized controlled trials. Am J Hypertens 27(7):885–896PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Geleijnse JM, Giltay EJ, Grobbee DE et al (2002) Blood pressure response to fish oil supplementation: metaregression analysis of randomized trials. J Hypertens 20(8):1493–1499PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Morris MC, Sacks F, Rosner B (1993) Does fish oil lower blood pressure? A meta-analysis of controlled trials. Circulation 88(2):523–353PubMedCrossRefGoogle Scholar
  50. 50.
    Mori TA, Bao DQ, Burke V, Puddey IB, Beilin LJ (1993) Docosahexaenoic acid but not eicosapentaenoic acid lowers ambulatory blood pressure and heart rate in humans. Hypertension 34(2):253–260CrossRefGoogle Scholar
  51. 51.
    Harris WS, Connor WE, Illingworth DR et al (1990) Effects of fish oil on VLDL triglyceride kinetics in humans. J Lipid Res 31(9):1549–1558PubMedPubMedCentralGoogle Scholar
  52. 52.
    Nestel PJ, Connor WE, Reardon MF et al (1984) Suppression by diets rich in fish oil of very low density lipoprotein production in man. J Clin Invest 74(1):82–89PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Ebrahimi M, Ghayour-Mobarhan M, Rezaiean S et al (2009) Omega-3 fatty acid supplements improve the cardiovascular risk profile of subjects with metabolic syndrome, including markers of inflammation and auto-immunity. Acta Cardiol 64(3):321–327PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Wall R, Ross RP, Fitzgerald GF et al (2010) Fatty acids from fish: the anti-inflammatory potential of long-chain omega-3 fatty acids. Nutr Rev 68(5):280–289PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Miles EA, Calder PC (2012) Influence of marine n-3 polyunsaturated fatty acids on immune function and a systematic review of their effects on clinical outcomes in rheumatoid arthritis. Br J Nutr 107(Suppl 2):S171–S184PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Robinson LE, Mazurak VC (2013) n-3 Polyunsaturated fatty acids: relationship to inflammation in health adults and adults exhibiting features of metabolic syndrome. Lipids 48(4):319–332PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Li K, Huang T, Zheng J et al (2014) Effect of marine-derived n-3 polyunsaturated fatty acids on C-reactive protein, interleukin 6 and tumor necrosis factor α: a meta-analysis. PLoS One 9(2):e88103PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Farmer A, Montori V, Dinneen S et al (2001) Fish oil in people with type 2 diabetes mellitus. Cochrane Database Syst Rev 3:CD003205Google Scholar
  59. 59.
    MacLean CH, Mojica WA, Morton SC et al (2004) Effects of omega-3 fatty acids on lipids and glycemic control in type II diabetes and the metabolic syndrome and on inflammatory bowel disease, rheumatoid arthritis, renal disease, systemic lupus erythematosus, and osteoporosis. Evid Rep Technol Assess 89:1–4Google Scholar
  60. 60.
    Hartweg J, Farmer AJ, Perera R et al (2007) Metaanalysis of the effects of n-3 polyunsaturated fatty acids on lipoproteins and other emerging lipid cardiovascular risk markers in patients with type 2 diabetes. Diabetologia 50(8):1593–1602PubMedCrossRefGoogle Scholar
  61. 61.
    Hu FB, Cho E, Rexrode KM et al (2003) Fish and long-chain omega-3 fatty acid intake and risk of coronary heart disease and total mortality in diabetic women. Circulation 107(14):1852–1857PubMedCrossRefGoogle Scholar
  62. 62.
    Nettleton JA, Katz R (2005) n-3 Long-chain polyunsaturated fatty acids in type 2 diabetes: a review. J Am Diet Assoc 105(3):428–440PubMedCrossRefGoogle Scholar
  63. 63.
    Li J, Huang CJ, Xie D (2008) Anti-obesity effects of conjugated linoleic acid, docosahexaenoic acid, and eicosapentaenoic acid. Mol Nutr Food Res 52(6):631–645PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Weintraub MS, Zechner R, Brown A et al (1988) Dietary polyunsaturated fats of the W-6 and W-3 series reduce postprandial lipoprotein levels. Chronic and acute effects of fat saturation on postprandial lipoprotein metabolism. J Clin Invest 82(6):1884–1893PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Woodman RJ, Mori TA, Burke V et al (2002) Effects of purified eicosapentaenoic and docosahexaenoic acids on glycemic control, blood pressure, and serum lipids in type 2 diabetic patients with treated hypertension. Am J Clin Nutr 76(5):1007–1015PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Gingras A, White PJ, Chouinard PY et al (2007) Long-chain omega-3 fatty acids regulate bovine whole-body protein metabolism by promoting muscle insulin signalling to the AktmTOR- S6K1 pathway and insulin sensitivity. J Physiol 579:269–284PubMedCrossRefGoogle Scholar
  67. 67.
    Metter EJ, Talbot LA, Schrager M et al (2002) Skeletal muscle strength as a predictor of all-cause mortality in healthy men. J Gerontol A Biol Sci Med Sci 57(10):B359–B365PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Yehuda S, Rabinovitz S, Mostofsky DI (1999) Essential fatty acids are mediators of brain biochemistry and cognitive functions. J Neurosci Res 56(6):565–570PubMedCrossRefGoogle Scholar
  69. 69.
    Wurtman RJ, Ulus IH, Cansev M et al (2006) Synaptic proteins and phospholipids are increased in gerbil brain by administering uridine plus docosahexaenoic acid orally. Brain Res 1088(1):83–92PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Innis SM (2007) Dietary (n-3) fatty acids and brain development. J Nutr 137(4):855–859PubMedCrossRefGoogle Scholar
  71. 71.
    Georgieff MK, Innis SM (2005) Controversial nutrients that potentially affect preterm neurodevelopment: essential fatty acids and iron. Pediatr Res 57:99R–103RPubMedCrossRefGoogle Scholar
  72. 72.
    Ahmad A, Moriguchi T, Salem N (2002) Decrease in neuron size in docosahexaenoic acid-deficient brain. Pediatr Neurol 26(3):210–218PubMedCrossRefGoogle Scholar
  73. 73.
    Das UN, Fams (2003) Long-chain polyunsaturated fatty acids in the growth and development of the brain and memory. Nutrition (Burbank, Los Angeles County, Calif.) 19(1):62–65CrossRefGoogle Scholar
  74. 74.
    Lauritzen I, Blondeau N, Heurteaux C et al (2000) Polyunsaturated fatty acids are potent neuroprotectors. EMBO J 19(8):1784–1793PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Kim HY, Akbar M, Lau A et al (2000) Inhibition of neuronal apoptosis by docosahexaenoic acid (22:6n-3). Role of phosphatidylserine in antiapoptotic effect. J Biol Chem 275(45):35215–35223PubMedCrossRefGoogle Scholar
  76. 76.
    Giedd JN, Blumenthal J, Jeffries NO et al (1999) Brain development during childhood and adolescence: a longitudinal MRI study. Nat Neurosci 2(10):861–863PubMedCrossRefGoogle Scholar
  77. 77.
    Innis SM (2005) Essential fatty acid transfer and fetal development. Placenta 26(Suppl A):S70–S75PubMedCrossRefGoogle Scholar
  78. 78.
    Dunstan JA, Simmer K, Dixon G et al (2008) Cognitive assessment of children at age 2(1/2) years after maternal fish oil supplementation in pregnancy: a randomised controlled trial. Arch Dis Child Fetal Neonatal 93(1):F45–F50CrossRefGoogle Scholar
  79. 79.
    Hibbeln JR, Davis JM, Steer C et al (2007) Maternal seafood consumption in pregnancy and neurodevelopmental outcomes in childhood (ALSPAC study): an observational cohort study. Lancet 369(9561):578–585PubMedCrossRefGoogle Scholar
  80. 80.
    He K, Song Y, Daviglus ML et al (2004) Fish consumption and incidence of stroke: a meta-analysis of cohort studies. Stroke; J Cereb Circ 35(7):1538–1542CrossRefGoogle Scholar
  81. 81.
    Lukiw WJ, Cui JG, Marcheselli VL et al (2005) A role for docosahexaenoic acid-derived neuroprotectin D1 in neural cell survival and Alzheimer disease. J Clin Invest 115(10):2774–2783PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Schaefer EJ, Bongard V, Beiser AS et al (2006) Plasma phosphatidylcholine docosahexaenoic acid content and risk of dementia and Alzheimer disease: the Framingham heart study. Arch Neurol 63(11):1545–1550PubMedCrossRefGoogle Scholar
  83. 83.
    Nigam D (2015) Chapter 11: Role of free radicals and oxidative stress in neurodegenerative disorders. In: Rani V, Yadav UCS (eds) Free radicals in human health and disease. Springer, New York, pp 143–158Google Scholar
  84. 84.
    Samadi P, Gregoire L, Rouillard C et al (2006) Docosahexaenoic acid reduces levodopa-induced dyskinesias in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine monkeys. Ann Neurol 59(2):282–288PubMedCrossRefGoogle Scholar
  85. 85.
    Julien C, Berthiaume L, Hadj-Tahar A et al (2006) Postmortem brain fatty acid profile of levodopa-treated Parkinson disease patients and parkinsonian monkeys. Neurochem Int 48(5):404–414PubMedCrossRefGoogle Scholar
  86. 86.
    Tandon R, Nasrallah HA, Keshavan MS (2009) Schizophrenia, “just the facts” 4. Clinical features and conceptualization. Schizophr Res 110(1–3):1–23PubMedCrossRefGoogle Scholar
  87. 87.
    Peet M, Brind J, Ramchand CN et al (2001) Two double blind placebo-controlled pilot studies of eicosapentaenoic acid in the treatment of schizophrenia. Schizophr Res 49(3):243–251PubMedCrossRefGoogle Scholar
  88. 88.
    Tanskanen A, Hibbeln JR, Tuomilehto J et al (2001) Fish consumption and depressive symptoms in the general population in Finland. Psychiatr Serv (Washington, DC) 52(4):529–531CrossRefGoogle Scholar
  89. 89.
    Noaghiul S, Hibbeln JR (2003) Cross-national comparisons of seafood consumption and rates of bipolar disorders. Am J Psychiatry 160(12):2222–2227PubMedCrossRefGoogle Scholar
  90. 90.
    Osher Y, Bersudsky Y, Belmaker RH (2005) Omega-3 eicosapentaenoic acid in bipolar depression: report of a small open-label study. J Clin Psychiatry 66(6):726–729PubMedCrossRefGoogle Scholar
  91. 91.
    Logan AC (2004) Omega-3 fatty acids and major depression: a primer for the mental health professional. Lipids Health Dis 3:25–33PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Trull TJ, Verges A, Wood PK et al (2012) The structure of diagnostic and statistical manual of mental disorders (4th edition, text revision) personality disorder symptoms in a large national sample. Pers Disord 3(4):355–369CrossRefGoogle Scholar
  93. 93.
    Mitchell EA, Aman MG, Turbott SH et al (1987) Clinical characteristics and serum essential fatty acid levels in hyperactive children. Clin Pediatr 26(8):406–441CrossRefGoogle Scholar
  94. 94.
    Richardson AJ, Puri BK (2002) A randomized double-blind, placebo-controlled study of the effects of supplementation with highly unsaturated fatty acids on ADHD-related symptoms in children with specific learning difficulties. Prog Neuro-Psychopharmacol Biol Psychiatry 26(2):233–239CrossRefGoogle Scholar
  95. 95.
    Joshi K, Lad S, Kale M et al (2006) Supplementation with flax oil and vitamin C improves the outcome of attention deficit hyperactivity disorder (ADHD). Prostaglandins Leukot Essent Fatty Acids 74(1):17–21PubMedCrossRefGoogle Scholar
  96. 96.
    Richardson AJ, Montgomery P (2005) The Oxford-Durham study: a randomized, controlled trial of dietary supplementation with fatty acids in children with developmental coordination disorder. Pediatric 115(5):1360–1366CrossRefGoogle Scholar
  97. 97.
    Bell JG, MacKinlay EE, Dick JR et al (2004) Essential fatty acids and phospholipase A2 in autistic spectrum disorders. Prostaglandins Leukot Essent Fatty Acids 71(4):201–204PubMedCrossRefGoogle Scholar
  98. 98.
    Meguid NA, Atta HM, Gouda AS et al (2008) Role of polyunsaturated fatty acids in the management of Egyptian children with autism. Clin Biochem 41(13):1044–1048PubMedCrossRefGoogle Scholar
  99. 99.
    Amminger GP, Berger GE, Schafer MR et al (2007) Omega-3 fatty acids supplementation in children with autism: a double blind randomized, placebo-controlled pilot study. Biol Psychiatry 61(4):551–553PubMedCrossRefGoogle Scholar
  100. 100.
    Meiri G, Bichovsky Y, Belmaker RH (2009) Omega 3 fatty acid treatment in autism. J Child Adolesc Psychopharmacol 19(4):449–451PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Bazan NG (2006) Cell survival matters: docosahexaenoic acid signaling, neuroprotection and photoreceptors. Trends Neurosci 29(5):263–271PubMedCrossRefGoogle Scholar
  102. 102.
    Wu J, Cho E, Edward L et al (2017) Dietary intakes of eicosapentaenoic acid and docosahexaenoic acid and risk of age-related macular degeneration. Opthalmology 124(5):634–643CrossRefGoogle Scholar
  103. 103.
    Birch EE, Castaneda YS, Wheaton DH et al (2005) Visual maturation of term infants fed long chain polyunsaturated fatty acid-supplemented or control formula for 12 mo. Am J Clin Nutr 81(4):871–879PubMedCrossRefGoogle Scholar
  104. 104.
    SanGiovanni JP, Parra-Cabrera S, Colditz GA et al (2000) Meta-analysis of dietary essential fatty acids and long-chain polyunsaturated fatty acids as they relate to visual resolution acuity in healthy preterm infants. Pediatric 105(6):1292–1298CrossRefGoogle Scholar
  105. 105.
    Abu JI, Konje JC (2000) Leukotrienes in gynaecology: the hypothetical value of anti-leukotriene therapy in dysmenorrhoea and endometriosis. Hum Reprod Update 6(2):200–205PubMedCrossRefGoogle Scholar
  106. 106.
    Netsu S, Konno R, Odagiri K et al (2008) Oral eicosapentaenoic acid supplementation as possible therapy for endometriosis. Fertil Steril 90:1496–1502PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Fujiwara H, Konno R, Netsu S et al (2004) Localization of mast cells in endometrial cysts. Am J Reprod Immunol (New York, NY: 1989) 51(5):341–344CrossRefGoogle Scholar
  108. 108.
    Berquin IM, Edwards IJ, Chen YQ (2008) Multi–targeted therapy of cancer by omega −3 fatty acids. Cancer Lett 269(2):363–377PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Donat-Vargas C, Berglund M, Glynn A et al (2017) Dietary polychlorinated biphenyls, long-chain n-3 polyunsaturated fatty acids and incidence of malignant melanoma. Eur J Cancer 72:137–143PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Bosetti C, Negri E, Franceschi S et al (2001) Diet and ovarian cancer risk: a case-control study in Italy. Int J Cancer 93(6):911–915PubMedCrossRefGoogle Scholar
  111. 111.
    Chavarro JE, Stampfer MJ, Li H et al (2007) A prospective study of polyunsaturated fatty acid levels in blood and prostate cancer risk. cancer epidemiology, biomarkers & prevention: a publication of the American Association for Cancer Research. Cosponsored by Am Soc Prevent Oncol 16(7):1364–1370CrossRefGoogle Scholar
  112. 112.
    Boelsma E, Hendriks HFJ, Roza L (2001) Nutritional skin care: health effects of micronutrients and fatty acids. Am J Clin Nutr 73(5):853–864PubMedCrossRefGoogle Scholar
  113. 113.
    Pilkington SM, Rhodes LE (2010) Omega-3 fatty acids and skin. In: Krutmann J, Humbert P (eds) Nutrition for healthy skin. Springer, New York, pp 91–107CrossRefGoogle Scholar
  114. 114.
    Zevenbergen HA, de Bree M, Zeelenberg K et al (2009) Foods with a high fat quality are essential for healthy diets. Ann Nutr Metab 54(1):15–24PubMedCrossRefGoogle Scholar
  115. 115.
    Rubio-Rodrguez N, Beltrn S, Jaime I et al (2010) Production of omega-3 polyunsaturated fatty acid concentrates: a review. Innovative Food Sci Emerg Technol 11:1–12CrossRefGoogle Scholar
  116. 116.
    Kris-Etherton PM, Harris WS, Appel LJ (2003) Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Arterioscler Thromb Vasc Biol 23:20–30Google Scholar
  117. 117.
    Tur JA, Bibiloni MDM, Sureda A et al (2012) Dietary sources of omega 3 fatty acids: public health risks and benefits. British J Nutr 107(S2):S23–S52CrossRefGoogle Scholar
  118. 118.
    Plaza M, Cifuentes A, Ibanez E (2008) In the search of new functional food ingredients from algae. Trends Food Sci Technol 19:31–39CrossRefGoogle Scholar
  119. 119.
    Sanchez-Machado DI, Lopez-Hernandez J, Paseiro-Losada P et al (2004) An HPLC method for quantification of sterols in edible seaweeds. Biomed Chrom 18(3):183–190CrossRefGoogle Scholar
  120. 120.
    Yongmanitchai W, Ward OP (1991) Growth of and omega-3 fatty acid production by Phaeodactylum tricornutum under different culture conditions. Appl Environ Microbiol 57(2):419–425PubMedPubMedCentralGoogle Scholar
  121. 121.
    Lemahieua C, Bruneela C, Termote-Verhalle R et al (2013) Impact of feed supplementation with different omega-3 rich microalgae species on enrichment of eggs of laying hens. Food Chem 141(4):4051–4059CrossRefGoogle Scholar
  122. 122.
    Burja AM, Radianingtyas H, Windust A et al (2006) Isolation and characterization of polyunsaturated fatty acid producing thraustochytrium species: screening of strains and optimization of omega-3 production. Appl Microbiol Biotechnol 72(6):1161–1169PubMedCrossRefGoogle Scholar
  123. 123.
    Zhu L, Zhang X, Ji L (2007) Changes of lipid content and fatty acid composition of schizochytrium limacinum in response to different temperatures and salinities. Process Biochem 42(2):210–214CrossRefGoogle Scholar
  124. 124.
    Ward OP, Singh A (2005) Omega-3/6 fatty acids: alternative sources of production. Process Biochem 40(12):3627–3652CrossRefGoogle Scholar
  125. 125.
    Hur B, Cho D, Kim H (2002) Effect of culture conditions on growth and production of docosahexaenoic acid (DHA) using Thraustochytrium aureum ATCC 34304. Biotechnol Bioprocess Eng 7(1):10–15CrossRefGoogle Scholar
  126. 126.
    Carvalho AP, Malcata FX (2005) Optimization of omega-3 fatty acid production by microalgae: crossover effects of CO2 and light intensity under batch and continuous cultivation modes. Mar Biotechnol (NY) 7(4):381–388CrossRefGoogle Scholar
  127. 127.
    Zhao B, Li Y, Mbifile MD et al (2017) Improvement of docosahexaenoic acid fermentation from Schizochytrium sp. AB-610 by staged pH control based on cell morphological changes. Engg Life Sci 17(9):981–988. CrossRefGoogle Scholar
  128. 128.
    Marriott BP, Yu K, Majchrzak-Hong S et al (2014) Understanding diet and modeling changes in the omega-3 and omega-6 fatty acid composition of U.S. Garrison Foods for active duty personnel. Mil Med 179:168–175PubMedCrossRefGoogle Scholar
  129. 129.
    US Food and Drug Administration, Center for Food Safety and Applied Nutrition. Agency response letter: GRAS Notice No. GRN 000080 (2001)
  130. 130.
    Wood KE, Mantzioris E, Gibson RA et al (2013) Incorporating macadamia oil and butter to reduce dietary omega-6 polyunsaturated fatty acid intake. Nutr Diet 70:94–100CrossRefGoogle Scholar
  131. 131.
    Larque E, Demmelmair H, Koletzko B (2002) Perinatal supply and metabolism of long-chain polyunsaturated fatty acids: importance for the early development of the nervous system. Ann N Y Acad Sci 967:299–310PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Lands WE (2000) Commentary on the workshop statement essentiality of and recommended dietary intakes for omega-6 and omega-3 fatty acids. Prostaglandins Leukot Essent Fatty Acids 63:125–126PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Howe PRC, Downing JA, Grenyer BFS et al (2002) Tuna fishmeal as a source of DHA for n-3 PUFA enrichment of pork, chicken, and eggs. Lipids 37:1067–1076PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Wu G, Truksa M, Datla N et al (2005) Stepwise engineering to produce high yields of very long-chain polyunsaturated fatty acids in plants. Nat Biotechnol 23(8):1013–1017PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Bibus D, Lands B (2015) Balancing proportions of competing omega-3 and omega-6 highly unsaturated fatty acids (HUFA) in tissue lipids. Prostaglandins Leukot Essent Fatty Acids 99:19–23PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Feldstein AE, Mori TA, Barden A et al (2013) Targeted alteration of dietary n-3 and n-6 fatty acids for the treatment of chronic headaches: a randomized trial. Pain 154:2441–2451PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Food and Nutrition Board, Institute of Medicine (2002) Dietary reference intakes: energy, carbohydrate, fiber, fat, fatty Acids, cholesterol, protein, and amino acids. Part 1 and 2. National Academy Press, Washington DCGoogle Scholar
  138. 138.
    Bi X, Siow PC, Lim SW, Henry CJ (2017) Dietary fatty acids open analysis and its relevance to human health. SM J Nut Metab 1(1):1005–1017Google Scholar
  139. 139.
    Lichtenstein AH, Appel LJ, Brands M et al (2006) Diet and lifestyle recommendations revision 2006: a scientific statement from the American Heart Association nutrition committee. Circulation 114:82–96CrossRefGoogle Scholar
  140. 140.
    Food and Drug Administration and Environmental Protection Agency. FDA and EPA Announce the Revised Consumer Advisory on Methylmercury in FishGoogle Scholar
  141. 141.
    National Cholesterol Education Program (NCEP) Expert Panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III) final report (2002) Circulation 106(3):143–3421Google Scholar
  142. 142.
    Harris WS, Assaad B, Poston WC (2006) Tissue omega-6/omega-3 fatty acid ratio and risk for coronary artery disease. Am J Cardiol 98(4A):19i–26iPubMedCrossRefGoogle Scholar
  143. 143.
    Harris WS (2006) The omega-6/omega-3 ratio and cardiovascular disease risk: uses and abuses. Curr Atheroscler Rep 8(6):453–459PubMedCrossRefGoogle Scholar
  144. 144.
    Simopoulos AP (2004) Omega-6/omega-3 essential fatty acid ratio and chronic diseases. Food Rev Intl 20(1):77–90CrossRefGoogle Scholar
  145. 145.
    European Food Safety Authority Panel on Dietetic Products, Nutrition, and Allergies (NDA) (2010) Scientific opinion on dietary reference values for fats, including saturated fatty acids, polyunsaturated fatty acids, monounsaturated fatty acids, trans fatty acids, and cholesterol. EFSA J 8(3):107Google Scholar
  146. 146.
    FAO/WHO (2008) Interim summary of conclusions and dietary recommendations on total fat & fatty acids. Joint FAO/WHO expert consultation on fats and fatty acids in human nutrition. WHO, Geneva, pp 1–14Google Scholar
  147. 147.
    International Society for the Study of Fatty Acids and Lipids. Recommendations for intake of polyunsaturated fatty acids in healthy adults. Available at: Intake of Polyunsaturated Fatty Acids in Healthy Adults. Available at:

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Darshika Nigam
    • 1
  • Renu Yadav
    • 1
  • Udita Tiwari
    • 1
  1. 1.Department of Biochemistry, School of Life SciencesDr. Bhimrao Ambedkar UniversityAgraIndia

Personalised recommendations