Advertisement

Plant-Derived Drug Molecules as Antibacterial Agents

  • Gauri Gaur
  • Utkrishta L. Raj
  • Shweta Dang
  • Sanjay Gupta
  • Reema Gabrani
Chapter

Abstract

With the advent of time, many microbial strains have developed resistance against various antibiotics. The treatment of infectious diseases gets more difficult when the bacteria form multidrug-resistant biofilms. Bacteria like Escherichia coli, Staphylococcus epidermidis, Staphylococcus aureus, and Listeria monocytogenes are capable of forming biofilm in vitro and cause several chronic infections like inflammatory bowel disease, colorectal cancer, catheter infection, and listeriosis. As these microorganisms are difficult to eliminate with antibiotics, there is an insistent need for alternative sources of antimicrobial therapies. Plants are one of the major sources of chemical compounds with higher therapeutic potential since many years. A large spectrum of plant-derived compounds and their secondary metabolites have antimicrobial activity and are being widely studied for their antimicrobial, anti-inflammatory, and antiviral properties. This chapter focuses on the various antibacterial properties of these plant-derived compounds and their activity alone or in combination with other compounds or antibiotics as possible antibacterial agents. It also focuses on the nanoencapsulation of these compounds to improve their bioavailability.

Keywords

Antimicrobial resistance Biofilm Nanoencapsulation Synergy 

References

  1. 1.
    Nikaido H (2009) Multidrug resistance in bacteria. Annu Rev Biochem 78:119–146PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Davey ME, O’toole GA (2000) Microbial biofilms: from ecology to molecular genetics. Mol Biol Rev 64(4):847–867CrossRefGoogle Scholar
  3. 3.
    de Lencastre H, Oliveira D, Tomasz A (2007) Antibiotic resistant Staphylococcus aureus: a paradigm of adaptive power. Curr Opin Microbiol 10(5):428–435PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    European Centre for Disease Prevention and Control Antimicrobial Resistance Interactive (EARS-Net) Database (2013) http://ecdc.europa.eu/en/activities/surveillance/EARS-Net/Pages/Database.aspx. Accessed 15 Feb 2017
  5. 5.
    World Health Organization (2014) Global tuberculosis report 2014. WHO, Geneva. http://www.who.int/tb/publications/global_report/en/. Accessed 12 Jan 2017
  6. 6.
    Van Boeckel TP, Gandra S, Ashok A et al (2014) Global antibiotic consumption 2000 to 2010: an analysis of national pharmaceutical sales data. Lancet Infect Dis 14(8):742–750PubMedCrossRefGoogle Scholar
  7. 7.
    Llor C, Bjerrum L (2014) Antimicrobial resistance: risk associated with antibiotic overuse and initiatives to reduce the problem. Ther Adv Drug Saf 5(6):229–241PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Tiwari BK, Valdramidis VP, O’Donnell CP et al (2009) Application of natural antimicrobials for food preservation. J Agric Food Chem 57(14):5987–6000PubMedCrossRefGoogle Scholar
  9. 9.
    Dorman HJ, Deans SG (2000) Antimicrobial agents from plants: antibacterial activity of plant volatile oils. J Appl Microbiol 88(2):308–316PubMedCrossRefGoogle Scholar
  10. 10.
    Cocchiara J, Letizia CS, Lalko J et al (2005) Fragrance material review on cinnamaldehyde. Food Chem Toxicol 45(6):867–923CrossRefGoogle Scholar
  11. 11.
    Tadros T, Izquierdo P, Esquena J, Solans C (2004) Formation and stability of nano-emulsions. Adv Colloid Interf Sci 108–109:303–318CrossRefGoogle Scholar
  12. 12.
    Center for Disease Control and Prevention, Office of Infectious Disease (2013) Antibiotic resistance threats in the United States. http://www.cdc.gov/drugresistance/threat-report-2013. Accessed 28 Jan 2017
  13. 13.
    Byarugaba DK (2005) Antimicrobial resistance and its containment in developing countries. In: Gould IM, van der Meer JWM (eds) Antibiotic policies: theory and practice. Springer, New YorkGoogle Scholar
  14. 14.
    Center for Disease Dynamics, Economics & Policy (2015) State of the world’s antibiotics, 2015. CDDEP: Washington, DC. http://cddep.org/publications/state_worlds_antibiotics_2015#sthash.5RFGA8Oh.dpb. Accessed 17 Feb 2017
  15. 15.
    Walsh C (2000) Molecular mechanisms that confer antibacterial drug resistance. Nature 406(6797):775–781PubMedCrossRefGoogle Scholar
  16. 16.
    World Health Organization (2016) Antibiotic resistance fact sheet 2016. WHO, New York. http://www.who.int/mediacentre/factsheets/fs194/en/. Accessed 12 Jan 2017
  17. 17.
    Ventola CL (2015) The antibiotic resistance crisis: part 1: causes and threats. Pharm Ther 40(4):277–283Google Scholar
  18. 18.
    Lade H, Paul D, Kweon JH (2014) Quorum quenching mediated approaches for control of membrane biofouling. Int J Biol Sci 10(5):550–565PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Tannières M, Lang J, Barnier C et al (2017) Quorum-quenching limits quorum-sensing exploitation by signal-negative invaders. Sci Rep 7:40126PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Petrova OE, Sauer K (2016) Escaping the biofilm in more than one way: desorption, detachment or dispersion. Curr Opin Microbiol 30:67–78PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Costerton JW, Lewandowski Z, Caldwell DE et al (1995) Microbial Biofilms. Annu Rev Microbiol 49:711–745PubMedCrossRefGoogle Scholar
  22. 22.
    Donlan RM (2002) Biofilms: microbial life on surfaces. Emerg Infect Dis 8(9):881–890PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Fletcher M, Loeb GI (1979) Influence of substratum characteristics on the attachment of a marine pseudomonad to solid surfaces. Appl Environ Microbiol 37(1):67–72PubMedPubMedCentralGoogle Scholar
  24. 24.
    Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2(2):95–108PubMedCrossRefGoogle Scholar
  25. 25.
    Korber DR, Lawrence JR, Sutton B, Caldwell DE (1989) Effect of laminar flow velocity on the kinetics of surface recolonization by Mot+ and Mot− Pseudomonas fluorescens. Microb Ecol 18(1):1–19PubMedCrossRefGoogle Scholar
  26. 26.
    Prüß BM (2017) Involvement of two-component signaling on bacterial motility and biofilm development. J Bacteriol 199(18):e00259–e00217PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Kokare CR, Chakraborty S, Khopade AN, Mahadik KR (2009) Biofilm: importance and application. Indian J Biotechnol 8(2):159–169Google Scholar
  28. 28.
    Stoodley P, Purevdorj-Gage B, Costerton JW (2005) Clinical significance of seeding dispersal in biofilms: a response. Microbiology 151(11):3453–3453CrossRefGoogle Scholar
  29. 29.
    Myllymaa K, Levon J, Tiainen VM et al (2013) Formation and retention of staphylococcal biofilms on DLC and its hybrids compared to metals used as biomaterials. Colloids Surf B Biointerfaces 101:290–297PubMedCrossRefGoogle Scholar
  30. 30.
    Karimi A, Karig D, Kumar A, Ardekani AM (2015) Interplay of physical mechanisms and biofilm processes: review of microfluidic methods. Lab Chip 15(1):23–42PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Bendinger B, Rijnaarts HH, Altendorf K, Zehnder AJ (1993) Physicochemical cell surface and adhesive properties of coryneform bacteria related to the presence and chain length of mycolic acids. Appl Environ Microbiol 59(11):3973–3977PubMedPubMedCentralGoogle Scholar
  32. 32.
    Ramli NS, Eng Guan C, Nathan S, Vadivelu J (2012) The effect of environmental conditions on biofilm formation of Burkholderia pseudomallei clinical isolates. PLoS One 7(9):e44104PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Liu R, Zhu J, Yu Z et al (2014) Molecular analysis of long-term biofilm formation on PVC and cast iron surfaces in drinking water distribution system. J Environ Sci 26(4):865–874CrossRefGoogle Scholar
  34. 34.
    Fletcher M (1988) Attachment of Pseudomonas fluorescens to glass and influence of electrolytes on bacterium-substratum separation distance. J Bacteriol 170(5):2027–2030PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Cowan MM, Warren TM, Fletcher M (1991) Mixed species colonization of solid surfaces in laboratory biofilms. Biofouling 3(1):23–34CrossRefGoogle Scholar
  36. 36.
    Hanlon GW, Denyer SP, Hodges NA et al (2004) Biofilm formation and changes in bacterial cell surface hydrophobicity during growth in a CAPD model system. J Pharm Pharmacol 56(7):847–854PubMedCrossRefGoogle Scholar
  37. 37.
    Davies DG, Geesey GG (1995) Regulation of the alginate biosynthesis gene algC in Pseudomonas aeruginosa during biofilm development in continuous culture. Appl Environ Microbiol 61:860–867PubMedPubMedCentralGoogle Scholar
  38. 38.
    Prigent-Combaret C, Vidal O, Dorel C, Lejeune P (1999) Abiotic surface sensing and biofilm-dependent regulation of gene expression in Escherichia coli. J Bacteriol 181:5993–6002PubMedPubMedCentralGoogle Scholar
  39. 39.
    Pulcini E (2001) The effects of initial adhesion events on the physiology of Pseudomonas aeruginosa. Dissertation, Montana State UniversityGoogle Scholar
  40. 40.
    Imamura Y, Chandra J, Mukherjee PK et al (2008) Fusarium and Candida albicans biofilms on soft contact lenses: model development, influence of lens type, and susceptibility to lens care solutions. Antimicrob Agents Chemother 52(1):171–182PubMedCrossRefGoogle Scholar
  41. 41.
    Donlan RM (2001) Biofilm formation: a clinically relevant microbiological process. Clin Infect Dis 33(8):1387–1392PubMedCrossRefGoogle Scholar
  42. 42.
    Harries AD, Dye C (2006) Tuberculosis. Ann Trop Med Parasitol 100(5–6):415–431PubMedGoogle Scholar
  43. 43.
    Bhan MK, Bahl R, Bhatnagar S (2005) Typhoid and paratyphoid fever. Lancet 366(9487):749–762PubMedCrossRefGoogle Scholar
  44. 44.
    Adcox HE, Vasicek EM, Dwivedi V et al (2016) Salmonella extracellular matrix components influence biofilm formation and gallbladder colonization. Infect Immun 84(11):3243–3251PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Atkinson W (2012) Epidemiology and prevention of vaccine- preventable diseases, 12th edn. Public Health Foundation, Washington, DCGoogle Scholar
  46. 46.
    World Health Organization (2006) Diphtheria vaccine. Wkly Epidemiol Rec 81(3):24–32Google Scholar
  47. 47.
    Finkelstein RA (1996) Cholera, Vibrio cholerae O1 and O139, and other pathogenic vibrios. In: Baron S (ed) Medical microbiology, 4th edn. University of Texas, Galveston. Available online http://gsbs.utmb.edu/microbook/ch024.htm
  48. 48.
    Myers AL, Hall M, Williams DJ et al (2013) Prevalence of bacteremia in hospitalized pediatric patients with community-acquired pneumonia. Pediatr Infect Dis J 32(7):736–740PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Center for Disease Control and Prevention (2016) Necrotizing fasciitis: a rare disease, especially for the healthy. https://www.cdc.gov/features/necrotizingfasciitis/. Accessed 20 Feb 2017
  50. 50.
    Mosier DA (1997) Bacterial pneumonia. Vet Clin North Am Food Anim Pract 13(3):483–493PubMedCrossRefGoogle Scholar
  51. 51.
    Marijon E, Mirabel M, Celermajer DS, Jouven X (2012) Rheumatic heart disease. Lancet 379(9819):953–964CrossRefGoogle Scholar
  52. 52.
    Baron S (1996) Medical microbiology, 4th edn. University of Texas Medical Branch, GalvestonGoogle Scholar
  53. 53.
    Cheng AC, Currie BJ (2005) Melioidosis: epidemiology, pathophysiology, and management. Clin Microbiol Rev 18(2):383–416PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Conrads G, de Soet JJ, Song L et al (2014) Comparing the cariogenic species Streptococcus sobrinus and S. mutans on whole genome level. J Oral Microbiol 6:26189PubMedCrossRefGoogle Scholar
  55. 55.
    Smiley ST (2008) Immune defense against pneumonic plague. Immunol Rev 225(1):256–271PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Singh M, Kaur M, Silakari O (2014) Flavones: an important scaffold for medicinal chemistry. Eur J Med Chem 84:206–239PubMedCrossRefGoogle Scholar
  57. 57.
    Nijveldt RJ, van Nood E, van Hoorn DE et al (2001) Flavonoids: a review of probable mechanisms of action and potential applications. Am J Clin Nutr 74(4):418–425CrossRefGoogle Scholar
  58. 58.
    Kumar S, Pandey AK (2013) Chemistry and biological activities of flavonoids: an overview. Sci World J 2013:162750Google Scholar
  59. 59.
    Cowan MM (1999) Plant products as antimicrobial agents. Clin Microbiol Rev 12(4):564–582PubMedPubMedCentralGoogle Scholar
  60. 60.
    Bag A, Chattopadhyay RR (2014) Efflux-pump inhibitory activity of a gallotannin from Terminalia chebula fruit against multidrug-resistant uropathogenic Escherichia coli. Nat Prod Res 28(16):1280–1283PubMedCrossRefGoogle Scholar
  61. 61.
    Jain PK, Joshi H (2012) Coumarin: chemical and pharmacological profile. J Appl Pharm Sci 2(6):236–240Google Scholar
  62. 62.
    Burt S (2004) Essential oils: their antibacterial properties and potential applications in foods—a review. Int J Food Microbiol 94(3):223–253PubMedCrossRefGoogle Scholar
  63. 63.
    Cushnie TP, Cushnie B, Lamb AJ (2014) Alkaloids: an overview of their antibacterial, antibiotic-enhancing and antivirulence activities. Int J Antimicrob Agents 44(5):377–386PubMedCrossRefGoogle Scholar
  64. 64.
    Upadhyay A, Upadhyaya I, Kollanoor-Johny A, Venkitanarayanan K (2014) Combating pathogenic microorganisms using plant-derived antimicrobials: a mini-review of the mechanistic basis. Biomed Res Int 2014:761741PubMedPubMedCentralGoogle Scholar
  65. 65.
    Daglia M (2012) Polyphenols as antimicrobial agents. Curr Opin Biotechnol 23(2):174–181PubMedCrossRefGoogle Scholar
  66. 66.
    Pistelli L, Giorgi I (2012) Antimicrobial properties of flavonoids. In: Patra A (ed) Dietary phytochemicals and microbes. Springer, DordrechtGoogle Scholar
  67. 67.
    Borges A, Abreu AC, Dias C et al (2016) New perspectives on the use of phytochemicals as an emergent strategy to control bacterial infections including biofilms. Molecules 21(7):E877PubMedCrossRefGoogle Scholar
  68. 68.
    Cushnie TT, Lamb AJ (2005) Antimicrobial activity of flavonoids. Int J Antimicrob Agents 26(5):343–356PubMedCrossRefGoogle Scholar
  69. 69.
    Rentzsch M, Wilkens A, Winterhalter P (2009) Non-flavonoid phenolic compounds. In: Moreno-Arribas MV, Polo C (eds) Wine chemistry and biochemistry. Springer, New YorkGoogle Scholar
  70. 70.
    Saleem M, Nazir M, Ali MS et al (2010) Antimicrobial natural products: an update on future antibiotic drug candidates. Nat Prod Rep 27(2):238–254PubMedCrossRefGoogle Scholar
  71. 71.
    Scalbert A (1991) Antimicrobial properties of tannins. Phytochemistry 30(12):3875–3883CrossRefGoogle Scholar
  72. 72.
    Akiyama H, Fujii K, Yamasaki O et al (2001) Antibacterial action of several tannins against Staphylococcus aureus. J Antimicrob Chemother 48(4):487–491PubMedCrossRefGoogle Scholar
  73. 73.
    Khanbabaee K, van Ree T (2001) Tannins: classification and definition. Nat Prod Rep 18(6):641–649PubMedCrossRefGoogle Scholar
  74. 74.
    Majed F, Rashid S, Khan AQ et al (2015) Tannic acid mitigates the DMBA/croton oil-induced skin cancer progression in mice. Mol Cell Biochem 399(1–2):217–228PubMedCrossRefGoogle Scholar
  75. 75.
    Kayser O, Kolodziej H (1999) Antibacterial activity of simple coumarins: structural requirements for biological activity. Z Naturforsch 54(3–4):169–174CrossRefGoogle Scholar
  76. 76.
    Bakkali F, Averbeck S, Averbeck D, Idaomar M et al (2008) Biological effects of essential oils–a review. Food Chem Toxicol 46(2):446–475PubMedCrossRefGoogle Scholar
  77. 77.
    Kavanaugh NL, Ribbeck K (2012) Selected antimicrobial essential oils eradicate Pseudomonas spp. and Staphylococcus aureus biofilms. Appl Environ Microbiol 78(11):4057–4061PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Swamy MK, Akhtar MS, Sinniah UR (2016) Antimicrobial properties of plant essential oils against human pathogens and their mode of action: an updated review. Evid Based Complement Alternat Med 2016:3012462PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Nazzaro F, Fratianni F, De Martino L et al (2013) Effect of essential oils on pathogenic bacteria. Pharmaceuticals 6(12):1451–1474PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Levinson W, Jawetz E (2002) Medical microbiology and immunology: examination and board review, 7th edn. Lange Medical Books/McGraw-Hill, New YorkGoogle Scholar
  81. 81.
    Adwan G, Abu-Shanab B, Adwan K (2010) Antibacterial activities of some plant extracts alone and in combination with different antimicrobials against multidrug-resistant Pseudomonas aeruginosa strains. Asian Pac J Trop Med 3(4):266–269CrossRefGoogle Scholar
  82. 82.
    Liang R, Xu S, Shoemaker CF et al (2012) Physical and antimicrobial properties of peppermint oil nanoemulsions. J Agric Food Chem 60(30):7548–7555PubMedCrossRefGoogle Scholar
  83. 83.
    Chifiriuc C, Grumezescu V, Grumezescu AM et al (2012) Hybrid magnetite nanoparticles/Rosmarinus officinalis essential oil nanobiosystem with antibiofilm activity. Nanoscale Res Lett 7(1):209PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Elumalai EK, Ramachandran M, Thirumalai T, Vinothkumar P (2011) Antibacterial activity of various leaf extracts of Merremia emarginata. Asian Pac J Trop Biomed 1(5):406–408PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Zakaria Z, Sreenivasan S, Mohamad M (2007) Antimicrobial activity of Piper ribesoides root extract against Staphylococcus aureus. J Appl Biol Sci 1(3):87–90Google Scholar
  86. 86.
    Wu Y, Luo Y, Wang Q (2012) Antioxidant and antimicrobial properties of essential oils encapsulated in zein nanoparticles prepared by liquid–liquid dispersion method. LWT Food Sci Technol 48(2):283–290CrossRefGoogle Scholar
  87. 87.
    Zhang L, Pornpattananangku D, Hu CM, Huang CM et al (2010) Development of nanoparticles for antimicrobial drug delivery. Curr Med Chem 17(6):585–594PubMedCrossRefGoogle Scholar
  88. 88.
    Sahu P, Das D, Mishra VK et al (2017) Nanoemulsion: a novel eon in cancer chemotherapy. Mini Rev Med Chem 17(18):1778–1792PubMedCrossRefGoogle Scholar
  89. 89.
    Nirmal C, Puvanakrishnana R (1996) Effect of curcumin on certain lysosomal hydrolases in isoproterenol-induced myocardial infarction in rats. Biochem Pharmacol 51(1):47–51CrossRefGoogle Scholar
  90. 90.
    Capek I (2004) Degradation of kinetically-stable o/w emulsions. Adv Colloid Interf Sci 107(2–3):125–155CrossRefGoogle Scholar
  91. 91.
    Ghaderi L, Moghimi R, Aliahmadi A et al (2017) Development of antimicrobial nanoemulsion-based delivery systems against selected pathogenic bacteria using a thymol-rich thymus daenensis essential oil. J Appl Microbiol 123(4):832–840PubMedCrossRefGoogle Scholar
  92. 92.
    Gupta A, Badruddoza AZM, Doyle PS (2017) A general route for nanoemulsion synthesis using low-energy methods at constant temperature. Langmuir 33(28):7118–7123PubMedCrossRefGoogle Scholar
  93. 93.
    Lawrence MJ, Rees GD (2000) Micro emulsion-based media as novel drug delivery system. Adv Drug Deliv Rev 45(1):89–121PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Wang L, Mutch KJ, Eastoe J et al (2008) Nanoemulsions prepared by a two-step low-energy process. Langmuir 24(12):6092–6099PubMedCrossRefGoogle Scholar
  95. 95.
    von Corswant C, Thorén P, Engström S (1998) Triglyceride-based micro emulsion from intervenes administration of sparingly soluble substances. J Pharm Sci 87(2):200–208CrossRefGoogle Scholar
  96. 96.
    Taylor PW, Hamilton-Miller JMT, Paul D, Stapleton PD (2005) Antimicrobial properties of green tea catechins. Food Sci Technol Bull 2:71–81PubMedPubMedCentralGoogle Scholar
  97. 97.
    Vidigal PG, Müsken M, Becker KA et al (2014) Effects of green tea compound epigallocatechin-3-gallate against Stenotrophomonas maltophilia infection and biofilm. PLoS One 9(4):e92876PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Jeon J, Kim JH, Lee CK et al (2014) The antimicrobial activity of (−)-epigallocatehin-3-gallate and green tea extracts against Pseudomonas aeruginosa and Escherichia coli isolated from skin wounds. Ann Dermatol 26(5):564–569PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Chakrawarti L, Agrawal R, Dang S et al (2016) Therapeutic effects of EGCG: a patent review. Expert Opin Ther Pat 26(8):907–916PubMedCrossRefGoogle Scholar
  100. 100.
    Serra DO, Mika F, Richter AM, Hengge R et al (2016) The green tea polyphenol EGCG inhibits E. coli biofilm formation by impairing amyloid curlifibre assembly and downregulating the biofilm regulator CsgD via the σE -dependent sRNA RybB. Mol Microbiol 101(1):136–151PubMedCrossRefGoogle Scholar
  101. 101.
    Zhao WH, Hu ZQ, Okubo S et al (2001) Mechanism of synergy between epigallocatechin gallate and beta-lactams against methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 45(6):1737–1742PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Hemaiswarya S, Kruthiventi AK, Doble M et al (2008) Synergism between natural products and antibiotics against infectious diseases. Phytomedicine 15(8):639–652PubMedCrossRefGoogle Scholar
  103. 103.
    Fangueiro JF, Calpena AC, Clares B et al (2016) Biopharmaceutical evaluation of epigallocatechingallate-loaded cationic lipid nanoparticles (EGCG-LNs): In vivo, in vitro and ex vivo studies. Int J Pharm 502(1):161–169PubMedCrossRefGoogle Scholar
  104. 104.
    Lin YH, Feng CL, Lai CH et al (2014) Preparation of epigallocatechin gallate-loaded nanoparticles and characterization of their inhibitory effects on Helicobacter pylori growth in vitro and in vivo. Sci Technol Adv Mater 15(4):045006PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Tyagi P, Singh M, Kumari H et al (2015) Bactericidal activity of curcumin I is associated with damaging of bacterial membrane. PLoS One 10(3):e0121313PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Rai D, Singh JK, Roy N, Panda D (2008) Curcumin inhibits FtsZ assembly: an attractive mechanism for its antibacterial activity. Biochem J 410(1):147–155PubMedCrossRefGoogle Scholar
  107. 107.
    Chang C-Y, Krishnan T, Wang H et al (2014) Non-antibiotic quorum sensing inhibitors acting against N-acyl homoserine lactone synthase as druggable target. Sci Rep 4:7245PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Packiavathy IA, Priya S, Pandian SK, Ravi AV et al (2014) Inhibition of biofilm development of uropathogens by curcumin–an anti-quorum sensing agent from Curcuma longa. Food Chem 148:453–460PubMedCrossRefGoogle Scholar
  109. 109.
    Moghadamtousi SZ, Kadir HA, Hassandarvish P et al (2014) A review on antibacterial, antiviral, and antifungal activity of curcumin. Biomed Res Int 2014:186864PubMedGoogle Scholar
  110. 110.
    Mun SH, Joung DK, Kim YS et al (2013) Synergistic antibacterial effect of curcumin against methicillin-resistant Staphylococcus aureus. Phytomedicine 20(8–9):714–718PubMedCrossRefGoogle Scholar
  111. 111.
    Hatamie S, Nouri M, Karandikar SK et al (2012) Complexes of cobalt nanoparticles and polyfunctional curcumin as antimicrobial agents. Mater Sci Eng C 32(2):92–97CrossRefGoogle Scholar
  112. 112.
    Krausz AE, Adler BL, Cabral V et al (2015) Curcumin-encapsulated nanoparticles as innovative antimicrobial and wound healing agent. Nanomedicine 11(1):195–206PubMedCrossRefGoogle Scholar
  113. 113.
    Loo CY, Rohanizadeh R, Young PM et al (2015) Combination of silver nanoparticles and curcumin nanoparticles for enhanced anti-biofilm activities. J Agric Food Chem 64(12):2513–2522PubMedCrossRefGoogle Scholar
  114. 114.
    Hwang D, Lim YH (2015) Resveratrol antibacterial activity against Escherichia coli is mediated by Z-ring formation inhibition via suppression of FtsZ expression. Sci Rep 5:10029PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Joung DK, Choi SH, Kang OH et al (2015) Synergistic effects of oxyresveratrol in conjunction with antibiotics against methicillin-resistant Staphylococcus aureus. Mol Med Rep 12(1):663–667PubMedCrossRefGoogle Scholar
  116. 116.
    Jeon YO, Lee JS, Lee HG (2016) Improving solubility, stability, and cellular uptake of resveratrol by nanoencapsulation with chitosan and γ-poly (glutamic acid). Colloids Surf B Biointerfaces 147:224–233PubMedCrossRefGoogle Scholar
  117. 117.
    Amalaradjou MA, Narayanan A, Baskaran SA, Venkitanarayanan K et al (2010) Antibiofilm effect of trans-cinnamaldehyde on uropathogenic Escherichia coli. J Urol 184(1):358–363PubMedCrossRefGoogle Scholar
  118. 118.
    Nuryastuti T, van der Mei HC, Busscher HJ et al (2009) Effect of cinnamon oil on icaA expression and biofilm formation by Staphylococcus epidermidis. Appl Environ Microbiol 75(21):6850–6855PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Niu C, Afre S, Gilbert ES (2006) Sub-inhibitory concentrations of cinnamaldehyde interfere with quorum sensing. Lett Appl Microbiol 43(5):489–494PubMedCrossRefGoogle Scholar
  120. 120.
    Nostro A, Scaffaro R, D’Arrigo M et al (2012) Study on carvacrol and cinnamaldehyde polymeric films: mechanical properties, release kinetics and antibacterial and antibiofilm activities. Appl Microbiol Biotechnol 96(4):1029–1038PubMedCrossRefGoogle Scholar
  121. 121.
    Gomes C, Moreira RG, Castell-Perez E (2011) Poly (DL-lactide-co-glycolide) (PLGA) nanoparticles with entrapped trans-cinnamaldehyde and eugenol for antimicrobial delivery applications. J Food Sci 76(2):16–24CrossRefGoogle Scholar
  122. 122.
    Nostro A, Sudano Roccaro A, Bisignano G et al (2007) Effects of oregano, carvacrol and thymol on Staphylococcus aureus and Staphylococcus epidermidis biofilms. J Med Microbiol 56(4):519–523PubMedCrossRefGoogle Scholar
  123. 123.
    Burt SA, Ojo-Fakunle VT, Woertman J, Veldhuizen EJ (2014) The natural antimicrobial carvacrol inhibits quorum sensing in Chromobacterium violaceum and reduces bacterial biofilm formation at sub-lethal concentrations. PLoS One 9(4):e93414PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Wang Q, Gong J, Huang X et al (2009) In vitro evaluation of the activity of microencapsulated carvacrol against Escherichia coli with K88 pili. J Appl Microbiol 107(6):1781–1788PubMedCrossRefGoogle Scholar
  125. 125.
    Pérez-Conesa D, Cao J, Chen L et al (2011) Inactivation of Listeria monocytogenes and Escherichia coli O157:H7 biofilms by micelle-encapsulated eugenol and carvacrol. J Food Prot 74(1):55–62PubMedCrossRefGoogle Scholar
  126. 126.
    Miladi H, Zmantar T, Kouidhi B et al (2017) Synergistic effect of eugenol, carvacrol, thymol, p-cymene and γ-terpinene on inhibition of drug resistance and biofilm formation of oral bacteria. Microb Pathog 112:156–163PubMedCrossRefGoogle Scholar
  127. 127.
    Iannitelli A, Grande R, Di Stefano A et al (2011) Potential antibacterial activity of carvacrol-loaded poly(DL-lactide-co-glycolide) (PLGA) nanoparticles against microbial biofilm. Int J Mol Sci 12(8):5039–5051PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Zodrow KR, Schiffman JD, Elimelech M (2012) Biodegradable polymer (PLGA) coatings featuring cinnamaldehyde and carvacrol mitigate biofilm formation. Langmuir 28(39):13993–13999PubMedCrossRefGoogle Scholar
  129. 129.
    Evans JD, Martin SA (2000) Effects of thymol on ruminal microorganisms. Curr Microbiol 41(5):336–340PubMedCrossRefGoogle Scholar
  130. 130.
    Lambert RJ, Skandamis PN, Coote PJ, Nychas GJ et al (2001) A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. J Appl Microbiol 91(3):453–462PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Karpanen TJ, Worthington T, Hendry ER et al (2008) Antimicrobial efficacy of chlorhexidine digluconate alone and in combination with eucalyptus oil, tea tree oil and thymol against planktonic and biofilm cultures of Staphylococcus epidermidis. J Antimicrob Chemother 62(5):1031–1036PubMedCrossRefGoogle Scholar
  132. 132.
    Zhou F, Ji B, Zhang H et al (2007) The antibacterial effect of cinnamaldehyde, thymol, carvacrol and their combinations against the foodborne pathogen Salmonella typhimurium. J Food Saf 27(2):124–133CrossRefGoogle Scholar
  133. 133.
    Liolios CC, Gortzi O, Lalas S et al (2009) Liposomal incorporation of carvacrol and thymol isolated from the essential oil of Origanum dictamnus L. and in vitro antimicrobial activity. Food Chem 112(1):77–83CrossRefGoogle Scholar
  134. 134.
    Gill AO, Holley RA (2004) Mechanisms of bactericidal action of cinnamaldehyde against Listeria monocytogenes and of eugenol against L. monocytogenes and Lactobacillus sakei. Appl Environ Microbiol 70(10):5750–5755PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Zhou L, Zheng H, Tang Y et al (2013) Eugenol inhibits quorum sensing at sub-inhibitory concentrations. Biotechnol Lett 35(4):631–637PubMedCrossRefGoogle Scholar
  136. 136.
    Zhang P, Zhang E, Xiao M et al (2013) Enhanced chemical and biological activities of a newly biosynthesized eugenol glycoconjugate, eugenol α-D-glucopyranoside. Appl Microbiol Biotechnol 97(3):1043–1050PubMedCrossRefGoogle Scholar
  137. 137.
    Narayanan A, Neera M, Ramana KV (2013) Synergized antimicrobial activity of eugenol incorporated polyhydroxy butyrate films against food spoilage microorganisms in conjunction with pediocin. Appl Biochem Biotechnol 170(6):1379–1388PubMedCrossRefGoogle Scholar
  138. 138.
    Ghosh V, Mukherjee A, Chandrasekaran N (2014) Eugenol-loaded antimicrobial nanoemulsion preserves fruit juice against, microbial spoilage. Colloids Surf B Biointerfaces 114:392–397PubMedCrossRefGoogle Scholar
  139. 139.
    LiveLeaf, Inc (2017) Method of killing a bacteria with a plant-based biocidal solution. USPatent 9, 636, 361, 2 May 2017Google Scholar
  140. 140.
    Slippery Rock University Foundation, Inc (2017) Methods of treating infectious diseases. US Patent 9,545,386, 17 Jan 2017Google Scholar
  141. 141.
    LiveLeaf, Inc (2015) Method of treating damaged mucosal or gastrointestinal tissue by administering a composition comprising a mixture of pomegranate and green tea extracts and releasably bound hydrogen peroxide. US Patent 9,192,635, 24 Nov 2015Google Scholar
  142. 142.
    The Hong Kong Polytechnic University (2015) Flavonoid dimers and their use. US Patent 8,980,848, 17 March 2015Google Scholar
  143. 143.
    Liveleaf, Inc (2014) Combining a polyphenol with hydrogen peroxide to treat or prevent a bacterial infection. US Patent 20140072660, 13 March 2014Google Scholar
  144. 144.
    Emory University (2009) Triptolide analogs for the treatment of autoimmune and inflammatory disorders. US Patent 7,557,139, 7 July 2009Google Scholar
  145. 145.
    Gubarev MJ, Enioutina EY (2000) Method to enhance innate immunity defense mechanisms by treatment with plant-derived alkaloids. US Patent 6,149,912, 21 Nov 2000Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Gauri Gaur
    • 1
  • Utkrishta L. Raj
    • 1
  • Shweta Dang
    • 1
  • Sanjay Gupta
    • 1
  • Reema Gabrani
    • 1
  1. 1.Department of BiotechnologyJaypee Institute of Information TechnologyNoidaIndia

Personalised recommendations