Flavonoids as Functional Food

  • Krunal Ramanbhai Patel
  • Fenisha Dilipkumar Chahwala
  • Umesh C. S. YadavEmail author


Plants are rich source of biologically active compounds including alkaloids, flavonoids, triterpenes, phenylpropanoids, benzoic acid derivatives, stilbenes, tannins, and lignans. Importance of such plant-derived compounds is well established as nutrients and health-promoting agents. Flavonoids are one of the several important phytochemicals that possess diverse biochemical properties having positive effects on human health and thus labeled as functional food. Flavonoids are biologically active compounds known for their activities which include antioxidant, anticancer, anti-inflammatory, and cardio-protective characteristics. Technological advancement has helped in extraction, isolation, quantification, and identification of flavonoids from various natural food sources including the plants. Fruits and vegetables are major source of the flavonoids. Traditional medicinal systems as well as modern medicinal systems relay on the plants as source for the bioactive compound for disease prevention and treatment. According to their chemical nature, at least five different types of flavonoids are known, which include flavone, flavanones, anthocyanins, procyanidins, and flavonols. In the present chapter, the potential of these flavonoids as functional foods has been discussed based on the available scientific literature and epidemiological data.


Favonoids Functional foods Antioxidants Inflammation Cardiovasclar diseases Neuroprotection 



Dr. Umesh C S Yadav acknowledges the award of Ramanujan Fellowship by DST, Govt. of India. KRP and FDC would like to acknowledge University Grant Commission (UGC) for providing NON-NET fellowship and NFOBC fellowship.


  1. 1.
    Hasler CM (2002) Functional foods: benefits, concerns and challenges-a position paper from the american council on science and health. J Nutr 132:3772–3781. CrossRefPubMedGoogle Scholar
  2. 2.
    Pandey MM, Rastogi S, Rawat AKS (2013) Indian traditional ayurvedic system of medicine and nutritional supplementation. Evid Based Complement Alternat Med 2013:376327. CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Hasler C (1998) Functional foods: their role in disease prevention and health promotion. Food Technol 52:61–72Google Scholar
  4. 4.
    Kumar S, Pandey AK (2013) Chemistry and biological activities of flavonoids: an overview. Sci World J 2013:1–16. CrossRefGoogle Scholar
  5. 5.
    Cirmi S, Ferlazzo N, Lombardo GE et al (2016) Chemopreventive agents and inhibitors of cancer hallmarks: may citrus offer new perspectives? Nutrients 8:1–38. CrossRefGoogle Scholar
  6. 6.
    Saito K, Yonekura-Sakakibara K, Nakabayashi R et al (2013) The flavonoid biosynthetic pathway in Arabidopsis: structural and genetic diversity. Plant Physiol Biochem 72:21–34. CrossRefPubMedGoogle Scholar
  7. 7.
    Bhagwat S, Haytowitz DB, Holden JM (2011) USDA Database for the Flavonoid Content of Selected Foods Release 3.2Google Scholar
  8. 8.
    Grotewold E (2006) The science of flavonoids. Springer. Google Scholar
  9. 9.
    Davinelli S, Bertoglio JC, Zarrelli A et al (2015) A randomized clinical trial evaluating the efficacy of an anthocyanin–Maqui berry extract (delphinol®) on oxidative stress biomarkers. J Am Coll Nutr 34:28–33. CrossRefPubMedGoogle Scholar
  10. 10.
    Song Y, Huang L, Yu J (2016) Effects of blueberry anthocyanins on retinal oxidative stress and inflammation in diabetes through Nrf2/HO-1 signaling. J Neuroimmunol 301:1–6. CrossRefPubMedGoogle Scholar
  11. 11.
    Jumar A, Schmieder RE (2016) Cocoa flavanol cardiovascular effects beyond blood pressure reduction. J Clin Hypertens 18:352–358. CrossRefGoogle Scholar
  12. 12.
    Hagiwara K, Okura M, Sumikawa Y et al (2016) Biochemical effects of the flavanol-rich lychee fruit extract on the melanin biosynthesis and reactive oxygen species. J Dermatol 43:1174–1183. CrossRefPubMedGoogle Scholar
  13. 13.
    Suzuki H, Asakawa A, Kawamura N et al (2014) Hesperidin potentiates ghrelin signaling. Recent Pat Food Nutr Agric 6:60–63. CrossRefPubMedGoogle Scholar
  14. 14.
    Kamaraj S, Ramakrishnan G, Anandakumar P et al (2009) Antioxidant and anticancer efficacy of hesperidin in benzo(a)pyrene induced lung carcinogenesis in mice. Investig New Drugs 27:214–222. CrossRefGoogle Scholar
  15. 15.
    Wang Y, Wang X (2015) Binding, stability, and antioxidant activity of quercetin with soy protein isolate particles. Food Chem 188:24–29. CrossRefPubMedGoogle Scholar
  16. 16.
    Kimmel EM, Jerome M, Holderness J et al (2011) Oligomeric procyanidins stimulate innate antiviral immunity in dengue virus infected human PBMCs. Antivir Res 90:80–86. CrossRefPubMedGoogle Scholar
  17. 17.
    Miguel MG (2011) Anthocyanins: antioxidant and/or anti-inflammatory activities. J Appl Pharm Sci 1:7–15Google Scholar
  18. 18.
    Jaakola L (2013) New insights into the regulation of anthocyanin biosynthesis in fruits. Trends Plant Sci 18:477–483. CrossRefPubMedGoogle Scholar
  19. 19.
    J a N, B a C, Kurilich AC (2012) Anthocyanin kinetics are dependent on anthocyanin structure. Br J Nutr 107:504–509. CrossRefGoogle Scholar
  20. 20.
    Lin BW, Gong CC, Song HF, Cui YY (2016) Effects of anthocyanins on the prevention and treatment of cancer. Br J Pharmacol. CrossRefGoogle Scholar
  21. 21.
    Kuntz S, Kunz C, Herrmann J et al (2014) Anthocyanins from fruit juices improve the antioxidant status of healthy young female volunteers without affecting anti-inflammatory parameters: results from the randomised, double-blind, placebo-controlled, cross-over ANTHONIA (ANTHOcyanins in Nutrition Investigation Alliance) study. Br J Nutr 112:925–936. CrossRefPubMedGoogle Scholar
  22. 22.
    Lim S, Xu J, Kim J et al (2013) Role of anthocyanin-enriched purple-fleshed sweet potato p40 in colorectal cancer prevention. Mol Nutr Food Res 57:1908–1917. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Goetz ME, Judd SE, Safford MM et al (2016) Dietary flavonoid intake and incident coronary heart disease: The REasons for Geographic and Racial Differences in Stroke (REGARDS) study. Am J Clin Nutr 104:1236–1244. CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Ferreira Reis J, Vinicius V, Monteiro S et al (2016) Action mechanism and cardiovascular effect of anthocyanins: a systematic review of animal and human studies. J Transl Med 14:315. CrossRefGoogle Scholar
  25. 25.
    Yacout SM, Gaillard ER (2016) The anthocyanins, oenin and callistephin, protect RPE cells against oxidative stress. Photochem Photobiol 38:42–49. CrossRefGoogle Scholar
  26. 26.
    Stull A (2016) Blueberries’ impact on insulin resistance and glucose intolerance. Antioxidants 5:44. CrossRefPubMedCentralGoogle Scholar
  27. 27.
    Huang W, Zhu Y, Li C et al (2016) Effect of blueberry anthocyanins malvidin and glycosides on the antioxidant properties in endothelial cells. Oxidative Med Cell Longev. Google Scholar
  28. 28.
    Han KH, Sekikawa M, Shimada K et al (2006) Anthocyanin-rich purple potato flake extract has antioxidant capacity and improves antioxidant potential in rats. Br J Nutr 96:1125–1133. CrossRefPubMedGoogle Scholar
  29. 29.
    Hwang JW, Kim EK, Lee SJ et al (2012) Anthocyanin effectively scavenges free radicals and protects retinal cells from H2O2-triggered G2/M arrest. Eur Food Res Technol 234:431–439. CrossRefGoogle Scholar
  30. 30.
    Muselík J, García-Alonso M, Martín-López MP et al (2007) Measurement of antioxidant activity of wine catechins, procyanidins, anthocyanins and pyranoanthocyanins. Int J Mol Sci 8:797–809. CrossRefPubMedCentralGoogle Scholar
  31. 31.
    Chang YC, Huang KX, Huang AC et al (2006) Hibiscus anthocyanins-rich extract inhibited LDL oxidation and oxLDL-mediated macrophages apoptosis. Food Chem Toxicol 44:1015–1023. CrossRefPubMedGoogle Scholar
  32. 32.
    Zhu Y, Huang X, Zhang Y et al (2014) Anthocyanin supplementation improves HDL-Associated paraoxonase 1 activity and enhances cholesterol efflux capacity in subjects with hypercholesterolemia. J Clin Endocrinol Metab 99:561–569. CrossRefPubMedGoogle Scholar
  33. 33.
    Kim B, Lee SG, Park YK et al (2016) Blueberry, blackberry, and blackcurrant differentially affect plasma lipids and pro-inflammatory markers in diet-induced obesity mice. Nutr Res Pract 10:494–500. CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Li L, Wang L, Wu Z et al (2014) Anthocyanin-rich fractions from red raspberries attenuate inflammation in both RAW264.7 macrophages and a mouse model of colitis. Sci Rep 4:6234. CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Ferrari D, Speciale A, Cristani M et al (2016) Cyanidin-3-O-glucoside inhibits NF-kB signalling in intestinal epithelial cells exposed to TNF- α and exerts protective effects via Nrf2 pathway activation. Toxicol Lett 264:51–58. CrossRefPubMedGoogle Scholar
  36. 36.
    Shah SA, Amin FU, Khan M et al (2016) Anthocyanins abrogate glutamate-induced AMPK activation, oxidative stress, neuroinflammation, and neurodegeneration in postnatal rat brain. J Neuroinflammation 13:286. CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Shukitt-Hale B, Kelly ME, Bielinski DF, Fisher DR (2016) Tart cherry extracts reduce inflammatory and oxidative stress signaling in microglial cells. Antioxidants. CrossRefGoogle Scholar
  38. 38.
    Zhang PW, Chen FX, Li D et al (2015) A CONSORT-compliant, randomized, double-blind, placebo-controlled pilot trial of purified anthocyanin in patients with nonalcoholic fatty liver disease. Medicine (Baltimore) 94:1–8. CrossRefGoogle Scholar
  39. 39.
    Zhu Y, Ling W, Guo H et al (2013) Anti-inflammatory effect of purified dietary anthocyanin in adults with hypercholesterolemia: a randomized controlled trial. Nutr Metab Cardiovasc Dis 23:843–849. CrossRefPubMedGoogle Scholar
  40. 40.
    Leo C-H, Woodman OL (2015) Flavonols in the prevention of diabetes-induced vascular dysfunction. J Cardiovasc Pharmacol 65:532–544. CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Mastroiacovo D, Kwik-uribe C, Grassi D et al (2015) Cocoa flavanol consumption improves cognitive function, blood pressure control, and metabolic profile in elderly subjects: the Cocoa, Cognition, and Aging (CoCoA) Study – a randomized controlled trial. Am J Clin Nutr 101:538–548. CrossRefPubMedGoogle Scholar
  42. 42.
    Lin X, Zhang I, Li A et al (2016) Cocoa flavanol intake and biomarkers for cardiometabolic health: a systematic review and meta-analysis of randomized controlled trials. J Nutr 146:2325–2333. CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Liu HW, Wei CC, Chen YJ et al (2016) Flavanol-rich lychee fruit extract alleviates diet-induced insulin resistance via suppressing mTOR/SREBP-1 mediated lipogenesis in liver and restoring insulin signaling in skeletal muscle. Mol Nutr Food Res 60:2288–2296. CrossRefPubMedGoogle Scholar
  44. 44.
    Claude S, Boby C, Rodriguez-Mateos A et al (2014) Flavanol metabolites reduce monocyte adhesion to endothelial cells through modulation of expression of genes via p38-MAPK and p65-Nf-kB pathways. Mol Nutr Food Res 58:1016–1027. CrossRefPubMedGoogle Scholar
  45. 45.
    Yamanishi R, Yoshigai E, Okuyama T et al (2014) The anti-inflammatory effects of flavanol-rich lychee fruit extract in rat hepatocytes. PLoS One. CrossRefGoogle Scholar
  46. 46.
    Mao TK, van de Water J, Keen CL et al (2002) Modulation of TNF-α secretion in peripheral blood mononuclear cells by cocoa flavanols and procyanidins. Dev Immunol 9:135–141. CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    De Palma R, Sotto I, Wood EG et al (2016) Cocoa flavanols reduce N-terminal pro-B-type natriuretic peptide in patients with chronic heart failure. ESC Hear Fail 3:97–106. CrossRefGoogle Scholar
  48. 48.
    Duarte J, Vizcaíno FP, Utrilla P et al (1993) Vasodilatory effects of flavonoids in rat aortic smooth muscle. Structure-activity relationships. Gen Pharmacol Vasc Syst 24:857–862. CrossRefGoogle Scholar
  49. 49.
    Assini JM, Mulvihill EE, Huff MW (2013) Citrus flavonoids and lipid metabolism. Curr Opin Lipidol 24:34–40. CrossRefPubMedGoogle Scholar
  50. 50.
    Wang YQ, Zhang HM, Zhang GC et al (2007) Interaction of the flavonoid hesperidin with bovine serum albumin: a fluorescence quenching study. J Lumin 126:211–218. CrossRefGoogle Scholar
  51. 51.
    Jangra A, Kasbe P, Pandey SN et al (2015) Hesperidin and silibinin ameliorate aluminum-induced neurotoxicity: modulation of antioxidants and inflammatory cytokines level in mice hippocampus. Biol Trace Elem Res 168:462–471. CrossRefPubMedGoogle Scholar
  52. 52.
    Ashafaq M, Varshney L, Khan MHA et al (2014) Neuromodulatory effects of hesperidin in mitigating oxidative stress in streptozotocin induced diabetes. Biomed Res Int. CrossRefGoogle Scholar
  53. 53.
    Hwang SL, Shih PH, Yen GC (2012) Neuroprotective effects of citrus flavonoids. J Agric Food Chem 60:877–885. CrossRefPubMedGoogle Scholar
  54. 54.
    Kamisli S, Ciftci O, Kaya K et al (2013) Hesperidin protects brain and sciatic nerve tissues against cisplatin-induced oxidative, histological and electromyographical side effects in rats. Toxicol Ind Health 31:841–851. CrossRefPubMedGoogle Scholar
  55. 55.
    Parhiz H, Roohbakhsh A, Soltani F et al (2015) Antioxidant and anti-inflammatory properties of the citrus flavonoids hesperidin and hesperetin: an updated review of their molecular mechanisms and experimental models. Phytother Res 29:323–331. CrossRefPubMedGoogle Scholar
  56. 56.
    Ren H, Hao J, Liu T et al (2016) Hesperetin suppresses inflammatory responses in lipopolysaccharide-induced RAW 264.7 cells via the inhibition of NF-κB and activation of Nrf2/HO-1 pathways. Inflammation 39:964–973. CrossRefPubMedGoogle Scholar
  57. 57.
    Nalini N, Aranganathan S, Kabalimurthy J (2012) Chemopreventive efficacy of hesperetin (citrus flavonone) against 1,2-dimethylhydrazine-induced rat colon carcinogenesis. Toxicol Mech Methods 22:397–408. CrossRefPubMedGoogle Scholar
  58. 58.
    Meiyanto E, Hermawan A, Anindyajati (2012) Natural products for cancer-targeted therapy: citrus flavonoids as potent chemopreventive agents. Asian Pacific J Cancer Prev 13:427–436. CrossRefGoogle Scholar
  59. 59.
    Siddiqi A, Nafees S, Rashid S et al (2015) Hesperidin ameliorates trichloroethylene-induced nephrotoxicity by abrogation of oxidative stress and apoptosis in wistar rats. Mol Cell Biochem 406:9–20. CrossRefPubMedGoogle Scholar
  60. 60.
    Kamel KM, Abd El-Raouf OM, Metwally SA et al (2014) Hesperidin and rutin, antioxidant citrus flavonoids, attenuate cisplatin-induced nephrotoxicity in rats. J Biochem Mol Toxicol 28:312–319. CrossRefPubMedGoogle Scholar
  61. 61.
    Perez-Vizcaino F, Duarte J (2010) Flavonols and cardiovascular disease. Mol Asp Med 31:478–494. CrossRefGoogle Scholar
  62. 62.
    Lee YH, Kim HJ, Yoo H et al (2015) Synthesis of (2-amino)ethyl derivatives of quercetin 3-O-methyl ether and their antioxidant and neuroprotective effects. Bioorganic Med Chem 23:4970–4979. CrossRefGoogle Scholar
  63. 63.
    Jeganathan B, Punyasiri PAN, Kottawa-Arachchi JD et al (2016) Genetic Variation of Flavonols Quercetin, Myricetin, and Kaempferol in the Sri Lankan Tea (Camellia sinensis L.) and Their Health-Promoting Aspects. Int. J Food Sci 2016:6057434. CrossRefGoogle Scholar
  64. 64.
    Guazelli CFS, Fattori V, Colombo BB et al (2013) Quercetin-loaded microcapsules ameliorate experimental colitis in mice by anti-inflammatory and antioxidant mechanisms. J Nat Prod 76:200–208. CrossRefPubMedGoogle Scholar
  65. 65.
    Boots AW, Wilms LC, Swennen ELR et al (2008) In vitro and ex vivo anti-inflammatory activity of quercetin in healthy volunteers. Nutrition 24:703–710. CrossRefPubMedGoogle Scholar
  66. 66.
    Goh FY, Upton N, Guan S et al (2012) Fisetin, a bioactive flavonol, attenuates allergic airway inflammation through negative regulation of NF-κB. Eur J Pharmacol 679:109–116. CrossRefPubMedGoogle Scholar
  67. 67.
    Rajendran P, Rengarajan T, Nandakumar N et al (2014) Kaempferol, a potential cytostatic and cure for inflammatory disorders. Eur J Med Chem 86:103–112. CrossRefPubMedGoogle Scholar
  68. 68.
    Ganesan S, Faris AN, Comstock AT et al (2010) Quercetin prevents progression of disease in elastase/LPS-exposed mice by negatively regulating MMP expression. Respir Res 11:131. CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Kim BH, Choi JS, Yi EH et al (2013) Relative antioxidant activities of quercetin and its structurally related substances and their effects on NF-κB/CRE/AP-1 signaling in murine macrophages. Mol Cells 35:410–420. CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Gardi C, Bauerova K, Stringa B et al (2015) Quercetin reduced inflammation and increased antioxidant defense in rat adjuvant arthritis. Arch Biochem Biophys 583:150–157. CrossRefPubMedGoogle Scholar
  71. 71.
    Borochov-Neori H, Judeinstein S, Greenberg A et al (2015) Antioxidant and antiatherogenic properties of phenolic acid and flavonol fractions of fruits of “Amari” and “Hallawi” date (Phoenix dactylifera L.) varieties. J Agric Food Chem 63:3189–3195. CrossRefPubMedGoogle Scholar
  72. 72.
    Messer JG, Hopkins RG, Kipp DE (2015) Quercetin metabolites up-regulate the antioxidant response in osteoblasts isolated from fetal rat calvaria. J Cell Biochem 116:1857–1866. CrossRefPubMedGoogle Scholar
  73. 73.
    Lea MA (2015) Flavonol regulation in tumor cells. J Cell Biochem 116:1190–1194. CrossRefPubMedGoogle Scholar
  74. 74.
    Zerin T, Kim YS, Hong SY, Song HY (2013) Quercetin reduces oxidative damage induced by paraquat via modulating expression of antioxidant genes in A549 cells. J Appl Toxicol 33:1460–1467. CrossRefPubMedGoogle Scholar
  75. 75.
    Sabarwal A, Agarwal R, Singh RP (2017) Fisetin inhibits cellular proliferation and induces mitochondria-dependent apoptosis in human gastric cancer cells. Mol Carcinog 56:499–514. CrossRefPubMedGoogle Scholar
  76. 76.
    Dower JI, Geleijnse JM, Gijsbers L et al (2015) Supplementation of the pure flavonoids epicatechin and quercetin affects some biomarkers of endothelial dysfunction and inflammation in (pre)hypertensive adults: a randomized double-blind, placebo-controlled, crossover trial. J Nutr 145:1459–1463. CrossRefPubMedGoogle Scholar
  77. 77.
    Ivey KL, Lewis JR, Prince RL, Hodgson JM (2013) Tea and non-tea flavonol intakes in relation to atherosclerotic vascular disease mortality in older women. Br J Nutr 110:1648–1655. CrossRefPubMedGoogle Scholar
  78. 78.
    Weseler AR, Ruijters EJB, Drittij-Reijnders MJ et al (2011) Pleiotropic benefit of monomeric and oligomeric flavanols on vascular health – a randomized controlled clinical pilot study. PLoS One. CrossRefGoogle Scholar
  79. 79.
    Martinez-Micaelo N, González-Abuín N, Ardèvol A et al (2012) Procyanidins and inflammation: molecular targets and health implications. Biofactors 38:257–265. CrossRefPubMedGoogle Scholar
  80. 80.
    Quesada IM, Del Bas JM, Bladé C et al (2007) Grape seed procyanidins inhibit the expression of metallothione in genes in human HepG2 cells. Genes Nutr 2:105–109. CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Shimizu T, Toda T, Sunagawa T et al (2011) Apple procyanidins suppress amyloid β-protein aggregation. Biochem Res Int. CrossRefGoogle Scholar
  82. 82.
    Kanno H, Kawakami Z, Tabuchi M et al (2015) Protective effects of glycycoumarin and procyanidin B1, active components of traditional Japanese medicine yokukansan, on amyloid β oligomer-induced neuronal death. J Ethnopharmacol 159:122–128. CrossRefPubMedGoogle Scholar
  83. 83.
    Zhai WY, Jia CP, Zhao H, Sen XY (2011) Procyanidins inhibit tumor angiogenesis by crosslinking extracellular matrix. Chin J Cancer Res 23:99–106. CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Bak MJ, Jun M, Jeong WS (2012) Procyanidins from wild grape (Vitis amurensis) seeds regulate ARE-mediated enzyme expression via Nrf2 coupled with p38 and PI3K/Akt pathway in HepG2 cells. Int J Mol Sci 13:801–818. CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Stadlbauer S, Rios P, Ohmori K et al (2015) Procyanidins negatively affect the activity of the phosphatases of regenerating liver. PLoS One 10:1–18. CrossRefGoogle Scholar
  86. 86.
    Bak M-J, Truong VL, Kang H-S, et al (2013) Anti-inflammatory effect of procyanidins from wild grape (Vitis amurensis) seeds in LPS-induced RAW 264.7 cells. Oxid Med Cell Longev. CrossRefGoogle Scholar
  87. 87.
    Bas JM, Del RML, Vaqué M et al (2009) Dietary procyanidins enhance transcriptional activity of bile acid-activated FXR in vitro and reduce triglyceridemia in vivo in a FXR-dependent manner. Mol Nutr Food Res 53:805–814. CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Marimoutou M, Le Sage F, Smadja J et al (2015) Antioxidant polyphenol-rich extracts from the medicinal plants Antirhea borbonica, Doratoxylon apetalum and Gouania mauritiana protect 3T3-L1 preadipocytes against H2O2, TNFα and LPS inflammatory mediators by regulating the expression of superoxide dismut. J Inflamm 12:10. CrossRefGoogle Scholar
  89. 89.
    Gu Y, Hurst WJ, Stuart DA, Lambert JD (2011) Inhibition of key digestive enzymes by cocoa extracts and procyanidins. J Agric Food Chem 59:5305–5311. CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Yamakoshi J, Kataoka S, Koga T, Ariga T (1999) Proanthocyanidin-rich extract from grape seeds attenuates the development of aortic atherosclerosis in cholesterol-fed rabbits. Atherosclerosis 142:139–149. CrossRefPubMedGoogle Scholar
  91. 91.
    Gonzalez-Abuin N, Pinent M, Casanova-Marti A et al (2015) Procyanidins and their healthy protective effects against type 2 diabetes. Curr Med Chem 22:39–50CrossRefGoogle Scholar
  92. 92.
    Grassi D, Desideri G, Di GP et al (2013) Tea, flavonoids, and cardiovascular health: endothelial protection. Am J Clin Nutr 98:1660–1666. CrossRefGoogle Scholar
  93. 93.
    Hodgson JM (2006) Effects of tea and tea flavonoids on endothelial function and blood pressure: A brief review. Clin Exp Pharmacol Physiol 33:838–841CrossRefGoogle Scholar
  94. 94.
    Chun OK, Chung SJ, Song WO (2007) Estimated dietary flavonoid intake and major food sources of U.S. adults. J Nutr 137:1244–1252CrossRefGoogle Scholar
  95. 95.
    Hodgson JM (2008) Review article tea flavonoids and cardiovascular disease. Asia Pac J Clin Nutr 17:288–290PubMedGoogle Scholar
  96. 96.
    Huxley RR, Neil HAW (2003) The relation between dietary flavonol intake and coronary heart disease mortality: a meta-analysis of prospective cohort studies. Eur J Clin Nutr 57:904–908. CrossRefPubMedGoogle Scholar
  97. 97.
    Troup R, Hayes JH, Raatz SK et al (2015) Effect of black tea intake on blood cholesterol concentrations in individuals with mild hypercholesterolemia: a diet-controlled randomized trial. J Acad Nutr Diet 115:264–271.e2. CrossRefPubMedGoogle Scholar
  98. 98.
    Hodgson JM, Croft KD (2010) Tea flavonoids and cardiovascular health. Mol Asp Med 31:495–502. CrossRefGoogle Scholar
  99. 99.
    Yiannakopoulou EC (2014) Effect of green tea catechins on breast carcinogenesis: a systematic review of in-vitro and in-vivo experimental studies. Eur J Cancer Prev 23:84–89. CrossRefPubMedGoogle Scholar
  100. 100.
    Dower JI, Geleijnse JM, Gijsbers L et al (2015) Effects of the pure flavonoids epicatechin and quercetin on vascular function and cardiometabolic health: a randomized, double-blind, placebo-controlled, crossover trial. Am J Clin Nutr 101:914–921. CrossRefPubMedGoogle Scholar
  101. 101.
    Heiss C, Sansone R, Karimi H et al (2015) Impact of cocoa flavanol intake on age-dependent vascular stiffness in healthy men: a randomized, controlled, double-masked trial. Age (Dordr) 37:9794. CrossRefGoogle Scholar
  102. 102.
    Bordeaux B, Yanek LR, Moy TF et al (2007) Casual chocolate consumption and inhibition of platelet function. Prev Cardiol 10:175–180. CrossRefPubMedGoogle Scholar
  103. 103.
    Flammer AJ, Hermann F, Sudano I et al (2007) Dark chocolate improves coronary vasomotion and reduces platelet reactivity. Circulation 116:2376–2382. CrossRefPubMedGoogle Scholar
  104. 104.
    Ibero-Baraibar I, Perez-Cornago A, Ramirez MJ et al (2016) An increase in plasma homovanillic acid with Cocoa extract consumption is associated with the alleviation of depressive symptoms in overweight or obese adults on an energy restricted diet in a randomized controlled trial. J Nutr 146:897S–904S. CrossRefGoogle Scholar
  105. 105.
    Curtis PJ, Sampson M, Potter J et al (2012) Chronic ingestion of flavan-3-ols and and lipoprotein status and attenuates with type 2 diabetes. Diabetes Care 35:226–232. CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Habauzit V, Verny MA, Milenkovic D et al (2015) Flavanones protect from arterial stiffness in postmenopausal women consuming grapefruit juice for 6 mo: A randomized, controlled, crossover trial. Am J Clin Nutr 102:66–74. CrossRefPubMedGoogle Scholar
  107. 107.
    Ibero-Baraibar I, Abete I, Navas-Carretero S et al (2014) Oxidised LDL levels decreases after the consumption of ready-to-eat meals supplemented with cocoa extract within a hypocaloric diet. Nutr Metab Cardiovasc Dis 24:416–422. CrossRefPubMedGoogle Scholar
  108. 108.
    Droste DW, Iliescu C, Vaillant M et al (2013) A daily glass of red wine associated with lifestyle changes independently improves blood lipids in patients with carotid arteriosclerosis: results from a randomized controlled trial. Nutr J 12:147. CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Di Renzo L, Carraro A, Valente R et al (2014) Intake of red wine in different meals modulates oxidized LDL level, oxidative and inflammatory gene expression in healthy people: a randomized crossover trial. Oxidative Med Cell Longev. CrossRefGoogle Scholar
  110. 110.
    Arab L, Liebeskind DS (2010) Tea, flavonoids and stroke in man and mouse. Arch Biochem Biophys 501:31–36. CrossRefPubMedGoogle Scholar
  111. 111.
    Arab L, Khan F, Lam H (2013) Tea consumption and cardiovascular disease risk 1 – 3. Am J Clin Nutr 98:1651S–1659S. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Krunal Ramanbhai Patel
    • 1
  • Fenisha Dilipkumar Chahwala
    • 1
  • Umesh C. S. Yadav
    • 1
    Email author
  1. 1.School of Life SciencesCentral University of GujaratGandhinagarIndia

Personalised recommendations