Advertisement

Probiotics as Functional Foods in Enhancing Gut Immunity

  • Darshika Nigam
Chapter

Abstract

Probiotics as microbes when administered in sufficient amounts as functional food impose beneficial effects on gut microbiota and thus enhance health of host. The indigenous microflora of gastrointestinal tract acts as an anatomic barrier against antigens present in food, invading microorganisms which regulates the immunophysiologic mechanism. Many factors may lower the resistance of the body which may lead to inflammatory, infectious, neoplastic, and degenerative conditions. There are other means of treatment like using antibiotics, irradiation, and immunosuppressive therapy which may change normal composition of gut flora. A variety of functional properties of probiotics bound their consideration as conventional, medicinal foods, and dietary supplements.

The most commonly used probiotics are of two genera, Lactobacillus and Bifidobacterium. Healthy microflora is the chief basis of probiotic therapy in literature. Probiotic bacteria demonstrate various immunomodulatory effects and therefore may be treated as novel tool to reduce inflammation in the intestine and dysfunction of gut mucosa, including acute gastroenteritis, inflammatory bowel disease, and food allergy, and downregulate hypersensitivity reactions. A large number of probiotic effects are explained by regulating immunity, especially the balance between anti-inflammatory and proinflammatory cytokines. Probiotics stabilize microbial environment of the gut and the intestinal permeability barrier. This leads to enhanced mucosal IgA responses which promote further the immunological barrier and responses of gut mucosa. In addition, providing immunomodulatory effect on gut mucosa, probiotic therapy is now also being used to cure infections in other organs such as respiratory tract, urogenital tract, and others. This chapter focuses on roles of probiotics as functional foods.

Keywords

Probiotics Functional food Immunomodulation Gastrointestinal tract Respiratory tract Urogenital tract Oral infection 

References

  1. 1.
    Figueroa-Gonzalez I, Quijano G, Ramirez G et al (2011) Probiotics and prebiotics-perspectives and challenges. J Sci Food Agric 91:1341–1348PubMedCrossRefGoogle Scholar
  2. 2.
    Al-Sheraji SH, Ismail A, Manap MY et al (2013) Prebiotics as functional foods: a review. J Funct Foods 5:1542–1553CrossRefGoogle Scholar
  3. 3.
    Ernst PB, Scicchitano R, Underdown BJ et al (1988) Immunology of the gastrointestinal tract and liver. In: Heyworth MF, Jones AL (eds) Raven Press, New YorkGoogle Scholar
  4. 4.
    Lee YK, Salminen S (2009) Incorporating probiotics into food. In: Crittenden R (ed) Handbook of probiotics and prebiotics, 2nd edn. Wiley, Hoboken, pp 60–67Google Scholar
  5. 5.
    Isolauri E, Sütas Y, Kankaanpää P et al (2001) Probiotics: effects on immunity. Am J Clin Nutr 73(2):444S–450SPubMedCrossRefGoogle Scholar
  6. 6.
    Simon SL, Gorbach SL (1986) The human intestinal microflora. Dig Dis Sci 31(9):147S–162SPubMedCrossRefGoogle Scholar
  7. 7.
    Ouwehand AC, Salminen S, Isolauri E (2002) Probiotics: an overview of beneficial effects. Antonie Van Leeuwenhoek 82(1–4):279–289PubMedCrossRefGoogle Scholar
  8. 8.
    Neish AS (2009) Microbes in gastrointestinal health and disease. Gastroenterology 136(1):65–80PubMedCrossRefGoogle Scholar
  9. 9.
    Grice EA, Kong HH, Conlan S (2009) Topographical and temporal diversity of the human skin microbiome. Science 324:1190–1192PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Pickard KM, Bremner AR, Gordon JN et al (2004) Microbial-gut interactions in health and disease: immune responses. Best Pract Res Clin Gastroenterol 18:271–285PubMedCrossRefGoogle Scholar
  11. 11.
    Rogers AH (ed) (2008) Molecular oral microbiology. Caister Academic Press. 1. ISBN 978-1-904455-24-0Google Scholar
  12. 12.
    Proctor DM, Relman DA (2017) The landscape ecology and microbiota of the human nose, mouth, and throat. Cell Host Microbe 21(4):421–432PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Soledad B, Juan E, Fernando V’ZSR et al (1998) Adherence of human vaginal lactobacilli to vaginal epithelial cells and interaction with uropathogens. Infect Immun 66(5):1985–1989Google Scholar
  14. 14.
    Goldsby RA, Kindt TJ, Osborne BA et al (2003) Immunology, 5th edn. W.H. Freeman and Company, New YorkGoogle Scholar
  15. 15.
    Round JL, Mazmanian SK (2009) The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 9:313–323PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Dongarrà M, Rizzello V, Muccio L et al (2013) Mucosal immunology and probiotics. Curr Allergy Asthma Rep 13:19–26PubMedCrossRefGoogle Scholar
  17. 17.
    Lefrancois L (1994) Basic aspects of intraepithelial lymphocyte immunobiology. In: Ogra PL, Mestecky J, Lamm ME, Strober W, JR MG, Bienenstock J (eds) Handbook of mucosal immunology. Academic Press, San DiegoGoogle Scholar
  18. 18.
    Suzuki K, Kawamoto S, Maruya M et al (2010) GALT: organization and dynamics leading to IgA synthesis. Adv Immunol 107:153–185PubMedCrossRefGoogle Scholar
  19. 19.
    Kernéis S, Bogdanova A, Kraehenbuhl JP et al (1997) Conversion by Peyer’s patch lymphocytes of human enterocytes into M cells that transport bacteria. Science 277:949–952PubMedCrossRefGoogle Scholar
  20. 20.
    Pabst O, Mowat AM (2012) Oral tolerance to food protein. Mucosal Immunol 5:232–239PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Worbs T, Bode U, Yan S et al (2006) Oral tolerance originates in the intestinal immune system and relies on antigen carriage by dendritic cells. J Exp Med 203(3):519–527PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Mantis NJ, Rol N, Corthésy B (2011) Secretory IgA’s complex roles in immunity and mucosal homeostasis in the gut. Mucosal Immunol 4:603–611PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Brandtzaeg P (1995) Molecular and cellular aspects of the secretory immunoglobulin system. Acta Microbiol Immunol Scand (APMIS) 103(1–6):1–19Google Scholar
  24. 24.
    Vanderhoof JA (2008) Probiotics in allergy management. J Pediatr Gastroenterol Nutr 47(2):S38–S40PubMedCrossRefGoogle Scholar
  25. 25.
    Lilic D, Cant AJ, Abinun M et al (1997) Cytokine production differs in children and adults. Pediatr Res 42(2):237–240PubMedCrossRefGoogle Scholar
  26. 26.
    Bäckhed F, Fraser C, Ringel Y et al (2012) Defining a healthy human gut microbiome: current concepts, future directions, and clinical applications. Cell Host Microbe 12(5):611–622PubMedCrossRefGoogle Scholar
  27. 27.
    Moreau MC, Gaboriau-Routhiau V (2001) Influence of resident intestinal microflora on the development and functions of the gut associated lymphoid tissue. Microb Ecol Health Dis 13(2):65–86CrossRefGoogle Scholar
  28. 28.
    Bron PA, van Baarlen P, Kleerebezem M (2012) Emerging molecular insights into the interaction between probiotics and the host intestinal mucosa. Nat Rev Microbiol 10(1):66–78CrossRefGoogle Scholar
  29. 29.
    Gronlund MM, Arvilommi H, Kero P et al (2000) Importance of intestinal colonization in the maturation of humoral immunity in early infancy: a prospective follow-up study of healthy infants aged 0–6 months. Arch Dis Child 83(3):F186–F192CrossRefGoogle Scholar
  30. 30.
    Fanaro S, Chierici R, Guerrini P et al (2003) Intestinal microflora in early infancy: composition and development. Acta Paediatr 91(441):48–55Google Scholar
  31. 31.
    Dominguez-Bello MG, Costello EK, Contreras M et al (2010) Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proceed Nat Acad Sci USA 107(26):11971–11975CrossRefGoogle Scholar
  32. 32.
    Sonomoto K, Yokota A (2011) Lactic acid bacteria and bifidobacteria: current progress in advanced research. Academic Press, Caister ISBN 978-1-904455-82-0Google Scholar
  33. 33.
    Harmsen HJ, Wildeboer-Veloo AC, Raangs GC et al (2000) Analysis of intestinal flora development in breast-fed and formula-fed infants by using molecular identification and detection methods. J Pediatr Gastroenterol Nutr 30(1):61–67PubMedCrossRefGoogle Scholar
  34. 34.
    Prakash S, Tomaro-Duchesneau C, Saha S et al (2014) Probiotics for the prevention and treatment of allergies, with an emphasis on mode of delivery and mechanism of action. Curr Pharm Des 20(6):1025–1037PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Bjorksten B, Sepp E, Julge K et al (2001) Allergy development and the intestinal microflora during the first year of life. J Allergy Clin Immunol 108(4):516–520PubMedCrossRefGoogle Scholar
  36. 36.
    Mack DR, Ahrne S, Hyde L et al (2003) Extracellular MUC3 mucin secretion follows adherence of Lactobacillus strains to intestinal epithelial cells in vitro. Gut 52:827–833PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Kemgang TS, Kapila S, Shanmugam VP et al (2014) Cross-talk between probiotic lactobacilli and host immune system. J Appl Microbiol 117(2):303–319PubMedCrossRefGoogle Scholar
  38. 38.
    Sanders ME, Tompkins T, Heimbach JT et al (2004) Weight of evidence needed to substantiate a health effect for probiotics and prebiotics, regulatory considerations in Canada, E.U. and U.S. Eur J Nutr 44:303–310PubMedCrossRefGoogle Scholar
  39. 39.
    Boyle P, Leon ME (2002) Epidemiology of colorectal cancer. Br J Med Bull 64:1–25CrossRefGoogle Scholar
  40. 40.
    Sobhani I, Tap J, Roudot-Thoraval F et al (2011) Microbial dysbiosis in colorectal cancer (CRC) patients. PLoS One 6(1):e16393PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Shida K, Nomota K (2013) Probiotics as efficient immunopotentiators: Translational role in cancer prevention. Indian J Med Res 138(5):808–814PubMedPubMedCentralGoogle Scholar
  42. 42.
    Khan AA, Khurshid M, Khan S et al (2013) Gut microbiota and probiotics: current status and their role in cancer therapeutics. Drug Dev Res 74(6):365–375CrossRefGoogle Scholar
  43. 43.
    Nakamura J, Kubota Y, Miyaoka M et al (2002) Comparison of four microbial enzymes in clostridia and bacteroides isolated from human feces. Microbiol Immunol 46:487–490PubMedCrossRefGoogle Scholar
  44. 44.
    Shen XJ, Rawls JF, Randall T et al (2010) Molecular characterization of mucosal adherent bacteria and associations with colorectal adenomas. Gut Microbes 1(3):138–147PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Rubinstein MR, Wang X, Liu W et al (2013) Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin. Cell Host Microbe 14:195–206PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    LV MF, Elmer GW (2006) Properties of Evidence-Based Probiotics for Human Health. In: Goktepe I, Juneja VK, Ahmedna M (eds) Probiotics in food safety and human health. CRC, New York, pp 109–137Google Scholar
  47. 47.
    Lan A, Lagadic-Gossmann D, Lemaire C et al (2007) Acidic extracellular pH shifts colorectal cancer cell death from apoptosis to necrosis upon exposure to propionate and acetate, major end-products of the human probiotic propionibacteria. Apoptosis 12:573–591PubMedCrossRefGoogle Scholar
  48. 48.
    Reddy BS, Hamid R, Rao CV (1997) Effect of dietary oligofructose and inulin on colonic preneoplastic aberrant crypt foci inhibition. Carcinogenesis 18:1371–1374PubMedCrossRefGoogle Scholar
  49. 49.
    Rafter J, Bennett M, Caderni G et al (2007) Dietary synbiotics reduce cancer risk factors in polypectomized and colon cancer patients. Am J Clin Nutr 85(2):488–496PubMedCrossRefGoogle Scholar
  50. 50.
    Geier M, Butler R, Howarth G (2006) Probiotics, prebiotics and synbiotics: a role in chemoprevention for colorectal cancer? Cancer Biol Ther 5:1265–1269PubMedCrossRefGoogle Scholar
  51. 51.
    Ishikawa H, Akedo I, Otani T et al (2005) Randomized trial of dietary fiber and Lactobacillus casei administration for prevention of colorectal tumors. Int J Cancer 116:762–767PubMedCrossRefGoogle Scholar
  52. 52.
    Galdeano M, Perdigon G (2006) The probiotic bacterium Lactobacillus casei induces activation of the gut mucosal immune system through innate immunity. Clin Vaccine Immunol 13:219–226PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Liong MT (2008) Roles of probiotics and prebiotics in colon cancer prevention: postulated mechanisms and in-vivo evidence. Int J Mol Sci 9:854–863PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Ciorba MA, Riehl T, Hyun YJ et al (2008) M1198 Lactobacillus Rhamnosus GG Prevents Radiation Induced-Small Intestinal Injury in a MyD88 Independent, But COX2 Dependent Manner. Gastroenterology 34(1):A-359Google Scholar
  55. 55.
    Ciorba MA, Riehl TE, Rao MS et al (2012) Lactobacillus probiotic protects intestinal epithelium from radiation injury in a TLR-2/cyclo-oxygenase-2-dependent manner. Gut 61(6):829–838PubMedCrossRefGoogle Scholar
  56. 56.
    Lebeer S, Vanderleyden J, De Keersmaecker SC (2010) Host interactions of probiotic bacterial surface molecules: comparison with commensals and pathogens. Nat Rev Microbiol 8(3):171–184PubMedCrossRefGoogle Scholar
  57. 57.
    Yan F, Polk D (2012) Lactobacillus rhamnosus GG-an updated strategy to use microbial products to promote health. Funct Food Rev 4(2):41–48Google Scholar
  58. 58.
    Vrese M, Marteau PR (2007) Probiotics and prebiotics: effects on diarrhea. J Nutr 137 (3):803S–811SGoogle Scholar
  59. 59.
    Rask C, Adlerberth I, Berggren A et al (2013) Differential effect on cell-mediated immunity in human volunteers after intake of different lactobacilli. Clin Exp Immunol 172:321–332PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Mastretta E, Longo P, Laccisaglia A et al (2002) Effect of Lactobacillus GG and breast-feeding in the prevention of rotavirus nosocomial infection. J Pediatr Gastroenterol Nutr 35(4):527–531PubMedCrossRefGoogle Scholar
  61. 61.
    Banerjee P, Merkel GJ, Bhunia AK (2009) Lactobacillus delbrueckii ssp. bulgaricus B-30892 can inhibit cytotoxic effects and adhesion of pathogenic Clostridium difficile to Caco-2 cells. Gut Pathogens 1, 8 (open access).  https://doi.org/10.1186/1757-4749-1-8 PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Lehtoranta L, Pitkäranta A, Korpela R (2014) Probiotics in respiratory virus infections. Eur J Clin Microbiol Infect Dis 33(8):1289–1302PubMedCrossRefGoogle Scholar
  63. 63.
    Garaiova I, Muchová J, Nagyová Z et al (2014) Probiotics and vitamin C for the prevention of respiratory tract infections in children attending preschool: a randomised controlled pilot study Open. Eur J Clin Nutr.  https://doi.org/10.1038/ejcn.2014.174 (online)PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Baron MA (2009) Patented strain of Bacillus coagulans increased immune response to viral challenge. Postgrad Med 121(2):114–118PubMedCrossRefGoogle Scholar
  65. 65.
    Berggren A, Lazou AI, Larsson N et al (2011) Randomised, double-blind and placebo-controlled study using new probiotic lactobacilli for strengthening the body immune defence against viral infections. Eur J Nutr 50(3):203–210PubMedCrossRefGoogle Scholar
  66. 66.
    Koenig SM, Truwit JD (2006) Ventilator-associated pneumonia: diagnosis, treatment, and prevention. Clin Microbiol Rev 19(4):637–657PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Lorente L, Lecuona M, Jiménez A et al (2007) Influence of an endotracheal tube with polyurethane cuff and subglottic secretion drainage on pneumonia. Am J Respir Crit Care Med 176(11):1079–1083PubMedCrossRefGoogle Scholar
  68. 68.
    Bo L, Li J, Tao T et al (2014) Probiotics for preventing ventilator-associated pneumonia. The Cochrane Database Syst Rev 10.  https://doi.org/10.1002/14651858.CD009066.pub2
  69. 69.
    Morrow LE, Kollef MH, Casale TB (2010) Probiotic prophylaxis of ventilator-associated pneumonia: a blinded, randomized, controlled trial [Randomized Controlled Trial Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Am J Respir Crit Care Med 182(8):1058–1064PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Wan-Jie G, Chun-Yin W, Rui-Xing Y (2012) Lack of efficacy of probiotics in preventing ventilator-associated pneumonia: a systematic review and meta-analysis of randomized controlled trials. Chest 142:859–868CrossRefGoogle Scholar
  71. 71.
    Franz M, Hörl WH (1999) Common errors in diagnosis and management of urinary tract infection. I: Pathophysiology and diagnostic techniques. Nephrol Dial Transplant 14(11):2746–2753PubMedCrossRefGoogle Scholar
  72. 72.
    Grin PM, KowalewskaPM AW et al (2013) Lactobacillus for preventing recurrent urinary tract infections in women: meta-analysis. Can J Urol 20(1):6607–6614PubMedGoogle Scholar
  73. 73.
    Amdekar S, Singh V, Singh DD (2011) Probiotic therapy: immunomodulating approach towards urinary tract infection. Curr Microbiol 63(5):484–490PubMedCrossRefGoogle Scholar
  74. 74.
    Reid G (2008) Probiotic Lactobacilli for urogenital health in women. J Clin Gastroenterol 42(3):S234–S236PubMedCrossRefGoogle Scholar
  75. 75.
    Anukam K, Osazuwa E, Ahonkhai I et al (2006) Augmentation of antimicrobial metronidazole therapy of bacterial vaginosis with oral probiotic Lactobacillus rhamnosus GR-1 and Lactobacillus reuteri RC-14: randomized, double-blind, placebo controlled trial. Microbiol Infect 8(6):1450–1454CrossRefGoogle Scholar
  76. 76.
    Schönherr FA, Sparber F, Kirchner FR et al (2017) The intraspecies diversity of C. albicans triggers qualitatively and temporally distinct host responses that determine the balance between commensalism and pathogenicity. Mucosal Immunol.  https://doi.org/10.1038/mi.2017.2 PubMedCrossRefGoogle Scholar
  77. 77.
    VodstrcilL A, Twin J, Garland SM et al (2017) The influence of sexual activity on the vaginal microbiota and Gardnerella vaginalis clade diversity in young women. PLoS One 12:e0171856.  https://doi.org/10.1371/journal.pone.0171856 CrossRefGoogle Scholar
  78. 78.
    Diane ML, Howard FJ, Gerald WT (1994) Colonization of the murine oral cavity by Streptococcus gordonii. Infect Immun 62(5):2129–2131Google Scholar
  79. 79.
    Jobin MC, Amin M, Ellen RP (2008) The molecular biology of the survival and virulence of treponema denticola. Molecular oral microbiology. Caister Academic PressGoogle Scholar
  80. 80.
    Ichinosawa T, Ito T, Yonezawa H (2017) Molecular interaction of the analogous peptide SspB (390- T400K- 402) derived from Streptococcus gordonii surface protein peptide with periodontal bacteria. Int J Oral Med Sci 15(3–4):160–167CrossRefGoogle Scholar
  81. 81.
    Krasse P, Carlsson B, Dhal C et al (2006) Decreased gum bleeding and reduced gingivitis by the probiotic Lactobacillus reuteri. Swed Dental J 30(2):55–60Google Scholar
  82. 82.
    Vivekananda MR, Vandana KL, Bhat KG (2010) Effect of the probiotic Lactobacilli reuteri (Prodentis) in the management of periodontal disease: a preliminary randomized clinical trial. J Oral Microbiol 2.  https://doi.org/10.3402/jom.v2i0.5344 CrossRefGoogle Scholar
  83. 83.
    Vicario M, Santos A, Violant D et al (2012) Clinical changes in periodontal subjects with the probiotic Lactobacillus reuteri prodentis; a preliminary randomized clinical trial. Acta Odontol Scand 70(3):246–250CrossRefGoogle Scholar
  84. 84.
    Romani VN, Hasslöf P, Keller MK et al (2013) Lactobacillus reuteri influences regrowth of mutans streptococci after full-mouth disinfection: a double-blind, randomized controlled trial. Caries Res 47(4):338–345CrossRefGoogle Scholar
  85. 85.
    Miettinen M, Vuopio-Varkila J, Varkila K (1996) Production of human tumor necrosis factor alpha, interleukin-6, and interleukin-10 is induced by lactic acid bacteria. Infect Immun 64(12):5403–5405PubMedPubMedCentralGoogle Scholar
  86. 86.
    Wang Y, Xie J, Wang N et al (2013) Lactobacillus casei Zhang modulate cytokine and Toll-like receptor expression and beneficially regulate poly I:C-induced immune responses in RAW264.7 macrophages. Microbiol Immunol 57:54–62PubMedCrossRefGoogle Scholar
  87. 87.
    Ouwehand AC (1998) Antiallergic effects of probiotics. J Nutr 64:3854–3859Google Scholar
  88. 88.
    Isolauri E, Kaila M, Mykkänen H et al (1994) Oral bacteriotherapy for viral gastroenteritis. Dig Dis Sci 39(12):2595–2600PubMedCrossRefGoogle Scholar
  89. 89.
    Feleszko W, Jaworska J (2013) Probiotics and prebiotics in immune modulation. In: Watson R, Preedy V (eds) Bioactive food as dietary interventions for arthritis and related inflammatory diseases. Academic Press, San Diego, pp 357–370CrossRefGoogle Scholar
  90. 90.
    Chiba Y, Shida K, Nagata S et al (2010) Well-controlled proinflammatory cytokine responses of Peyer’s patch cells to probiotic Lactobacillus casei. Immunology 130(3):352–362PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Kotani Y et al (2014) Role of Lactobacillus pentosus strain b240 and the toll-like receptor 2 axis in Peyer’s patch dendritic cell-mediated immunoglobulin A enhancement. PLoS One.  https://doi.org/10.1371/journal.pone.0091857 PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Isolauri E (1997) Intestinal involvement in atopic disease. J R Soc Med 90:15–22PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Rautanena T, Isolaurib E, Saloc E et al (1998) Management of acute diarrhoea with low osmolarity oral rehydration solutions and Lactobacillus strain GG. Arch Dis Child 79:157–160CrossRefGoogle Scholar
  94. 94.
    Muñoz JA, Chenoll E, Casinos B et al (2011) Novel probiotic Bifidobacterium longum subsp. infantis CECT 7210 strain active against rotavirus infections. Appl Environ Microbiol 77:8775–8783PubMedCrossRefGoogle Scholar
  95. 95.
    Tomás MSJ, Otero MC, Ocaña V et al (2004) Production of antimicrobial substances by lactic acid bacteria I: determination of hydrogen peroxide public health microbiology: methods and protocols series. Methods Mol Biol 268:337–346PubMedGoogle Scholar
  96. 96.
    Hudault S, Liévin V, Bernet-Camard MF et al (1997) Antagonistic activity exerted in vitro and in vivo by Lactobacillus casei (strain GG) against Salmonella typhimurium C5 infection. J Appl Environ Microbiol 63(2):513–518Google Scholar
  97. 97.
    Castagliuolo I, Riegler MF, Valenick L et al (1999) Saccharomyces boulardii protease inhibits the effects of clostridium difficile toxins A and B in human colonic mucosa. Infect Immun 67(1):302–307PubMedPubMedCentralGoogle Scholar
  98. 98.
    Dias RS, Bambirra EA, Silva ME et al (1995) Protective effect of Saccharomyces boulardii against the cholera toxin in rats. Braz J Med Biol Res 28(3):323–325PubMedGoogle Scholar
  99. 99.
    Dhanani AS, Bagchi T (2013) Lactobacillus plantarum CS24.2 prevents E. coli adhesion to HT-29 cells and also down-regulates enteropathogen induced TNF-alpha and IL-8 expression. Microbiol Immunol 57:309–315PubMedCrossRefGoogle Scholar
  100. 100.
    Rigothier MC, Maccario J, Vuong PN et al (1990) Effects of Saccharomyces boulardii yeast on trophozoites of Entamoeba histolytica in vitro and in cecal amebiasis in young rats. Ann Parasitol Hum Comp 65(2):51–60PubMedCrossRefGoogle Scholar
  101. 101.
    Dong H, Rowland I, Yaqoob P (2012) Comparative effects of six probiotic strains on immune function in vitro. Br J Nutr 108(3):459–470PubMedCrossRefGoogle Scholar
  102. 102.
    Tanabe S (2013) The effect of probiotics and gut microbiota on Th17 cells. Int Rev Immunol 32(5–6):511–525PubMedCrossRefGoogle Scholar
  103. 103.
    Van Immerseel F, Ducatelle R, De Vos M et al (2010) Butyric acid-producing anaerobic bacteria as a novel probiotic treatment approach for inflammatory bowel disease. J Med Microbiol 59:141–143PubMedCrossRefGoogle Scholar
  104. 104.
    MacSharry J, O'Mahony C, Shalaby KH et al (2012) Immunomodulatory effects of feeding with Bifidobacterium longum on allergen-induced lung inflammation in the mouse. Pulm Pharmacol Ther 25(4):325–334PubMedCrossRefGoogle Scholar
  105. 105.
    Heikkilä JE, Nybom SMK, Salminen SJ et al (2012) Removal of cholera toxin from aqueous solution by probiotic bacteria. Pharmaceuticals 5(6):665–673PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Kaila M, Isolauri E, Soppi E et al (1992) Enhancement of the circulating antibody secreting cell response in human diarrhea by a human lactobacillus strain. Pediatr Res 32:141–144PubMedCrossRefGoogle Scholar
  107. 107.
    Isolauri E, Kaila M, Arvola T et al (1993) Diet during rotavirus enteritis affects jejunal permeability to macromolecules in suckling rats. Pediatr Res 33(6):548–553PubMedCrossRefGoogle Scholar
  108. 108.
    Sütas Y, Soppi E, Korhonen H et al (1996) Suppression of lymphocyte proliferation in vitro by bovine caseins hydrolyzed with Lactobacillus casei GG-derived enzymes. J Allergy Clin Immunol 98(91):216–224PubMedCrossRefGoogle Scholar
  109. 109.
    Anandharaj M, Sivasankari B, Rani RP (2014) Effects of probiotics, prebiotics, and synbiotics on hypercholesterolemia: a review. Chin J Biol. Article ID 572754Google Scholar
  110. 110.
    Kechagia M, Basoulis D, Konstantopoulou S et al (2013) Health benefits of probiotics: a review. ISRN Nutr.  https://doi.org/10.5402/2013/481651 CrossRefGoogle Scholar
  111. 111.
    Singh K, Kallali B, Kumar A et al (2011) Probiotics: a review. Asian Pac J Trop Biomed:S287–S290CrossRefGoogle Scholar
  112. 112.
    Maurya P, Mogra R, Bajpai P (2014) Probiotics: an approach towards health and disease. Trends Biosci 7(20):3107–3113Google Scholar
  113. 113.
    Khan RU, Naz S (2013) The applications of probiotics in poultry production. World’s Poult Sci J 69:621–632CrossRefGoogle Scholar
  114. 114.
    Parvez S, Malik KA, Ah Kang S, Kim HY (2006) Probiotics and their fermented food products are beneficial for health. J Appl Microbiol 100:1171–1185PubMedCrossRefGoogle Scholar
  115. 115.
    Kral M, AngelovicovaM ML (2012) Application of probiotics in poultry production. Anim Sci Biotechnol 45(1):55–57Google Scholar
  116. 116.
    Fontana L, Bermudez-Brito M, Plaza-Diaz J et al (2013) Sources, isolation, characterization and evaluation of probiotics. Br J Nutr 109:S35–S50PubMedCrossRefGoogle Scholar
  117. 117.
    Parracho H, Mc Cartney AL, Gibson GR (2007) Probiotics and prebiotics in infant nutrition. Proc Nutr Soc 66:405–411PubMedCrossRefGoogle Scholar
  118. 118.
    Mitropoulou G, Nedovic V, Goyal A, et al (2013) Immobilization technologies in probiotic food production. J Nutr Metab Article ID 716861Google Scholar
  119. 119.
    Hill C, Guarner F, Reid G et al (2014) Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 11:506–514PubMedCrossRefGoogle Scholar
  120. 120.
    Kurmann JA, Rasic JL (1991) The health potential of products containing bifidobacteria. In: Robinson RK (ed) Therapeutic properties of fermented milks. Elsevier Science Publishers Ltd., London, pp 117–158Google Scholar
  121. 121.
    Payne JF, Morris AEJ, Beers PJ (1998) Viability of bifidobacteria in fermented milk products. In: Sadler MJ, Saltmarsh M (eds) Functional foods: the consumer, the products and the evidence. Royal Society of Chemistry, Cambridge, pp 143–148Google Scholar
  122. 122.
    Mattila-Sandholm T, Myllarinen P, Crittenden R et al (2002) Technological challenges for future probiotic foods. Int Dairy J 12:173–182CrossRefGoogle Scholar
  123. 123.
    Belguesmia Y, Domenger D, Caron J et al (2016) Novel probiotic evidence of lactobacilli on immunomodulation and regulation of satiety hormones release in intestinal cells. J Funct Foods 24:276–286CrossRefGoogle Scholar
  124. 124.
    Zavisic Z, Petricevic S, Radulovic Z et al (2012) Probiotic features of two oral lactobacillus isolates. Braz J Microbiol 43:418–428PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Adams CA (2010) The probiotic paradox: live and dead cells are biological response modifiers. Nutr Res Rev 23(1):37–46PubMedCrossRefGoogle Scholar
  126. 126.
    Awad H, Mokhtar H, Imam SS et al (2010) Comparison between killed and living probiotic usage versus placebo for the prevention of necrotizing enterocolitis and sepsis in neonates. Pak J Biol Sci 13(6):253–262PubMedCrossRefGoogle Scholar
  127. 127.
    Kataria J, Li N, Wynn JL et al (2009) Probiotic microbes: do they need to be alive to be beneficial? Nutr Rev 67:546–550PubMedCrossRefGoogle Scholar
  128. 128.
    Liong MT, Shah NP (2005) Roles of probiotics and prebiotics on cholesterol: the hypothesized mechanisms. Forum Nutr 4:45–57Google Scholar
  129. 129.
    Aggarwal A, Nagori BP, Mathur V (2012) Regulatory approval of probiotics in US, Japan and India: a comparative study. Int J Sci Pharm Edu Res 2:78–86Google Scholar
  130. 130.
    Sharma S, Arora M, Baldi A (2013) Probiotics in India: current status and future prospects. Pharmaspire 1:1–11Google Scholar
  131. 131.
    Guidelines for evaluation of probiotics in food. Report of a Joint ICMR/DBT 2011. Available from.: http://icmr.nic.in/guide/PROBIOTICS_GUIDELINES.pdf
  132. 132.
    Food and Drug Administration. Development and approval process (drugs). Available from.: http://www.fda.gov/Drugs/DevelopmentApprovalProcess/default.htm
  133. 133.
    Leushner R, Robinson T, Hugas M et al (2010) Qualified Presumption of Safety (QPS): a generic risk assessment approach for biological agents notified to the European Food Safety Authority (EFSA). Trends Food Sci Technol 21:425–435CrossRefGoogle Scholar
  134. 134.
    Coppens P, da Silva MF, Pettman S (2006) European regulations on nutraceuticals, dietary supplements and functional foods: a framework based on safety. Toxicology 221:59–74PubMedCrossRefGoogle Scholar
  135. 135.
    Hilliam M (1998) Functional foods in Europe. World Ingred 7:40–45Google Scholar
  136. 136.
    Amagase H (2008) Current marketplace for probiotics: a Japanese perspective. Clin Infect Dis 46:S73–S75PubMedCrossRefGoogle Scholar
  137. 137.
    Yang Y (2008) Scientific Substantiation of functional food health claims in China. J Nutr 138(6):1199S–1205SPubMedCrossRefGoogle Scholar
  138. 138.
    Nutraceuticals in Latin America: Brazil and Beyond at Latin America: Nutraceutical Boom or Bust? Available from.: http://www.nutraceuticalsworld.com/articles/2008/11/latin-america
  139. 139.
    Food and Drug Administration Overview of dietary supplements. Available from: http://www.fda.gov/%20Food/
  140. 140.
    Food and Drug Administration Federal Food, Drug, and Cosmetic Act (FD and C Act). 21 U.S.C.321Sect201 (2004) http://www.fda.gov/regulatoryinformation/legislationfederalfooddrugandcosmeticactfdcact/default.htm
  141. 141.
    Dengan FH (2008) The US Food and Drug Administration and probiotics: regulatory categorization. Clin Infect Dis 46:S133–S136CrossRefGoogle Scholar
  142. 142.
    Dengan FH (2012) Clinical studies involving probiotics: when FDA’s investigational new drug rubric applies-and when it may not. Gut Microbes 3:485–489CrossRefGoogle Scholar
  143. 143.
    Kaushik D, Kaushik N (2009) Functional food/Nutraceuticals regulation in India. Pharm Rev 7Google Scholar
  144. 144.
    State Food and Drug Administration The guideline of registration for functional food 2005. Available from: http://www.sfda.gov.cn/syjz0461/syjz0461.htm
  145. 145.
    FAO/WHO (2002) Guidelines for the evaluation of probiotics in food. Available from: http://www.who.int/foodsafety/fs_management/en/probiotic_guidelines.pdf
  146. 146.
    MHLW. Ministry of Health, Labour and Welfare: Food for Specified Health Uses (FOSHU) http://www.mhlw.go.jp/english/topics/foodsafety/fhc/02.html
  147. 147.
    Saxelin M (2008) Probiotic formulations and applications, the current probiotics market, and changes in the marketplace: a European perspective. Clin Infect Dis 46:S76–S79PubMedCrossRefGoogle Scholar
  148. 148.
    Food Standards Australia New Zealand Health and related claims. http://www.foodstandards.gov.au

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Darshika Nigam
    • 1
  1. 1.Department of Biochemistry, School of Life SciencesDr. Bhimrao Ambedkar UniversityAgraIndia

Personalised recommendations