Functional Food and Human Health pp 623-653 | Cite as
Phytochemicals: An Alternate Approach Towards Various Disease Management
Abstract
With the emergence of allopathic medicine system and the industrial revolution, the era of synthetic chemicals came into being which included medicines also. It reduced the load of cultivating and processing herbal medicines to get a larger amount of medicines with moderate effects in longer durations. It was gradually paralleled and later superseded by the use of purified or synthetic chemicals as drugs for treating various diseases including infections. The use of such molecules was a great success, and a revolution during world wars as the discoveries of antibiotics and their synthetic analogs took place. The use of these molecules continued and at later times became humongous as compared to traditional and herbal formulations. However, as is true with any other material, the overuse of these drugs started showing its negative aspects like side-effects, development of resistance etc. The problem specifically became huge with respect to antimicrobial compounds as the microbes started developing resistance towards all such molecules, while the problem of toxic side effects continued. The problem of drug resistance has been also observed in case of some diseases such as cancer and type 2 diabetes. This made the drug development program rethink if we should reduce the use of the synthetic compounds and start exploring back if there are safer avenues available. Exploration and research on phytochemicals present in medicinal plants and functional foods, thus, came as a safer alternative. This chapter tries to explore the information about knowledge available about phytochemicals and recent developments in this area for finding newer and better antimicrobials, anticancerous and antidiabetics.
Keywords
Phytochemicals Antimicrobials Antiviral Anticancerous AntidiabeticsReferences
- 1.Adams A, Kumar S, Clauson M, Sahi S (2011) Anti-yeast activities of Origanum oil against human pathogenic yeasts. Adv Biosci Biotechnol 2:103CrossRefGoogle Scholar
- 2.Ahmadipour F, Noordin MI, Mohan S, Arya A, Paydar M, Looi CY, Keong YS, Siyamak EN, Fani S, Firoozi M, Yong CL (2015) Koenimbin, a natural dietary compound of Murraya koenigii (L) Spreng: inhibition of MCF7 breast cancer cells and targeting of derived MCF7 breast cancer stem cells (CD44+/CD24−/low): an in vitro study. Drug Des Devel Ther 9:1193PubMedPubMedCentralGoogle Scholar
- 3.Ajabnoor MA, Tilmisany AK (1988) Effect of Trigonella foenum graceum on blood glucose levels in normal and alloxan-diabetic mice. J Ethnopharmacol 22:45–49PubMedCrossRefGoogle Scholar
- 4.Akhani SP, Vishwakarma SL, Goyal RK (2004) Anti-diabetic activity of Zingiber officinale in streptozotocin-induced type I diabetic rats. J Pharm Pharmacol 56:101–105PubMedCrossRefGoogle Scholar
- 5.Akindele AJ, Wani ZA, Sharma S, Mahajan G, Satti NK, Adeyemi OO, Mondhe DM, Saxena AK (2015) In vitro and in vivo anticancer activity of root extracts of Sansevieria liberica Gerome and Labroy (Agavaceae). Evid Based Complement Alternat Med 2015:1CrossRefGoogle Scholar
- 6.Amber K, Aijaz A, Immaculata X, Luqman KA, Nikhat M (2010) Anticandidal effect of Ocimum sanctum essential oil and its synergy with fluconazole and ketoconazole. Phytomedicine 17:921–925PubMedCrossRefGoogle Scholar
- 7.American Diabetes Association (2011) Standards of medical care in diabetes—2011. Diabetes Care 34:S11–S61PubMedCentralCrossRefPubMedGoogle Scholar
- 8.Amin A, Gali-Muhtasib H, Ocker M, Schneider-Stock R (2009) Overview of major classes of plant-derived anticancer drugs. Int J Biomed Sci: IJBS 5:1PubMedGoogle Scholar
- 9.Ansari M, Anurag A, Fatima Z, Hameed S (2013) Natural phenolic compounds: a potential antifungal agent. Microbiology 2:189–195Google Scholar
- 10.Antony M, James J, Misra CS, Sagadevan LD, Veettil AT, Thankamani V (2012) Anti mycobacterial activity of the plant extracts of Alstonia scholaris. Int J Curr Pharm Res 4:40–42Google Scholar
- 11.Arumugam G, Manjula P, Paari N (2013) A review: anti diabetic medicinal plants used for diabetes mellitus. J Acute Dis 2:196–200CrossRefGoogle Scholar
- 12.Arumugam G, Swamy MK, Sinniah UR (2016) Plectranthus amboinicus (Lour.) Spreng: botanical, phytochemical, pharmacological and nutritional significance. Molecules 21(4):369PubMedCrossRefGoogle Scholar
- 13.Arutselvi R, Balasaravanan T, Ponmurugan P, Suresh P, Ramachandran N (2012) Comparative studies of anti-microbial activity of turmeric and selected medicinal plant leaf extracts used in Indian traditional medicine. J Herbs Spices Med Plants 18:231–239CrossRefGoogle Scholar
- 14.Bag P, Chattopadhyay D, Mukherjee H, Ojha D, Mandal N, Sarkar MC, Chatterjee T, Das G, Chakraborti S (2012) Anti-herpes virus activities of bioactive fraction and isolated pure constituent of Mallotus peltatus: an ethnomedicine from Andaman Islands. Virol J 9:98PubMedPubMedCentralCrossRefGoogle Scholar
- 15.Bailly S, Maubon D, Fournier P, Pelloux H, Schwebel C, Chapuis C, Foroni L, Cornet M, Timsit JF (2016) Impact of antifungal prescription on relative distribution and susceptibility of Candida spp.—trends over 10 years. J Infect 72:103–111PubMedCrossRefGoogle Scholar
- 16.Baker JT, Borris RP, Carté B, Cordell GA, Soejarto DD, Cragg GM, Gupta MP, Iwu MM, Madulid DR, Tyler VE (1995) Natural product drug discovery and development: new perspectives on international collaboration. J Nat Prod 58:1325–1357PubMedCrossRefGoogle Scholar
- 17.Balamurugan R, Ignacimuthu S (2011) Antidiabetic and hypolipidemic effect of methanol extract of Lippia nodiflora L. in streptozotocin induced diabetic rats. Asian Pac J Trop Biomed 1:S30–S36CrossRefGoogle Scholar
- 18.Banerjee J, Mishra N, Dhas Y (2015) Metagenomics: a new horizon in cancer research. Meta Gene 5:84–89PubMedPubMedCentralCrossRefGoogle Scholar
- 19.Bashir SF, Gurumayum S, Kaur S (2015) In Vitro antimicrobial activity and preliminary phytochemical screening of methanol, chloroform, and hot water extracts of ginger (Zingiber officinale). In Vitro 8(1):176–180Google Scholar
- 20.Bathoorn E, Salazar NE, Sepehrkhouy S, Meijer M, de Cock H, Haas PJ (2013) Involvement of the opportunistic pathogen Aspergillus tubingensis in osteomyelitis of the maxillary bone: a case report. BMC Infect Dis 13:59PubMedPubMedCentralCrossRefGoogle Scholar
- 21.Birdi T, D’souza D, Tolani M, Daswani P, Nair V, Tetali P, Toro JC, Hoffner S (2012) Assessment of the activity of selected Indian medicinal plants against Mycobacterium tuberculosis: a preliminary screening using the Microplate Alamar Blue Assay. Eur J Med Plant 2:308–323CrossRefGoogle Scholar
- 22.Boocock DJ, Faust GE, Patel KR, Schinas AM, Brown VA, Ducharme MP, Booth TD, Crowell JA, Perloff M, Gescher AJ, Steward WP (2007) Phase I dose escalation pharmacokinetic study in healthy volunteers of resveratrol, a potential cancer chemopreventive agent. Cancer Epidemiol Pre Biomark 16:1246–1252CrossRefGoogle Scholar
- 23.Bouddine L, Louaste B, Achahbar S, Chami N, Chami F, Remmal A (2012) Comparative study of the antifungal activity of some essential oils and their major phenolic components against Aspergillus niger using three different methods. Afr J Biotechnol 11:14083–14087CrossRefGoogle Scholar
- 24.Bringmann G, Steinert C, Feineis D, Mudogo V, Betzin J, Scheller C (2016) HIV-inhibitory michellamine-type dimeric naphthylisoquinoline alkaloids from the Central African liana Ancistrocladus congolensis. Phytochemistry 128:71–81PubMedCrossRefGoogle Scholar
- 25.Brüll F, Mensink RP, Plat J (2009) Plant sterols: functional lipids in immune function and inflammation? Clin Lipidol 4:355–365CrossRefGoogle Scholar
- 26.Cao Y, Huang S, Dai B, Zhu Z, Lu H, Dong L, Cao Y, Wang Y, Gao P, Chai Y, Jiang Y (2009) Candidaalbicans cells lacking CaMCA1-encoded metacaspase show resistance to oxidative stress-induced death and change in energy metabolism. Fungal Genet Biol 46:183–189PubMedCrossRefGoogle Scholar
- 27.Channabasappa HS, Shrinivas JD, Venkatrao KH (2015) Evaluation of antibacterial and Antitubercular activity of Cassia fistula Linn root. Int J Res Pharm Sci 6:82–84Google Scholar
- 28.Chaturvedi P, George S, Milinganyo M, Tripathi YB (2004) Effect of Momordica charantia on lipid profile and oral glucose tolerance in diabetic rats. Phytother Res 18:954–956PubMedCrossRefGoogle Scholar
- 29.Chavan RD, Shinde P, Girkar K, Madage R, Chowdhary A (2016) Assessment of Anti-Influenza activity and hemagglutination inhibition of Plumbago indica and Allium sativum extracts. Pharm Res 8:105Google Scholar
- 30.Choi KT (2008) Botanical characteristics, pharmacological effects and medicinal components of Korean Panax ginseng CA Meyer. Acta Pharmacol Sin 29:1109–1118PubMedCrossRefGoogle Scholar
- 31.Chugh TD (2008) Emerging and re-emerging bacterial diseases in India. J Biosci 33:549–555PubMedCrossRefGoogle Scholar
- 32.Cowan MM (1999) Plant products as antimicrobial agents. Clin Microbiol Rev 12:564–582PubMedPubMedCentralGoogle Scholar
- 33.Dahiya P, Kamal R, Puri A, Saini G, Arora A (2012) Penicillinosis in a HIV-positive individual. Indian J Sex Trans Dis 33:38CrossRefGoogle Scholar
- 34.de Lira Mota KS, de Oliveira Pereira F, de Oliveira WA, Lima IO, de Oliveira Lima E (2012) Antifungal activity of Thymus vulgaris L. essential oil and its constituent phytochemicals against Rhizopus oryzae: interaction with ergosterol. Molecules 17:14418–14433PubMedCrossRefGoogle Scholar
- 35.De Martel C, Ferlay J, Franceschi S, Vignat J, Bray F, Forman D, Plummer M (2012) Global burden of cancers attributable to infections in 2008: a review and synthetic analysis. Lancet Oncol 13(6):607–615PubMedCrossRefGoogle Scholar
- 36.de Oliveira Lima I, Oliveira RD, de Oliveira Lima E, Farias NM, de Souza EL (2006) Atividade antifúngica de óleos essenciais sobre espécies de Candida. Braz J Pharm 16:197–201CrossRefGoogle Scholar
- 37.de Oliveira RB, Atobe JH, Souza SA, Santos DW (2014) Epidemiology of invasive fungal infections in patients with acquired immunodeficiency syndrome at a reference hospital for infectious diseases in Brazil. Mycopathologia 178:71–78PubMedCrossRefGoogle Scholar
- 38.Deepa AG, Nair BJ, Sivakumar TT, Joseph AP (2014) Uncommon opportunistic fungal infections of oral cavity: a review. J Oral Maxillofac Pathol: JOMFP 18:235PubMedCrossRefGoogle Scholar
- 39.Deesomchok A, Tanprawate S (2006) A 12-case series of Penicillium marneffei pneumonia. J Med Assoc Thail 89:441Google Scholar
- 40.Derksen A, Kühn J, Hafezi W, Sendker J, Ehrhardt C, Ludwig S, Hensel A (2016) Antiviral activity of hydroalcoholic extract from Eupatorium perfoliatum L. against the attachment of influenza a virus. J Ethnopharmacol 188:144–152PubMedCrossRefGoogle Scholar
- 41.Dwevedi A, Dwivedi R, Sharma YK (2016) Exploration of phytochemicals found in Terminalia sp. and their antiretroviral activities. Pharmacogn Rev 10:73PubMedPubMedCentralCrossRefGoogle Scholar
- 42.Edeoga HO, Okwu DE, Mbaebie BO (2005) Phytochemical constituents of some Nigerian medicinal plants. Afr J Biotechnol 4:685–688CrossRefGoogle Scholar
- 43.El-Alfy TS, Ezzat SM, Hegazy AK, Amer AM, Kamel GM (2011) Isolation of biologically active constituents from Moringa peregrina (Forssk.) Fiori.(family: Moringaceae) growing in Egypt. Pharmacogn Mag 7:109PubMedPubMedCentralCrossRefGoogle Scholar
- 44.Faergemann J, Baran R (2003) Epidemiology, clinical presentation and diagnosis of onychomycosis. Br J Dermatol 149:1–4PubMedCrossRefGoogle Scholar
- 45.Faria NC, Kim JH, Gonçalves LA, Martins MD, Chan KL, Campbell BC (2011) Enhanced activity of antifungal drugs using natural phenolics against yeast strains of Candida and Cryptococcus. Lett Appl Microbiol 52:506–513PubMedCrossRefGoogle Scholar
- 46.Fernández-Torres B, Cabanes FJ, Carrillo-Munoz AJ, Esteban A, Inza I, Abarca L, Guarro J (2002) Collaborative evaluation of optimal antifungal susceptibility testing conditions for dermatophytes. J Clin Microbiol 40:3999–4003PubMedPubMedCentralCrossRefGoogle Scholar
- 47.Feshani AM, Kouhsari SM, Mohammadi S (2011) Vaccinium arctostaphylos, a common herbal medicine in Iran: molecular and biochemical study of its antidiabetic effects on alloxan-diabetic Wistar rats. J Ethnopharmacol 133:67–74PubMedCrossRefGoogle Scholar
- 48.Fontenelle RO, Morais SM, Brito EH, Brilhante RS, Cordeiro RA, Lima YC, Brasil NV, Monteiro AJ, Sidrim JJ, Rocha MF (2011) Alkylphenol activity against Candida spp. and Microsporum canis: a focus on the antifungal activity of thymol, eugenol and O-methyl derivatives. Molecules 16(8):6422–6431PubMedCrossRefGoogle Scholar
- 49.Foster T (1996) Chapter 12: staphylococcus. In: Baron S (ed) Medical microbiology, 4th edn. University of Texas Medical Branch at Galveston, GalvestonGoogle Scholar
- 50.Gahlawat DK, Jakhar S, Dahiya P (2014) Murraya koenigii (L.) Spreng: an ethnobotanical, phytochemical and pharmacological review. J Pharm Phytochem 3:109–119Google Scholar
- 51.Gao L, Han J, Si J, Wang J, Wang H, Sun Y, Bi Y, Liu J, Cao L (2017) Cryptoporic acid E from Cryptoporus volvatus inhibits influenza virus replication in vitro. Antivir Res 143:106–112PubMedCrossRefGoogle Scholar
- 52.Gaur R, Thakur JP, Yadav DK, Kapkoti DS, Verma RK, Gupta N, Khan F, Saikia D, Bhakuni RS (2015) Synthesis, antitubercular activity, and molecular modeling studies of analogues of isoliquiritigenin and liquiritigenin, bioactive components from Glycyrrhiza glabra. Med Chem Res 24:3494–3503CrossRefGoogle Scholar
- 53.Gayoso CW, Lima EO, Oliveira VT, Pereira FO, Souza EL, Lima IO, Navarro DF (2005) Sensitivity of fungi isolated from onychomycosis to Eugenia cariophyllata essential oil and eugenol. Fitoterapia 76:247–249PubMedCrossRefGoogle Scholar
- 54.Ghosh M, Civra A, Rittà M, Cagno V, Mavuduru SG, Awasthi P, Lembo D, Donalisio M (2016) Ficus religiosa L. bark extracts inhibit infection by herpes simplex virus type 2 in vitro. Arch Virol 161:3509–3514PubMedCrossRefGoogle Scholar
- 55.Giovannucci E, Ascherio A, Rimm EB, Stampfer MJ, Colditz GA, Willett WC (1995) Intake of carotenoids and retino in relation to risk of prostate cancer. JNCI J Nat Cancer Inst 87:1767–1776PubMedCrossRefGoogle Scholar
- 56.Gottlieb SL, Johnston C (2017) Future prospects for new vaccines against sexually transmitted infections. Curr Opin Infect Dis 30:77PubMedPubMedCentralGoogle Scholar
- 57.Gowrish A, Vagdevi HM, Rajashekar H (2015) In vitro antioxidant and antitubercular activity of Leucas marrubioides Desf. root extracts. J Appl Pharm Sci 5:137–142CrossRefGoogle Scholar
- 58.Greenberg MS, Burket LW, Glick M (2003) Burket’s oral medicine: diagnosis & treatment. BC Decker, HamiltonGoogle Scholar
- 59.Grover JK, Yadav S, Vats V (2002) Medicinal plants of India with anti-diabetic potential. J Ethnopharmacol 81:81–100PubMedCrossRefGoogle Scholar
- 60.Guo N, Liu J, Wu X, Bi X, Meng R, Wang X, Xiang H, Deng X, Yu L (2009) Antifungal activity of thymol against clinical isolates of fluconazole-sensitive and-resistant Candida albicans. J Med Microbiol 58:1074–1079PubMedCrossRefGoogle Scholar
- 61.Gupta VK, Shukla C, Bisht GR, Saikia D, Kumar S, Thakur RL (2011) Detection of anti-tuberculosis activity in some folklore plants by radiometric BACTEC assay. Lett Appl Microbiol 52:33–40PubMedCrossRefGoogle Scholar
- 62.Gutheil GW, Reed G, Ray A, Anant S, Dhar A (2012) Crocetin: an agent derived from saffron for prevention and therapy for cancer. Curr Pharm Biotechnol 13:173–179PubMedPubMedCentralCrossRefGoogle Scholar
- 63.Hammer KA, Carson CF, Riley TV (2002) In vitro activity of Melaleuca alternifolia (tea tree) oil against dermatophytes and other filamentous fungi. J Antimicrob Chemother 50:195–199PubMedCrossRefGoogle Scholar
- 64.Hammer KA, Carson CF, Riley TV (2012) Effects of Melaleuca alternifolia (tea tree) essential oil and the major monoterpene component terpinen-4-ol on the development of single-and multistep antibiotic resistance and antimicrobial susceptibility. Antimicrob Agents Chemother 56:909–915PubMedPubMedCentralCrossRefGoogle Scholar
- 65.Han X, Zhang DK, Guo YM, Feng WW, Dong Q, Zhang CE, Zhou YF, Liu Y, Wang JB, Zhao YL, Xiao XH, Yang M (2016) Screening and evaluation of commonly-used anti-influenza Chinese herbal medicines based on anti-neuraminidase activity. Chin J Nat Med 14:794–800PubMedGoogle Scholar
- 66.Hartmann JT, Lipp HP (2006) Camptothecin and podophyllotoxin derivatives. Drug Saf 29:209–230PubMedCrossRefGoogle Scholar
- 67.Houghton P, Patel N, Jurzysta M, Biely Z, Cheung C (2006) Antidermatophyte activity of medicago extracts and contained saponins and their structure-activity relationships. Phytother Res 20:1061–1066PubMedCrossRefGoogle Scholar
- 68.Huprikar S, Shoham S (2013) Emerging fungal infections in solid organ transplantation. Am J Transplant 13:262–271PubMedCrossRefGoogle Scholar
- 69.Ibrahim MP, Nuhu AA (2016) Phytochemical screening and antibacterial/antifungal activities of Ginkgo biloba extract EGb 761. J Pharm Biol Sci 11(1):43–49Google Scholar
- 70.Ibrahim NA, Mohammed M, Farid MA, Abdel-Wahed NA (2015) Chemical composition, antimicrobial and antifungal activities of essential oils of the leaves of Aegle marmelos (L.) Correa growing in Egypt. J Appl Pharm Sci 5:1–5CrossRefGoogle Scholar
- 71.James SA, Omwirhiren RE, Joshua IA, Dutse I (2016) Anti-diabetic properties and phytochemical studies of ethanolic leaf extracts of Murraya koenigii and Telfairia occidentalis on alloxan-induced diabetic albino rats. Ornament 49Google Scholar
- 72.Jankasem M, Wuthi-udomlert M, Gritsanapan W (2013) Antidermatophytic properties of Ar-turmerone, turmeric oil, and Curcuma longa preparations. ISRN Dermatol 2013:1CrossRefGoogle Scholar
- 73.Jung J, Kim NK, Park S, Shin HJ, Hwang SG, Kim K (2015) Inhibitory effect of Phyllanthus urinaria L. extract on the replication of lamivudine-resistant hepatitis B virus in vitro. BMC Complement Altern Med 15:255PubMedPubMedCentralCrossRefGoogle Scholar
- 74.Kapewangolo P, Hussein AA, Meyer D (2013) Inhibition of HIV-1 enzymes, antioxidant and anti-inflammatory activities of Plectranthus barbatus. J Ethnopharmacol 149:184–190PubMedCrossRefGoogle Scholar
- 75.Kapewangolo P, Knott M, Shithigona RE, Uusiku SL, Kandawa-Schulz M (2016) In vitro anti-HIV and antioxidant activity of Hoodia gordonii (Apocynaceae), a commercial plant product. BMC Complement Altern Med 16:411PubMedPubMedCentralCrossRefGoogle Scholar
- 76.Kebaara BW, Langford ML, Navarathna DH, Dumitru R, Nickerson KW, Atkin AL (2008) Candida albicans Tup1 is involved in farnesol-mediated inhibition of filamentous-growth induction. Eukaryot Cell 7:980–987PubMedPubMedCentralCrossRefGoogle Scholar
- 77.Khan BA, Abraham A, Leelamma S (1995) Hypoglycemic action of Murraya koenigii (curry leaf) and Brassica juncea (mustard): mechanism of action. Indian J Biochem Biophys 32:106–108PubMedPubMedCentralGoogle Scholar
- 78.Khare CP (2008) Indian medicinal plants: an illustrated dictionary. Springer, BerlinGoogle Scholar
- 79.Kronstad JW, Attarian R, Cadieux B, Choi J, D’souza CA, Griffiths EJ, Geddes JM, Hu G, Jung WH, Kretschmer M, Saikia S (2011) Expanding fungal pathogenesis: cryptococcus breaks out of the opportunistic box. Nat Rev Microbiol 9:193–203PubMedPubMedCentralCrossRefGoogle Scholar
- 80.Kurapati KR, Atluri VS, Samikkannu T, Garcia G, Nair MP (2015) Natural products as anti-HIV agents and role in HIV-associated neurocognitive disorders (HAND): a brief overview. Front Microbiol 6:1444PubMedGoogle Scholar
- 81.Lavoie S, Côté I, Pichette A, Gauthier C, Ouellet M, Nagau-Lavoie F, Mshvildadze V, Legault J (2017) Chemical composition and anti-herpes simplex virus type 1 (HSV-1) activity of extracts from Cornus canadensis. BMC Complement Altern Med 17:123PubMedPubMedCentralCrossRefGoogle Scholar
- 82.Lee WJ, Moon JS, Kim SI, Bahn YS, Lee H, Kang TH, Shin HM, Kim SU (2015) A phenylpropanoid glycoside as a calcineurin inhibitor isolated from Magnolia obovata Thunb. J Microbiol Biotechnol 25:1429–1432PubMedCrossRefGoogle Scholar
- 83.Liang J, Chen J, Tan Z, Peng J, Zheng X, Nishiura K, Ng J, Wang Z, Wang D, Chen Z, Liu L (2013) Extracts of the medicinal herb Sanguisorba officinalis inhibit the entry of human immunodeficiency virus-1. J Food Drug Anal 21:S52–S58CrossRefGoogle Scholar
- 84.Lin RD, Chin YP, Lee MH (2005) Antimicrobial activity of antibiotics in combination with natural flavonoids against clinical extended-spectrum β-lactamase (ESBL)-producing Klebsiella pneumoniae. Phytother Res 19:612–617PubMedCrossRefGoogle Scholar
- 85.Loizzo MR, Statti GA, Tundis R, Conforti F, Bonesi M, Autelitano G, Houghton PJ, Miljkovic-Brake A, Menichini F (2004) Antibacterial and antifungal activity of Senecio inaequidens DC. and Senecio vulgaris L. Phytother Res 18:777–779PubMedCrossRefGoogle Scholar
- 86.López-Lázaro M, Willmore E, Austin CA (2007) Cells lacking DNA topoisomerase IIβ are resistant to genistein. J Nat Prod 70:763–767PubMedCrossRefGoogle Scholar
- 87.Lunardi LW, Aquino VR, Zimerman RA et al (2006) Epidemiology and outcome of in a tertiary care hospital. Clin Infect Dis 43:e60–63Google Scholar
- 88.Machumi F, Samoylenko V, Yenesew A, Derese S, Midiwo JO, Wiggers FT, Jacob MR, Tekwani BL, Khan SI, Walker LA, Muhammad I (2010) Antimicrobial and antiparasitic abietane diterpenoids from the roots of Clerodendrum eriophyllum. Nat Prod Commun 5:853PubMedPubMedCentralGoogle Scholar
- 89.Mahesh B, Satish S (2008) Antimicrobial activity of some important medicinal plant against plant and human pathogens. World J Agric Sci 4:839–843Google Scholar
- 90.Mahmood A, Mahmood A, Qureshi RA (2012) Antimicrobial activities of three species of family mimosaceae. Pak J Pharm Sci 25:203–206PubMedGoogle Scholar
- 91.Manayi A, Saeidnia S, Faramarzi MA, Samadi N, Jafari S, Vazirian M, Ghaderi A, Mirnezami T, Hadjiakhoondi A, Ardekani MR, Khanavi M (2013) A comparative study of anti-Candida activity and phenolic contents of the calluses from Lythrum salicaria L. in different treatments. Appl Biochem Biotechnol 170:176–184PubMedCrossRefGoogle Scholar
- 92.Markovits J, Linassier C, Fossé P, Couprie J, Pierre J, Jacquemin-Sablon A, Saucier JM, Le Pecq JB, Larsen AK (1989) Inhibitory effects of the tyrosine kinase inhibitor genistein on mammalian DNA topoisomerase II. Cancer Res 49:5111–5117PubMedGoogle Scholar
- 93.Maroyi A (2014) Alternative medicines for HIV/AIDS in resource-poor settings: insight from traditional medicines use in Sub-Saharan Africa. Trop J Pharm Res 13:1527–1536CrossRefGoogle Scholar
- 94.Mekha Mohan PJ, Valsalan R, Nazeem PA (2015) Molecular docking studies of phytochemicals from Phyllanthus niruri against Hepatitis B DNA Polymerase. Bioinformation 11:426PubMedPubMedCentralCrossRefGoogle Scholar
- 95.Miao M, Cheng B, Guo L, Shi J (2015) Effects of Fuzheng Paidu tablet on peripheral blood T lymphocytes, intestinal mucosa T lymphocytes, and immune organs in cyclophosphamide-induced immunosuppressed mice. Hum Vaccin Immunother 11:2659–2663PubMedPubMedCentralCrossRefGoogle Scholar
- 96.Miceli MH, Díaz JA, Lee SA (2011) Emerging opportunistic yeast infections. Lancet Infect Dis 11:142–151PubMedCrossRefGoogle Scholar
- 97.Mishima S, Saito K, Maruyama H, Inoue M, Yamashita T, Ishida T, Gu Y (2004) Antioxidant and immuno-enhancing effects of Echinacea purpurea. Biol Pharm Bull 27:1004–1009PubMedCrossRefGoogle Scholar
- 98.Modi M, Dezzutti CS, Kulshreshtha S, Rawat AK, Srivastava SK, Malhotra S, Verma A, Ranga U, Gupta SK (2013) Extracts from Acacia catechu suppress HIV-1 replication by inhibiting the activities of the viral protease and Tat. Virol J 10:309PubMedPubMedCentralCrossRefGoogle Scholar
- 99.Moltó J, Valle M, Miranda C, Cedeño S, Negredo E, Clotet B (2012) Herb-drug interaction between Echinacea purpurea and etravirine in HIV-infected patients. Antimicrob Agents Chemother 56:5328–5331PubMedPubMedCentralCrossRefGoogle Scholar
- 100.Monera-Penduka TG, Maponga CC, Morse GD, Nhachi CF (2017) Capacity for ethical and regulatory review of herbal trials in developing countries: a case study of Moringa oleifera research in HIV-infected patients. J Pharm Policy Pract 10:9PubMedPubMedCentralCrossRefGoogle Scholar
- 101.Moon DO, Kim MO, Lee JD, Choi YH, Kim GY (2010) Rosmarinic acid sensitizes cell death through suppression of TNF-α-induced NF-κB activation and ROS generation in human leukemia U937 cells. Cancer Lett 288:183–191PubMedCrossRefGoogle Scholar
- 102.Moudi M, Go R, Yien CY, Nazre M (2013) Vinca alkaloids. Int J Pre Med 4:1231Google Scholar
- 103.Munoz P, Bouza E, Cuenca-Estrella M et al (2005) Saccharomyces cerevisiaefungemia: an emerging infectious disease. Clin Infect Dis 40:1625–34PubMedCrossRefGoogle Scholar
- 104.Muthu C, Ayyanar M, Raja N, Ignacimuthu S (2006) Medicinal plants used by traditional healers in Kancheepuram District of Tamil Nadu. India J Ethnobiol Ethnomed 2:43PubMedCrossRefGoogle Scholar
- 105.Nakamura CV, Ishida K, Faccin LC, Dias Filho BP, Cortez DA, Rozental S, de Souza W, Ueda-Nakamura T (2004) In vitro activity of essential oil from Ocimum gratissimum L. against four Candida species. Res Microbiol 155:579–586PubMedCrossRefGoogle Scholar
- 106.Nazari H, Mohammadi A, Amrollahi H, Dehpour A (2012) Essential oil analysis and antibacterial activities of some medicinal plants. Int J Phytomed 4:212Google Scholar
- 107.Negri M, Salci TP, Shinobu-Mesquita CS, Capoci IR, Svidzinski TI, Kioshima ES (2014) Early state research on antifungal natural products. Molecules 19:2925–2956PubMedCrossRefGoogle Scholar
- 108.Nosanchuk JD, Casadevall A (2003) Budding of melanized Cryptococcus neoformans in the presence or absence of L-dopa. Microbiology 149(7):1945–1951PubMedCrossRefGoogle Scholar
- 109.Noumi E, Manga PN (2011) Traditional medicines for HIV/AIDS and opportunistic infections in North-West Cameroon: case of skin infections. Am J Trop Med Hyg 1:44–64Google Scholar
- 110.Nutan, Modi M, Dezzutti CS, Kulshreshtha S, Rawat AK, Srivastava SK, Malhotra S, Verma A, Ranga U, Gupta SK (2013) Extracts from Acacia catechu suppress HIV-1 replication by inhibiting the activities of the viral protease and Tat. Virology J 10:309PubMedPubMedCentralCrossRefGoogle Scholar
- 111.Olajuyigbe OO, Afolayan AJ (2012) In vitro antibacterial and time-kill assessment of crude methanolic stem bark extract of Acacia mearnsii De Wild against bacteria in shigellosis. Molecules 17:2103–2118PubMedCrossRefGoogle Scholar
- 112.Oyagbemi AA, Saba AB, Azeez OI (2010) Molecular targets of [6]-gingerol: its potential roles in cancer chemoprevention. Biofactors 36:169–178PubMedCrossRefGoogle Scholar
- 113.Panda S, Dubey D, Dutta S (2010) Anticandidal activity of Diospyros melanoxylon Roxb. Bark from Similipal Biosphere Reserve, Orissa, India. Int J Green Pharm 4:102CrossRefGoogle Scholar
- 114.Panthong P, Bunluepuech K, Boonnak N, Chaniad P, Pianwanit S, Wattanapiromsakul C, Tewtrakul S (2015) Anti-HIV-1 integrase activity and molecular docking of compounds from Albizia procera bark. Pharm Biol 53:1861–1866PubMedCrossRefGoogle Scholar
- 115.Parmar J, Sharma P, Verma P, Goyal PK (2010) Chemopreventive action of Syzygium cumini on DMBA-induced skin papillomagenesis in mice. Asian Pac J Cancer Prev 11:261–265PubMedGoogle Scholar
- 116.Patel DK, Kumar R, Prasad SK, Sairam K, Hemalatha S (2011) Antidiabetic and in vitro antioxidant potential of Hybanthus enneaspermus (Linn) F. Muell in streptozotocin–induced diabetic rats. Asian Pac J Trop Biomed 1:316–322PubMedPubMedCentralCrossRefGoogle Scholar
- 117.Patil R, Patil R, Ahirwar B, Ahirwar D (2011) Isolation and characterization of anti-diabetic component (bioactivity—guided fractionation) from Ocimum sanctum L.(Lamiaceae) aerial part. Asian Pac J Trop Med 4:278–282PubMedCrossRefGoogle Scholar
- 118.Patwardhan B, Gautam M (2005) Botanical immunodrugs: scope and opportunities. Drug Discov Today 10:495–502PubMedCrossRefGoogle Scholar
- 119.Pepeljnjak S, Kosalec I, Kalodera Z, Blazevic NI (2005) Antimicrobial activity of juniper berry essential oil (Juniperus communis L., Cupressaceae). Acta Pharm Zagreb 55:417Google Scholar
- 120.Pereira CB, de Oliveira DM, Hughes AF, Kohlhoff M, Vieira ML, Vaz AB, Ferreira MC, Carvalho CR, Rosa LH, Rosa CA, Alves TM (2015) Endophytic fungal compounds active against Cryptococcus neoformans and C. Gattii. J Antibiot 68:436–444PubMedCrossRefGoogle Scholar
- 121.Perera DF, Fernando KM, Wijendra WA (2015) Efficacy of phytochemicals present in leaves of Punica granatum against Malassezia species. Am J Pharmacol Pharm 2:62–71Google Scholar
- 122.Petretto GL, Fancello F, Zara S, Foddai M, Mangia NP, Sanna ML, Omer EA, Menghini L, Chessa M, Pintore G (2014) Antimicrobial activity against beneficial microorganisms and chemical composition of essential oil of Mentha suaveolens ssp. insularis grown in Sardinia. J Food Sci 79:369–377CrossRefGoogle Scholar
- 123.Pinto E, Vale-Silva L, Cavaleiro C, Salgueiro L (2009) Antifungal activity of the clove essential oil from Syzygium aromaticum on Candida, Aspergillus and dermatophyte species. J Med Microbiol 58:1454–1462PubMedCrossRefGoogle Scholar
- 124.Polaquini SR, Svidzinski TI, Kemmelmeier C, Gasparetto A (2006) Effect of aqueous extract from neem (Azadirachta indica A. Juss) on hydrophobicity, biofilm formation and adhesion in composite resin by Candida albicans. Arch Oral Biol 51:482–490PubMedCrossRefGoogle Scholar
- 125.Pottier I, Gente S, Vernoux JP, Guéguen M (2008) Safety assessment of dairy microorganisms: Geotrichum candidum. Int J Food Microbiol 126:327–332PubMedCrossRefGoogle Scholar
- 126.Rai MK, Varma A, Pandey AK (2004) Antifungal potential of Spilanthes calva after inoculation of Piriformospora indica. Mycoses 47:479–481PubMedCrossRefGoogle Scholar
- 127.Rajiniraja MU, Jayaraman GU (2014) Bioautography guided screening of selected Indian medicinal plants reveals potent Antimycobacterial activity of Allium sativum extracts-implication of non-sulfur compounds in inhibition. Int J Pharm Pharm Sci 6:671–676Google Scholar
- 128.Ramachandran A, Snehalatha C, Shetty AS, Nanditha A (2012) Trends in prevalence of diabetes in Asian countries. World J Diabetes 3:110PubMedPubMedCentralCrossRefGoogle Scholar
- 129.Rukayadi Y, Hwang JK (2007) In vitro anti-Malassezia activity of xanthorrhizol isolated from Curcuma xanthorrhiza Roxb. Lett Appl Microbiol 44:126–130PubMedCrossRefGoogle Scholar
- 130.Sa G, Das T (2008) Anti cancer effects of curcumin: cycle of life and death. Cell Div 3:14PubMedPubMedCentralCrossRefGoogle Scholar
- 131.Sabiiti W, May RC (2012) Mechanisms of infection by the human fungal pathogen Cryptococcus neoformans. Future Microbiol 7:1297–1313PubMedCrossRefGoogle Scholar
- 132.Saini S, Porte SM (2015) Antimicrobial properties of Anand Bhairav Ras and its ingredients: an overview. Int J Res Ayurveda and Pharm 6:80–85CrossRefGoogle Scholar
- 133.Santos NO, Mariane B, Lago JH, Sartorelli P, Rosa W, Soares MG, da Silva AM, Lorenzi H, Vallim MA, Pascon RC (2015) Assessing the chemical composition and antimicrobial activity of essential oils from Brazilian plants—Eremanthus erythropappus (Asteraceae), Plectrantuns barbatus, and P. amboinicus (Lamiaceae). Molecules 20:8440–8452PubMedCrossRefGoogle Scholar
- 134.Schiff PB, Fant J, Horwitz SB (1979) Promotion of microtubule assembly in vitro by taxol. Nature 277:665–667PubMedCrossRefGoogle Scholar
- 135.Scully C, Almeida OP (1992) Orofacial manifestations of the systemic mycoses. J Oral Pathol Med 21:289–294PubMedCrossRefGoogle Scholar
- 136.Shaik G, Sujatha N, Mehar SK (2014) Medicinal plants as source of antibacterial agents to counter Klebsiella pneumoniae. J Appl Pharm Sci 4:135–147Google Scholar
- 137.Shoshana LO, Amira RU, Kashman Y, Amnon HI (1999) Polycitone A, a novel and potent general inhibitor of retroviral reverse transcriptases and cellular DNA polymerases. Biochem J 344:85–92CrossRefGoogle Scholar
- 138.Silprasit K, Seetaha S, Pongsanarakul P, Hannongbua S, Choowongkomon K (2011) Anti-HIV-1 reverse transcriptase activities of hexane extracts from some Asian medicinal plants. J Med Plant Res 5:4899–4906Google Scholar
- 139.Silva Júnior AJ, de Campos-Buzzi F, Romanos MT, Wagner TM, Guimarães AF, Cechinel Filho V, Batista R (2013) Chemical composition and antinociceptive, anti-inflammatory and antiviral activities of Gallesia gorazema (Phytolaccaceae), a potential candidate for novel anti-herpetic phytomedicines. J Ethnopharmacol 150:595–600CrossRefGoogle Scholar
- 140.Simonetti G, Tocci N, Valletta A, Brasili E, D’Auria FD, Idoux A, Pasqua G (2016) In vitro antifungal activity of extracts obtained from Hypericum perforatum adventitious roots cultured in a mist bioreactor against planktonic cells and biofilm of Malassezia furfur. Nat Prod Res 30:544–550PubMedCrossRefGoogle Scholar
- 141.Singh V, Thakur KE, Chauhan PK (2012) Effect of poly herbal formulation against klebsiella pneumonia causing pneumonia in children’s. Asian J Pharm Clin Res 5:69–75Google Scholar
- 142.Soković MD, Glamočlija J, Marin PD, Brkić DD, Vukojević J, Jovanović D, Bulajić N, Kataranovski D (2006) Antifungal activity of the essential oil of Mentha. X piperita. Pharm Biol 44:511–515CrossRefGoogle Scholar
- 143.Sokovic MD, Glamoclija JM, Ciric AD (2013) Natural products from plants and fungi as fungicides. In: Fungicides-showcases of integrated plant disease management from around the world, Chap 9. InTech, New York, pp 185–232Google Scholar
- 144.Stoldt VR, Sonneborn A, Leuker CE, Ernst JF (1997) Efg1p, an essential regulator of morphogenesis of the human pathogen Candida albicans, is a member of a conserved class of bHLH proteins regulating morphogenetic processes in fungi. EMBO J 16:1982–1991PubMedPubMedCentralCrossRefGoogle Scholar
- 145.Sultana N, Ata A (2008) Oleanolic acid and related derivatives as medicinally important compounds. J Enzyme Inhib Med Chem 23:739–756PubMedCrossRefGoogle Scholar
- 146.Sureram S, Senadeera SP, Hongmanee P, Mahidol C, Ruchirawat S, Kittakoop P (2012) Antimycobacterial activity of bisbenzylisoquinoline alkaloids from Tiliacora triandra against multidrug-resistant isolates of mycobacterium tuberculosis. Bioorg Med Chem Lett 22:2902–2905PubMedCrossRefGoogle Scholar
- 147.Swamy MK, Akhtar MS, Sinniah UR (2016) Antimicrobial properties of plant essential oils against human pathogens and their mode of action: an updated review. Evid Based Complement Alternat Med 2016:1CrossRefGoogle Scholar
- 148.Tassiana BD, Ferreira SB, Pinheiro LS, Menezes CP, Guerra FQ, Sousa JP, Lima ED (2015) Antifungal activity of phytochemicals against samples of Penicillium. Int J Trop Dis Health 10:1–9Google Scholar
- 149.Tepe B, Daferera D, Sokmen A, Sokmen M, Polissiou M (2005) Antimicrobial and antioxidant activities of the essential oil and various extracts of Salvia tomentosa Miller (Lamiaceae). Food Chem 90:333–340CrossRefGoogle Scholar
- 150.Tewtrakul S, Nakamura N, Hattori M, Fujiwara T, Supavita T (2002) Flavanone and flavonol glycosides from the leaves of Thevetia peruviana and their HIV-1 reverse transcriptase and HIV-1 integrase inhibitory activities. Chem Pharm Bull 50:630–635PubMedCrossRefGoogle Scholar
- 151.Tietjen I, Ntie-Kang F, Mwimanzi P, Onguéné PA, Scull MA, Idowu TO, Ogundaini AO, Meva’a LM, Abegaz BM, Rice CM, Andrae-Marobela K (2015) Screening of the pan-African natural product library identifies ixoratannin A-2 and boldine as novel HIV-1 inhibitors. PLoS One 10:e0121099PubMedPubMedCentralCrossRefGoogle Scholar
- 152.Tietjen I, Gatonye T, Ngwenya BN, Namushe A, Simonambanga S, Muzila M, Mwimanzi P, Xiao J, Fedida D, Brumme ZL, Brockman MA (2016) Croton megalobotrys Müll Arg. and Vitex doniana (Sweet): traditional medicinal plants in a three-step treatment regimen that inhibit in vitro replication of HIV-1. J Ethnopharmacol 191:331–340PubMedCrossRefGoogle Scholar
- 153.Torres-Romero D, Jiménez IA, Rojas R, Gilman RH, López M, Bazzocchi IL (2011) Dihydro-β-agarofuran sesquiterpenes isolated from Celastrus vulcanicola as potential anti-mycobacterium tuberculosis multidrug-resistant agents. Bioorg Med Chem 19:2182–2189PubMedCrossRefGoogle Scholar
- 154.Tuon FF, Costa SF (2008) Rhodotorula infection. A systematic review of 128 cases from literature. Rev Iberoam Micol 2:135–140CrossRefGoogle Scholar
- 155.Turchetti B, Pinelli P, Buzzini P, Romani A, Heimler D, Franconi F, Martini A (2005) In vitro antimycotic activity of some plant extracts towards yeast and yeast-like strains. Phytother Res 19:44–49PubMedCrossRefGoogle Scholar
- 156.Unlu M, Ergene E, Unlu GV, Zeytinoglu HS, Vural N (2010) Composition, antimicrobial activity and in vitro cytotoxicity of essential oil from Cinnamomum zeylanicum Blume (Lauraceae). Food Chem Toxicol 48:3274–3280PubMedCrossRefGoogle Scholar
- 157.Uttra KM, Devrajani BR, Shah SZ, Devrajani T, Das T, Raza S, Naseem M (2011) Lipid profile of patients with diabetes mellitus (a multidisciplinary study). World Appl Sci J 12:1382–1384Google Scholar
- 158.Vandeputte P, Ferrari S, Coste AT (2011) Antifungal resistance and new strategies to control fungal infections. Int J Microbiol 2012:1–26CrossRefGoogle Scholar
- 159.Vijay P (2015) Anti-diabetic effects of Eclipta alba on alloxan-induced diabetic mice. Int J Pharm Sci Res 6:308Google Scholar
- 160.Viswanathan V, Phadatare AG, Mukne A (2014) Antimycobacterial and antibacterial activity of Allium sativum bulbs. Indian J Pharm Sci 76:256PubMedPubMedCentralGoogle Scholar
- 161.Wan Z, Chen X (2014) Triptolide inhibits human immunodeficiency virus type 1 replication by promoting proteasomal degradation of Tat protein. Retrovirology 11:88PubMedPubMedCentralCrossRefGoogle Scholar
- 162.Wanas AS, Radwan MM, Mehmedic Z, Jacob M, Khan IA, Elsohly MA (2016) Antifungal activity of the volatiles of high potency Cannabis sativa L. against Cryptococcus neoformans. Rec Nat Prod 10:214Google Scholar
- 163.Wang J (2009) Clinical trials on the effect of immunity 1 (Fuzheng 1) on immune reconstitution of HIV patients. Clinicaltrials.govGoogle Scholar
- 164.Wang Y, Xiang L, Wang C, Tang C, He X (2013) Antidiabetic and antioxidant effects and phytochemicals of mulberry fruit (Morus alba L.) polyphenol enhanced extract. PLoS One 8:e71144PubMedPubMedCentralCrossRefGoogle Scholar
- 165.Wani MC, Taylor HL, Wall ME, Coggon P, McPhail AT (1971) Plant antitumor agents. VI. Isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J Am Chem Soc 93:2325–2327PubMedCrossRefGoogle Scholar
- 166.Waza SA, Anthony P, Dar S (2015) Phytochemical analysis, antioxidant and antimicrobial activities of methanolic extract of Datura Stramonium seeds. Int J Pharm Sci Res 6:3021–3026Google Scholar
- 167.Wei B, Cha SY, Kang M, Kim YJ, Cho CW, Rhee YK, Hong HD, Jang HK (2015 Jun 30) Antiviral activity of Chongkukjang extracts against influenza A virus in vitro and in vivo. J Ethnic Food 2(2):47–51CrossRefGoogle Scholar
- 168.Wernik R, Priore JL, Goldman WF, del Carmen Elias A, Borkow G (2015) Improvement in human immunodeficiency virus-1/acquired immune deficiency syndrome patients’ well-being following administration of “Phyto V7”. World 2:004Google Scholar
- 169.Wu H, Liang X, Fang Y, Qin X, Zhang Y, Liu J (2008) Resveratrol inhibits hypoxia-induced metastasis potential enhancement by restricting hypoxia-induced factor-1α expression in colon carcinoma cells. Biomed Pharmacother 62:613–621PubMedCrossRefGoogle Scholar
- 170.Xu Y, Xu G, Liu L, Xu D, Liu J (2010) Anti-invasion effect of rosmarinic acid via the extracellular signal-regulated kinase and oxidation–reduction pathway in Ls174-T cells. J Cell Biochem 111:370–379PubMedCrossRefGoogle Scholar
- 171.Yang J (2009) Brazil nuts and associated health benefits: a review. LWT-Food Sci Technol 42:1573–1580CrossRefGoogle Scholar
- 172.Zhang L, Chang W, Sun B, Groh M, Speicher A, Lou H (2011) Bisbibenzyls, a new type of antifungal agent, inhibit morphogenesis switch and biofilm formation through upregulation of DPP3 in Candida albicans. PLoS One 6:e28953PubMedPubMedCentralCrossRefGoogle Scholar
- 173.Zhang HJ, Rumschlag-Booms E, Guan YF, Liu KL, Wang DY, Li WF, Cuong NM, Soejarto DD, Fong HH, Rong L (2017) Anti-HIV diphyllin glycosides from Justicia gendarussa. Phytochemistry 136:94–100PubMedCrossRefGoogle Scholar