Advertisement

Phytochemicals: An Alternate Approach Towards Various Disease Management

  • Vijay Nema
  • Yogita Dhas
  • Joyita Banerjee
  • Neetu Mishra
Chapter

Abstract

With the emergence of allopathic medicine system and the industrial revolution, the era of synthetic chemicals came into being which included medicines also. It reduced the load of cultivating and processing herbal medicines to get a larger amount of medicines with moderate effects in longer durations. It was gradually paralleled and later superseded by the use of purified or synthetic chemicals as drugs for treating various diseases including infections. The use of such molecules was a great success, and a revolution during world wars as the discoveries of antibiotics and their synthetic analogs took place. The use of these molecules continued and at later times became humongous as compared to traditional and herbal formulations. However, as is true with any other material, the overuse of these drugs started showing its negative aspects like side-effects, development of resistance etc. The problem specifically became huge with respect to antimicrobial compounds as the microbes started developing resistance towards all such molecules, while the problem of toxic side effects continued. The problem of drug resistance has been also observed in case of some diseases such as cancer and type 2 diabetes. This made the drug development program rethink if we should reduce the use of the synthetic compounds and start exploring back if there are safer avenues available. Exploration and research on phytochemicals present in medicinal plants and functional foods, thus, came as a safer alternative. This chapter tries to explore the information about knowledge available about phytochemicals and recent developments in this area for finding newer and better antimicrobials, anticancerous and antidiabetics.

Keywords

Phytochemicals Antimicrobials Antiviral Anticancerous Antidiabetics 

References

  1. 1.
    Adams A, Kumar S, Clauson M, Sahi S (2011) Anti-yeast activities of Origanum oil against human pathogenic yeasts. Adv Biosci Biotechnol 2:103CrossRefGoogle Scholar
  2. 2.
    Ahmadipour F, Noordin MI, Mohan S, Arya A, Paydar M, Looi CY, Keong YS, Siyamak EN, Fani S, Firoozi M, Yong CL (2015) Koenimbin, a natural dietary compound of Murraya koenigii (L) Spreng: inhibition of MCF7 breast cancer cells and targeting of derived MCF7 breast cancer stem cells (CD44+/CD24−/low): an in vitro study. Drug Des Devel Ther 9:1193PubMedPubMedCentralGoogle Scholar
  3. 3.
    Ajabnoor MA, Tilmisany AK (1988) Effect of Trigonella foenum graceum on blood glucose levels in normal and alloxan-diabetic mice. J Ethnopharmacol 22:45–49PubMedCrossRefGoogle Scholar
  4. 4.
    Akhani SP, Vishwakarma SL, Goyal RK (2004) Anti-diabetic activity of Zingiber officinale in streptozotocin-induced type I diabetic rats. J Pharm Pharmacol 56:101–105PubMedCrossRefGoogle Scholar
  5. 5.
    Akindele AJ, Wani ZA, Sharma S, Mahajan G, Satti NK, Adeyemi OO, Mondhe DM, Saxena AK (2015) In vitro and in vivo anticancer activity of root extracts of Sansevieria liberica Gerome and Labroy (Agavaceae). Evid Based Complement Alternat Med 2015:1CrossRefGoogle Scholar
  6. 6.
    Amber K, Aijaz A, Immaculata X, Luqman KA, Nikhat M (2010) Anticandidal effect of Ocimum sanctum essential oil and its synergy with fluconazole and ketoconazole. Phytomedicine 17:921–925PubMedCrossRefGoogle Scholar
  7. 7.
    American Diabetes Association (2011) Standards of medical care in diabetes—2011. Diabetes Care 34:S11–S61PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Amin A, Gali-Muhtasib H, Ocker M, Schneider-Stock R (2009) Overview of major classes of plant-derived anticancer drugs. Int J Biomed Sci: IJBS 5:1PubMedGoogle Scholar
  9. 9.
    Ansari M, Anurag A, Fatima Z, Hameed S (2013) Natural phenolic compounds: a potential antifungal agent. Microbiology 2:189–195Google Scholar
  10. 10.
    Antony M, James J, Misra CS, Sagadevan LD, Veettil AT, Thankamani V (2012) Anti mycobacterial activity of the plant extracts of Alstonia scholaris. Int J Curr Pharm Res 4:40–42Google Scholar
  11. 11.
    Arumugam G, Manjula P, Paari N (2013) A review: anti diabetic medicinal plants used for diabetes mellitus. J Acute Dis 2:196–200CrossRefGoogle Scholar
  12. 12.
    Arumugam G, Swamy MK, Sinniah UR (2016) Plectranthus amboinicus (Lour.) Spreng: botanical, phytochemical, pharmacological and nutritional significance. Molecules 21(4):369PubMedCrossRefGoogle Scholar
  13. 13.
    Arutselvi R, Balasaravanan T, Ponmurugan P, Suresh P, Ramachandran N (2012) Comparative studies of anti-microbial activity of turmeric and selected medicinal plant leaf extracts used in Indian traditional medicine. J Herbs Spices Med Plants 18:231–239CrossRefGoogle Scholar
  14. 14.
    Bag P, Chattopadhyay D, Mukherjee H, Ojha D, Mandal N, Sarkar MC, Chatterjee T, Das G, Chakraborti S (2012) Anti-herpes virus activities of bioactive fraction and isolated pure constituent of Mallotus peltatus: an ethnomedicine from Andaman Islands. Virol J 9:98PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Bailly S, Maubon D, Fournier P, Pelloux H, Schwebel C, Chapuis C, Foroni L, Cornet M, Timsit JF (2016) Impact of antifungal prescription on relative distribution and susceptibility of Candida spp.—trends over 10 years. J Infect 72:103–111PubMedCrossRefGoogle Scholar
  16. 16.
    Baker JT, Borris RP, Carté B, Cordell GA, Soejarto DD, Cragg GM, Gupta MP, Iwu MM, Madulid DR, Tyler VE (1995) Natural product drug discovery and development: new perspectives on international collaboration. J Nat Prod 58:1325–1357PubMedCrossRefGoogle Scholar
  17. 17.
    Balamurugan R, Ignacimuthu S (2011) Antidiabetic and hypolipidemic effect of methanol extract of Lippia nodiflora L. in streptozotocin induced diabetic rats. Asian Pac J Trop Biomed 1:S30–S36CrossRefGoogle Scholar
  18. 18.
    Banerjee J, Mishra N, Dhas Y (2015) Metagenomics: a new horizon in cancer research. Meta Gene 5:84–89PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Bashir SF, Gurumayum S, Kaur S (2015) In Vitro antimicrobial activity and preliminary phytochemical screening of methanol, chloroform, and hot water extracts of ginger (Zingiber officinale). In Vitro 8(1):176–180Google Scholar
  20. 20.
    Bathoorn E, Salazar NE, Sepehrkhouy S, Meijer M, de Cock H, Haas PJ (2013) Involvement of the opportunistic pathogen Aspergillus tubingensis in osteomyelitis of the maxillary bone: a case report. BMC Infect Dis 13:59PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Birdi T, D’souza D, Tolani M, Daswani P, Nair V, Tetali P, Toro JC, Hoffner S (2012) Assessment of the activity of selected Indian medicinal plants against Mycobacterium tuberculosis: a preliminary screening using the Microplate Alamar Blue Assay. Eur J Med Plant 2:308–323CrossRefGoogle Scholar
  22. 22.
    Boocock DJ, Faust GE, Patel KR, Schinas AM, Brown VA, Ducharme MP, Booth TD, Crowell JA, Perloff M, Gescher AJ, Steward WP (2007) Phase I dose escalation pharmacokinetic study in healthy volunteers of resveratrol, a potential cancer chemopreventive agent. Cancer Epidemiol Pre Biomark 16:1246–1252CrossRefGoogle Scholar
  23. 23.
    Bouddine L, Louaste B, Achahbar S, Chami N, Chami F, Remmal A (2012) Comparative study of the antifungal activity of some essential oils and their major phenolic components against Aspergillus niger using three different methods. Afr J Biotechnol 11:14083–14087CrossRefGoogle Scholar
  24. 24.
    Bringmann G, Steinert C, Feineis D, Mudogo V, Betzin J, Scheller C (2016) HIV-inhibitory michellamine-type dimeric naphthylisoquinoline alkaloids from the Central African liana Ancistrocladus congolensis. Phytochemistry 128:71–81PubMedCrossRefGoogle Scholar
  25. 25.
    Brüll F, Mensink RP, Plat J (2009) Plant sterols: functional lipids in immune function and inflammation? Clin Lipidol 4:355–365CrossRefGoogle Scholar
  26. 26.
    Cao Y, Huang S, Dai B, Zhu Z, Lu H, Dong L, Cao Y, Wang Y, Gao P, Chai Y, Jiang Y (2009) Candidaalbicans cells lacking CaMCA1-encoded metacaspase show resistance to oxidative stress-induced death and change in energy metabolism. Fungal Genet Biol 46:183–189PubMedCrossRefGoogle Scholar
  27. 27.
    Channabasappa HS, Shrinivas JD, Venkatrao KH (2015) Evaluation of antibacterial and Antitubercular activity of Cassia fistula Linn root. Int J Res Pharm Sci 6:82–84Google Scholar
  28. 28.
    Chaturvedi P, George S, Milinganyo M, Tripathi YB (2004) Effect of Momordica charantia on lipid profile and oral glucose tolerance in diabetic rats. Phytother Res 18:954–956PubMedCrossRefGoogle Scholar
  29. 29.
    Chavan RD, Shinde P, Girkar K, Madage R, Chowdhary A (2016) Assessment of Anti-Influenza activity and hemagglutination inhibition of Plumbago indica and Allium sativum extracts. Pharm Res 8:105Google Scholar
  30. 30.
    Choi KT (2008) Botanical characteristics, pharmacological effects and medicinal components of Korean Panax ginseng CA Meyer. Acta Pharmacol Sin 29:1109–1118PubMedCrossRefGoogle Scholar
  31. 31.
    Chugh TD (2008) Emerging and re-emerging bacterial diseases in India. J Biosci 33:549–555PubMedCrossRefGoogle Scholar
  32. 32.
    Cowan MM (1999) Plant products as antimicrobial agents. Clin Microbiol Rev 12:564–582PubMedPubMedCentralGoogle Scholar
  33. 33.
    Dahiya P, Kamal R, Puri A, Saini G, Arora A (2012) Penicillinosis in a HIV-positive individual. Indian J Sex Trans Dis 33:38CrossRefGoogle Scholar
  34. 34.
    de Lira Mota KS, de Oliveira Pereira F, de Oliveira WA, Lima IO, de Oliveira Lima E (2012) Antifungal activity of Thymus vulgaris L. essential oil and its constituent phytochemicals against Rhizopus oryzae: interaction with ergosterol. Molecules 17:14418–14433PubMedCrossRefGoogle Scholar
  35. 35.
    De Martel C, Ferlay J, Franceschi S, Vignat J, Bray F, Forman D, Plummer M (2012) Global burden of cancers attributable to infections in 2008: a review and synthetic analysis. Lancet Oncol 13(6):607–615PubMedCrossRefGoogle Scholar
  36. 36.
    de Oliveira Lima I, Oliveira RD, de Oliveira Lima E, Farias NM, de Souza EL (2006) Atividade antifúngica de óleos essenciais sobre espécies de Candida. Braz J Pharm 16:197–201CrossRefGoogle Scholar
  37. 37.
    de Oliveira RB, Atobe JH, Souza SA, Santos DW (2014) Epidemiology of invasive fungal infections in patients with acquired immunodeficiency syndrome at a reference hospital for infectious diseases in Brazil. Mycopathologia 178:71–78PubMedCrossRefGoogle Scholar
  38. 38.
    Deepa AG, Nair BJ, Sivakumar TT, Joseph AP (2014) Uncommon opportunistic fungal infections of oral cavity: a review. J Oral Maxillofac Pathol: JOMFP 18:235PubMedCrossRefGoogle Scholar
  39. 39.
    Deesomchok A, Tanprawate S (2006) A 12-case series of Penicillium marneffei pneumonia. J Med Assoc Thail 89:441Google Scholar
  40. 40.
    Derksen A, Kühn J, Hafezi W, Sendker J, Ehrhardt C, Ludwig S, Hensel A (2016) Antiviral activity of hydroalcoholic extract from Eupatorium perfoliatum L. against the attachment of influenza a virus. J Ethnopharmacol 188:144–152PubMedCrossRefGoogle Scholar
  41. 41.
    Dwevedi A, Dwivedi R, Sharma YK (2016) Exploration of phytochemicals found in Terminalia sp. and their antiretroviral activities. Pharmacogn Rev 10:73PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Edeoga HO, Okwu DE, Mbaebie BO (2005) Phytochemical constituents of some Nigerian medicinal plants. Afr J Biotechnol 4:685–688CrossRefGoogle Scholar
  43. 43.
    El-Alfy TS, Ezzat SM, Hegazy AK, Amer AM, Kamel GM (2011) Isolation of biologically active constituents from Moringa peregrina (Forssk.) Fiori.(family: Moringaceae) growing in Egypt. Pharmacogn Mag 7:109PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Faergemann J, Baran R (2003) Epidemiology, clinical presentation and diagnosis of onychomycosis. Br J Dermatol 149:1–4PubMedCrossRefGoogle Scholar
  45. 45.
    Faria NC, Kim JH, Gonçalves LA, Martins MD, Chan KL, Campbell BC (2011) Enhanced activity of antifungal drugs using natural phenolics against yeast strains of Candida and Cryptococcus. Lett Appl Microbiol 52:506–513PubMedCrossRefGoogle Scholar
  46. 46.
    Fernández-Torres B, Cabanes FJ, Carrillo-Munoz AJ, Esteban A, Inza I, Abarca L, Guarro J (2002) Collaborative evaluation of optimal antifungal susceptibility testing conditions for dermatophytes. J Clin Microbiol 40:3999–4003PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Feshani AM, Kouhsari SM, Mohammadi S (2011) Vaccinium arctostaphylos, a common herbal medicine in Iran: molecular and biochemical study of its antidiabetic effects on alloxan-diabetic Wistar rats. J Ethnopharmacol 133:67–74PubMedCrossRefGoogle Scholar
  48. 48.
    Fontenelle RO, Morais SM, Brito EH, Brilhante RS, Cordeiro RA, Lima YC, Brasil NV, Monteiro AJ, Sidrim JJ, Rocha MF (2011) Alkylphenol activity against Candida spp. and Microsporum canis: a focus on the antifungal activity of thymol, eugenol and O-methyl derivatives. Molecules 16(8):6422–6431PubMedCrossRefGoogle Scholar
  49. 49.
    Foster T (1996) Chapter 12: staphylococcus. In: Baron S (ed) Medical microbiology, 4th edn. University of Texas Medical Branch at Galveston, GalvestonGoogle Scholar
  50. 50.
    Gahlawat DK, Jakhar S, Dahiya P (2014) Murraya koenigii (L.) Spreng: an ethnobotanical, phytochemical and pharmacological review. J Pharm Phytochem 3:109–119Google Scholar
  51. 51.
    Gao L, Han J, Si J, Wang J, Wang H, Sun Y, Bi Y, Liu J, Cao L (2017) Cryptoporic acid E from Cryptoporus volvatus inhibits influenza virus replication in vitro. Antivir Res 143:106–112PubMedCrossRefGoogle Scholar
  52. 52.
    Gaur R, Thakur JP, Yadav DK, Kapkoti DS, Verma RK, Gupta N, Khan F, Saikia D, Bhakuni RS (2015) Synthesis, antitubercular activity, and molecular modeling studies of analogues of isoliquiritigenin and liquiritigenin, bioactive components from Glycyrrhiza glabra. Med Chem Res 24:3494–3503CrossRefGoogle Scholar
  53. 53.
    Gayoso CW, Lima EO, Oliveira VT, Pereira FO, Souza EL, Lima IO, Navarro DF (2005) Sensitivity of fungi isolated from onychomycosis to Eugenia cariophyllata essential oil and eugenol. Fitoterapia 76:247–249PubMedCrossRefGoogle Scholar
  54. 54.
    Ghosh M, Civra A, Rittà M, Cagno V, Mavuduru SG, Awasthi P, Lembo D, Donalisio M (2016) Ficus religiosa L. bark extracts inhibit infection by herpes simplex virus type 2 in vitro. Arch Virol 161:3509–3514PubMedCrossRefGoogle Scholar
  55. 55.
    Giovannucci E, Ascherio A, Rimm EB, Stampfer MJ, Colditz GA, Willett WC (1995) Intake of carotenoids and retino in relation to risk of prostate cancer. JNCI J Nat Cancer Inst 87:1767–1776PubMedCrossRefGoogle Scholar
  56. 56.
    Gottlieb SL, Johnston C (2017) Future prospects for new vaccines against sexually transmitted infections. Curr Opin Infect Dis 30:77PubMedPubMedCentralGoogle Scholar
  57. 57.
    Gowrish A, Vagdevi HM, Rajashekar H (2015) In vitro antioxidant and antitubercular activity of Leucas marrubioides Desf. root extracts. J Appl Pharm Sci 5:137–142CrossRefGoogle Scholar
  58. 58.
    Greenberg MS, Burket LW, Glick M (2003) Burket’s oral medicine: diagnosis & treatment. BC Decker, HamiltonGoogle Scholar
  59. 59.
    Grover JK, Yadav S, Vats V (2002) Medicinal plants of India with anti-diabetic potential. J Ethnopharmacol 81:81–100PubMedCrossRefGoogle Scholar
  60. 60.
    Guo N, Liu J, Wu X, Bi X, Meng R, Wang X, Xiang H, Deng X, Yu L (2009) Antifungal activity of thymol against clinical isolates of fluconazole-sensitive and-resistant Candida albicans. J Med Microbiol 58:1074–1079PubMedCrossRefGoogle Scholar
  61. 61.
    Gupta VK, Shukla C, Bisht GR, Saikia D, Kumar S, Thakur RL (2011) Detection of anti-tuberculosis activity in some folklore plants by radiometric BACTEC assay. Lett Appl Microbiol 52:33–40PubMedCrossRefGoogle Scholar
  62. 62.
    Gutheil GW, Reed G, Ray A, Anant S, Dhar A (2012) Crocetin: an agent derived from saffron for prevention and therapy for cancer. Curr Pharm Biotechnol 13:173–179PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Hammer KA, Carson CF, Riley TV (2002) In vitro activity of Melaleuca alternifolia (tea tree) oil against dermatophytes and other filamentous fungi. J Antimicrob Chemother 50:195–199PubMedCrossRefGoogle Scholar
  64. 64.
    Hammer KA, Carson CF, Riley TV (2012) Effects of Melaleuca alternifolia (tea tree) essential oil and the major monoterpene component terpinen-4-ol on the development of single-and multistep antibiotic resistance and antimicrobial susceptibility. Antimicrob Agents Chemother 56:909–915PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Han X, Zhang DK, Guo YM, Feng WW, Dong Q, Zhang CE, Zhou YF, Liu Y, Wang JB, Zhao YL, Xiao XH, Yang M (2016) Screening and evaluation of commonly-used anti-influenza Chinese herbal medicines based on anti-neuraminidase activity. Chin J Nat Med 14:794–800PubMedGoogle Scholar
  66. 66.
    Hartmann JT, Lipp HP (2006) Camptothecin and podophyllotoxin derivatives. Drug Saf 29:209–230PubMedCrossRefGoogle Scholar
  67. 67.
    Houghton P, Patel N, Jurzysta M, Biely Z, Cheung C (2006) Antidermatophyte activity of medicago extracts and contained saponins and their structure-activity relationships. Phytother Res 20:1061–1066PubMedCrossRefGoogle Scholar
  68. 68.
    Huprikar S, Shoham S (2013) Emerging fungal infections in solid organ transplantation. Am J Transplant 13:262–271PubMedCrossRefGoogle Scholar
  69. 69.
    Ibrahim MP, Nuhu AA (2016) Phytochemical screening and antibacterial/antifungal activities of Ginkgo biloba extract EGb 761. J Pharm Biol Sci 11(1):43–49Google Scholar
  70. 70.
    Ibrahim NA, Mohammed M, Farid MA, Abdel-Wahed NA (2015) Chemical composition, antimicrobial and antifungal activities of essential oils of the leaves of Aegle marmelos (L.) Correa growing in Egypt. J Appl Pharm Sci 5:1–5CrossRefGoogle Scholar
  71. 71.
    James SA, Omwirhiren RE, Joshua IA, Dutse I (2016) Anti-diabetic properties and phytochemical studies of ethanolic leaf extracts of Murraya koenigii and Telfairia occidentalis on alloxan-induced diabetic albino rats. Ornament 49Google Scholar
  72. 72.
    Jankasem M, Wuthi-udomlert M, Gritsanapan W (2013) Antidermatophytic properties of Ar-turmerone, turmeric oil, and Curcuma longa preparations. ISRN Dermatol 2013:1CrossRefGoogle Scholar
  73. 73.
    Jung J, Kim NK, Park S, Shin HJ, Hwang SG, Kim K (2015) Inhibitory effect of Phyllanthus urinaria L. extract on the replication of lamivudine-resistant hepatitis B virus in vitro. BMC Complement Altern Med 15:255PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Kapewangolo P, Hussein AA, Meyer D (2013) Inhibition of HIV-1 enzymes, antioxidant and anti-inflammatory activities of Plectranthus barbatus. J Ethnopharmacol 149:184–190PubMedCrossRefGoogle Scholar
  75. 75.
    Kapewangolo P, Knott M, Shithigona RE, Uusiku SL, Kandawa-Schulz M (2016) In vitro anti-HIV and antioxidant activity of Hoodia gordonii (Apocynaceae), a commercial plant product. BMC Complement Altern Med 16:411PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Kebaara BW, Langford ML, Navarathna DH, Dumitru R, Nickerson KW, Atkin AL (2008) Candida albicans Tup1 is involved in farnesol-mediated inhibition of filamentous-growth induction. Eukaryot Cell 7:980–987PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Khan BA, Abraham A, Leelamma S (1995) Hypoglycemic action of Murraya koenigii (curry leaf) and Brassica juncea (mustard): mechanism of action. Indian J Biochem Biophys 32:106–108PubMedPubMedCentralGoogle Scholar
  78. 78.
    Khare CP (2008) Indian medicinal plants: an illustrated dictionary. Springer, BerlinGoogle Scholar
  79. 79.
    Kronstad JW, Attarian R, Cadieux B, Choi J, D’souza CA, Griffiths EJ, Geddes JM, Hu G, Jung WH, Kretschmer M, Saikia S (2011) Expanding fungal pathogenesis: cryptococcus breaks out of the opportunistic box. Nat Rev Microbiol 9:193–203PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Kurapati KR, Atluri VS, Samikkannu T, Garcia G, Nair MP (2015) Natural products as anti-HIV agents and role in HIV-associated neurocognitive disorders (HAND): a brief overview. Front Microbiol 6:1444PubMedGoogle Scholar
  81. 81.
    Lavoie S, Côté I, Pichette A, Gauthier C, Ouellet M, Nagau-Lavoie F, Mshvildadze V, Legault J (2017) Chemical composition and anti-herpes simplex virus type 1 (HSV-1) activity of extracts from Cornus canadensis. BMC Complement Altern Med 17:123PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Lee WJ, Moon JS, Kim SI, Bahn YS, Lee H, Kang TH, Shin HM, Kim SU (2015) A phenylpropanoid glycoside as a calcineurin inhibitor isolated from Magnolia obovata Thunb. J Microbiol Biotechnol 25:1429–1432PubMedCrossRefGoogle Scholar
  83. 83.
    Liang J, Chen J, Tan Z, Peng J, Zheng X, Nishiura K, Ng J, Wang Z, Wang D, Chen Z, Liu L (2013) Extracts of the medicinal herb Sanguisorba officinalis inhibit the entry of human immunodeficiency virus-1. J Food Drug Anal 21:S52–S58CrossRefGoogle Scholar
  84. 84.
    Lin RD, Chin YP, Lee MH (2005) Antimicrobial activity of antibiotics in combination with natural flavonoids against clinical extended-spectrum β-lactamase (ESBL)-producing Klebsiella pneumoniae. Phytother Res 19:612–617PubMedCrossRefGoogle Scholar
  85. 85.
    Loizzo MR, Statti GA, Tundis R, Conforti F, Bonesi M, Autelitano G, Houghton PJ, Miljkovic-Brake A, Menichini F (2004) Antibacterial and antifungal activity of Senecio inaequidens DC. and Senecio vulgaris L. Phytother Res 18:777–779PubMedCrossRefGoogle Scholar
  86. 86.
    López-Lázaro M, Willmore E, Austin CA (2007) Cells lacking DNA topoisomerase IIβ are resistant to genistein. J Nat Prod 70:763–767PubMedCrossRefGoogle Scholar
  87. 87.
    Lunardi LW, Aquino VR, Zimerman RA et al (2006) Epidemiology and outcome of in a tertiary care hospital. Clin Infect Dis 43:e60–63Google Scholar
  88. 88.
    Machumi F, Samoylenko V, Yenesew A, Derese S, Midiwo JO, Wiggers FT, Jacob MR, Tekwani BL, Khan SI, Walker LA, Muhammad I (2010) Antimicrobial and antiparasitic abietane diterpenoids from the roots of Clerodendrum eriophyllum. Nat Prod Commun 5:853PubMedPubMedCentralGoogle Scholar
  89. 89.
    Mahesh B, Satish S (2008) Antimicrobial activity of some important medicinal plant against plant and human pathogens. World J Agric Sci 4:839–843Google Scholar
  90. 90.
    Mahmood A, Mahmood A, Qureshi RA (2012) Antimicrobial activities of three species of family mimosaceae. Pak J Pharm Sci 25:203–206PubMedGoogle Scholar
  91. 91.
    Manayi A, Saeidnia S, Faramarzi MA, Samadi N, Jafari S, Vazirian M, Ghaderi A, Mirnezami T, Hadjiakhoondi A, Ardekani MR, Khanavi M (2013) A comparative study of anti-Candida activity and phenolic contents of the calluses from Lythrum salicaria L. in different treatments. Appl Biochem Biotechnol 170:176–184PubMedCrossRefGoogle Scholar
  92. 92.
    Markovits J, Linassier C, Fossé P, Couprie J, Pierre J, Jacquemin-Sablon A, Saucier JM, Le Pecq JB, Larsen AK (1989) Inhibitory effects of the tyrosine kinase inhibitor genistein on mammalian DNA topoisomerase II. Cancer Res 49:5111–5117PubMedGoogle Scholar
  93. 93.
    Maroyi A (2014) Alternative medicines for HIV/AIDS in resource-poor settings: insight from traditional medicines use in Sub-Saharan Africa. Trop J Pharm Res 13:1527–1536CrossRefGoogle Scholar
  94. 94.
    Mekha Mohan PJ, Valsalan R, Nazeem PA (2015) Molecular docking studies of phytochemicals from Phyllanthus niruri against Hepatitis B DNA Polymerase. Bioinformation 11:426PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Miao M, Cheng B, Guo L, Shi J (2015) Effects of Fuzheng Paidu tablet on peripheral blood T lymphocytes, intestinal mucosa T lymphocytes, and immune organs in cyclophosphamide-induced immunosuppressed mice. Hum Vaccin Immunother 11:2659–2663PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Miceli MH, Díaz JA, Lee SA (2011) Emerging opportunistic yeast infections. Lancet Infect Dis 11:142–151PubMedCrossRefGoogle Scholar
  97. 97.
    Mishima S, Saito K, Maruyama H, Inoue M, Yamashita T, Ishida T, Gu Y (2004) Antioxidant and immuno-enhancing effects of Echinacea purpurea. Biol Pharm Bull 27:1004–1009PubMedCrossRefGoogle Scholar
  98. 98.
    Modi M, Dezzutti CS, Kulshreshtha S, Rawat AK, Srivastava SK, Malhotra S, Verma A, Ranga U, Gupta SK (2013) Extracts from Acacia catechu suppress HIV-1 replication by inhibiting the activities of the viral protease and Tat. Virol J 10:309PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Moltó J, Valle M, Miranda C, Cedeño S, Negredo E, Clotet B (2012) Herb-drug interaction between Echinacea purpurea and etravirine in HIV-infected patients. Antimicrob Agents Chemother 56:5328–5331PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Monera-Penduka TG, Maponga CC, Morse GD, Nhachi CF (2017) Capacity for ethical and regulatory review of herbal trials in developing countries: a case study of Moringa oleifera research in HIV-infected patients. J Pharm Policy Pract 10:9PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Moon DO, Kim MO, Lee JD, Choi YH, Kim GY (2010) Rosmarinic acid sensitizes cell death through suppression of TNF-α-induced NF-κB activation and ROS generation in human leukemia U937 cells. Cancer Lett 288:183–191PubMedCrossRefGoogle Scholar
  102. 102.
    Moudi M, Go R, Yien CY, Nazre M (2013) Vinca alkaloids. Int J Pre Med 4:1231Google Scholar
  103. 103.
    Munoz P, Bouza E, Cuenca-Estrella M et al (2005) Saccharomyces cerevisiaefungemia: an emerging infectious disease. Clin Infect Dis 40:1625–34PubMedCrossRefGoogle Scholar
  104. 104.
    Muthu C, Ayyanar M, Raja N, Ignacimuthu S (2006) Medicinal plants used by traditional healers in Kancheepuram District of Tamil Nadu. India J Ethnobiol Ethnomed 2:43PubMedCrossRefGoogle Scholar
  105. 105.
    Nakamura CV, Ishida K, Faccin LC, Dias Filho BP, Cortez DA, Rozental S, de Souza W, Ueda-Nakamura T (2004) In vitro activity of essential oil from Ocimum gratissimum L. against four Candida species. Res Microbiol 155:579–586PubMedCrossRefGoogle Scholar
  106. 106.
    Nazari H, Mohammadi A, Amrollahi H, Dehpour A (2012) Essential oil analysis and antibacterial activities of some medicinal plants. Int J Phytomed 4:212Google Scholar
  107. 107.
    Negri M, Salci TP, Shinobu-Mesquita CS, Capoci IR, Svidzinski TI, Kioshima ES (2014) Early state research on antifungal natural products. Molecules 19:2925–2956PubMedCrossRefGoogle Scholar
  108. 108.
    Nosanchuk JD, Casadevall A (2003) Budding of melanized Cryptococcus neoformans in the presence or absence of L-dopa. Microbiology 149(7):1945–1951PubMedCrossRefGoogle Scholar
  109. 109.
    Noumi E, Manga PN (2011) Traditional medicines for HIV/AIDS and opportunistic infections in North-West Cameroon: case of skin infections. Am J Trop Med Hyg 1:44–64Google Scholar
  110. 110.
    Nutan, Modi M, Dezzutti CS, Kulshreshtha S, Rawat AK, Srivastava SK, Malhotra S, Verma A, Ranga U, Gupta SK (2013) Extracts from Acacia catechu suppress HIV-1 replication by inhibiting the activities of the viral protease and Tat. Virology J 10:309PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Olajuyigbe OO, Afolayan AJ (2012) In vitro antibacterial and time-kill assessment of crude methanolic stem bark extract of Acacia mearnsii De Wild against bacteria in shigellosis. Molecules 17:2103–2118PubMedCrossRefGoogle Scholar
  112. 112.
    Oyagbemi AA, Saba AB, Azeez OI (2010) Molecular targets of [6]-gingerol: its potential roles in cancer chemoprevention. Biofactors 36:169–178PubMedCrossRefGoogle Scholar
  113. 113.
    Panda S, Dubey D, Dutta S (2010) Anticandidal activity of Diospyros melanoxylon Roxb. Bark from Similipal Biosphere Reserve, Orissa, India. Int J Green Pharm 4:102CrossRefGoogle Scholar
  114. 114.
    Panthong P, Bunluepuech K, Boonnak N, Chaniad P, Pianwanit S, Wattanapiromsakul C, Tewtrakul S (2015) Anti-HIV-1 integrase activity and molecular docking of compounds from Albizia procera bark. Pharm Biol 53:1861–1866PubMedCrossRefGoogle Scholar
  115. 115.
    Parmar J, Sharma P, Verma P, Goyal PK (2010) Chemopreventive action of Syzygium cumini on DMBA-induced skin papillomagenesis in mice. Asian Pac J Cancer Prev 11:261–265PubMedGoogle Scholar
  116. 116.
    Patel DK, Kumar R, Prasad SK, Sairam K, Hemalatha S (2011) Antidiabetic and in vitro antioxidant potential of Hybanthus enneaspermus (Linn) F. Muell in streptozotocin–induced diabetic rats. Asian Pac J Trop Biomed 1:316–322PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Patil R, Patil R, Ahirwar B, Ahirwar D (2011) Isolation and characterization of anti-diabetic component (bioactivity—guided fractionation) from Ocimum sanctum L.(Lamiaceae) aerial part. Asian Pac J Trop Med 4:278–282PubMedCrossRefGoogle Scholar
  118. 118.
    Patwardhan B, Gautam M (2005) Botanical immunodrugs: scope and opportunities. Drug Discov Today 10:495–502PubMedCrossRefGoogle Scholar
  119. 119.
    Pepeljnjak S, Kosalec I, Kalodera Z, Blazevic NI (2005) Antimicrobial activity of juniper berry essential oil (Juniperus communis L., Cupressaceae). Acta Pharm Zagreb 55:417Google Scholar
  120. 120.
    Pereira CB, de Oliveira DM, Hughes AF, Kohlhoff M, Vieira ML, Vaz AB, Ferreira MC, Carvalho CR, Rosa LH, Rosa CA, Alves TM (2015) Endophytic fungal compounds active against Cryptococcus neoformans and C. Gattii. J Antibiot 68:436–444PubMedCrossRefGoogle Scholar
  121. 121.
    Perera DF, Fernando KM, Wijendra WA (2015) Efficacy of phytochemicals present in leaves of Punica granatum against Malassezia species. Am J Pharmacol Pharm 2:62–71Google Scholar
  122. 122.
    Petretto GL, Fancello F, Zara S, Foddai M, Mangia NP, Sanna ML, Omer EA, Menghini L, Chessa M, Pintore G (2014) Antimicrobial activity against beneficial microorganisms and chemical composition of essential oil of Mentha suaveolens ssp. insularis grown in Sardinia. J Food Sci 79:369–377CrossRefGoogle Scholar
  123. 123.
    Pinto E, Vale-Silva L, Cavaleiro C, Salgueiro L (2009) Antifungal activity of the clove essential oil from Syzygium aromaticum on Candida, Aspergillus and dermatophyte species. J Med Microbiol 58:1454–1462PubMedCrossRefGoogle Scholar
  124. 124.
    Polaquini SR, Svidzinski TI, Kemmelmeier C, Gasparetto A (2006) Effect of aqueous extract from neem (Azadirachta indica A. Juss) on hydrophobicity, biofilm formation and adhesion in composite resin by Candida albicans. Arch Oral Biol 51:482–490PubMedCrossRefGoogle Scholar
  125. 125.
    Pottier I, Gente S, Vernoux JP, Guéguen M (2008) Safety assessment of dairy microorganisms: Geotrichum candidum. Int J Food Microbiol 126:327–332PubMedCrossRefGoogle Scholar
  126. 126.
    Rai MK, Varma A, Pandey AK (2004) Antifungal potential of Spilanthes calva after inoculation of Piriformospora indica. Mycoses 47:479–481PubMedCrossRefGoogle Scholar
  127. 127.
    Rajiniraja MU, Jayaraman GU (2014) Bioautography guided screening of selected Indian medicinal plants reveals potent Antimycobacterial activity of Allium sativum extracts-implication of non-sulfur compounds in inhibition. Int J Pharm Pharm Sci 6:671–676Google Scholar
  128. 128.
    Ramachandran A, Snehalatha C, Shetty AS, Nanditha A (2012) Trends in prevalence of diabetes in Asian countries. World J Diabetes 3:110PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Rukayadi Y, Hwang JK (2007) In vitro anti-Malassezia activity of xanthorrhizol isolated from Curcuma xanthorrhiza Roxb. Lett Appl Microbiol 44:126–130PubMedCrossRefGoogle Scholar
  130. 130.
    Sa G, Das T (2008) Anti cancer effects of curcumin: cycle of life and death. Cell Div 3:14PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Sabiiti W, May RC (2012) Mechanisms of infection by the human fungal pathogen Cryptococcus neoformans. Future Microbiol 7:1297–1313PubMedCrossRefGoogle Scholar
  132. 132.
    Saini S, Porte SM (2015) Antimicrobial properties of Anand Bhairav Ras and its ingredients: an overview. Int J Res Ayurveda and Pharm 6:80–85CrossRefGoogle Scholar
  133. 133.
    Santos NO, Mariane B, Lago JH, Sartorelli P, Rosa W, Soares MG, da Silva AM, Lorenzi H, Vallim MA, Pascon RC (2015) Assessing the chemical composition and antimicrobial activity of essential oils from Brazilian plants—Eremanthus erythropappus (Asteraceae), Plectrantuns barbatus, and P. amboinicus (Lamiaceae). Molecules 20:8440–8452PubMedCrossRefGoogle Scholar
  134. 134.
    Schiff PB, Fant J, Horwitz SB (1979) Promotion of microtubule assembly in vitro by taxol. Nature 277:665–667PubMedCrossRefGoogle Scholar
  135. 135.
    Scully C, Almeida OP (1992) Orofacial manifestations of the systemic mycoses. J Oral Pathol Med 21:289–294PubMedCrossRefGoogle Scholar
  136. 136.
    Shaik G, Sujatha N, Mehar SK (2014) Medicinal plants as source of antibacterial agents to counter Klebsiella pneumoniae. J Appl Pharm Sci 4:135–147Google Scholar
  137. 137.
    Shoshana LO, Amira RU, Kashman Y, Amnon HI (1999) Polycitone A, a novel and potent general inhibitor of retroviral reverse transcriptases and cellular DNA polymerases. Biochem J 344:85–92CrossRefGoogle Scholar
  138. 138.
    Silprasit K, Seetaha S, Pongsanarakul P, Hannongbua S, Choowongkomon K (2011) Anti-HIV-1 reverse transcriptase activities of hexane extracts from some Asian medicinal plants. J Med Plant Res 5:4899–4906Google Scholar
  139. 139.
    Silva Júnior AJ, de Campos-Buzzi F, Romanos MT, Wagner TM, Guimarães AF, Cechinel Filho V, Batista R (2013) Chemical composition and antinociceptive, anti-inflammatory and antiviral activities of Gallesia gorazema (Phytolaccaceae), a potential candidate for novel anti-herpetic phytomedicines. J Ethnopharmacol 150:595–600CrossRefGoogle Scholar
  140. 140.
    Simonetti G, Tocci N, Valletta A, Brasili E, D’Auria FD, Idoux A, Pasqua G (2016) In vitro antifungal activity of extracts obtained from Hypericum perforatum adventitious roots cultured in a mist bioreactor against planktonic cells and biofilm of Malassezia furfur. Nat Prod Res 30:544–550PubMedCrossRefGoogle Scholar
  141. 141.
    Singh V, Thakur KE, Chauhan PK (2012) Effect of poly herbal formulation against klebsiella pneumonia causing pneumonia in children’s. Asian J Pharm Clin Res 5:69–75Google Scholar
  142. 142.
    Soković MD, Glamočlija J, Marin PD, Brkić DD, Vukojević J, Jovanović D, Bulajić N, Kataranovski D (2006) Antifungal activity of the essential oil of Mentha. X piperita. Pharm Biol 44:511–515CrossRefGoogle Scholar
  143. 143.
    Sokovic MD, Glamoclija JM, Ciric AD (2013) Natural products from plants and fungi as fungicides. In: Fungicides-showcases of integrated plant disease management from around the world, Chap 9. InTech, New York, pp 185–232Google Scholar
  144. 144.
    Stoldt VR, Sonneborn A, Leuker CE, Ernst JF (1997) Efg1p, an essential regulator of morphogenesis of the human pathogen Candida albicans, is a member of a conserved class of bHLH proteins regulating morphogenetic processes in fungi. EMBO J 16:1982–1991PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Sultana N, Ata A (2008) Oleanolic acid and related derivatives as medicinally important compounds. J Enzyme Inhib Med Chem 23:739–756PubMedCrossRefGoogle Scholar
  146. 146.
    Sureram S, Senadeera SP, Hongmanee P, Mahidol C, Ruchirawat S, Kittakoop P (2012) Antimycobacterial activity of bisbenzylisoquinoline alkaloids from Tiliacora triandra against multidrug-resistant isolates of mycobacterium tuberculosis. Bioorg Med Chem Lett 22:2902–2905PubMedCrossRefGoogle Scholar
  147. 147.
    Swamy MK, Akhtar MS, Sinniah UR (2016) Antimicrobial properties of plant essential oils against human pathogens and their mode of action: an updated review. Evid Based Complement Alternat Med 2016:1CrossRefGoogle Scholar
  148. 148.
    Tassiana BD, Ferreira SB, Pinheiro LS, Menezes CP, Guerra FQ, Sousa JP, Lima ED (2015) Antifungal activity of phytochemicals against samples of Penicillium. Int J Trop Dis Health 10:1–9Google Scholar
  149. 149.
    Tepe B, Daferera D, Sokmen A, Sokmen M, Polissiou M (2005) Antimicrobial and antioxidant activities of the essential oil and various extracts of Salvia tomentosa Miller (Lamiaceae). Food Chem 90:333–340CrossRefGoogle Scholar
  150. 150.
    Tewtrakul S, Nakamura N, Hattori M, Fujiwara T, Supavita T (2002) Flavanone and flavonol glycosides from the leaves of Thevetia peruviana and their HIV-1 reverse transcriptase and HIV-1 integrase inhibitory activities. Chem Pharm Bull 50:630–635PubMedCrossRefGoogle Scholar
  151. 151.
    Tietjen I, Ntie-Kang F, Mwimanzi P, Onguéné PA, Scull MA, Idowu TO, Ogundaini AO, Meva’a LM, Abegaz BM, Rice CM, Andrae-Marobela K (2015) Screening of the pan-African natural product library identifies ixoratannin A-2 and boldine as novel HIV-1 inhibitors. PLoS One 10:e0121099PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Tietjen I, Gatonye T, Ngwenya BN, Namushe A, Simonambanga S, Muzila M, Mwimanzi P, Xiao J, Fedida D, Brumme ZL, Brockman MA (2016) Croton megalobotrys Müll Arg. and Vitex doniana (Sweet): traditional medicinal plants in a three-step treatment regimen that inhibit in vitro replication of HIV-1. J Ethnopharmacol 191:331–340PubMedCrossRefGoogle Scholar
  153. 153.
    Torres-Romero D, Jiménez IA, Rojas R, Gilman RH, López M, Bazzocchi IL (2011) Dihydro-β-agarofuran sesquiterpenes isolated from Celastrus vulcanicola as potential anti-mycobacterium tuberculosis multidrug-resistant agents. Bioorg Med Chem 19:2182–2189PubMedCrossRefGoogle Scholar
  154. 154.
    Tuon FF, Costa SF (2008) Rhodotorula infection. A systematic review of 128 cases from literature. Rev Iberoam Micol 2:135–140CrossRefGoogle Scholar
  155. 155.
    Turchetti B, Pinelli P, Buzzini P, Romani A, Heimler D, Franconi F, Martini A (2005) In vitro antimycotic activity of some plant extracts towards yeast and yeast-like strains. Phytother Res 19:44–49PubMedCrossRefGoogle Scholar
  156. 156.
    Unlu M, Ergene E, Unlu GV, Zeytinoglu HS, Vural N (2010) Composition, antimicrobial activity and in vitro cytotoxicity of essential oil from Cinnamomum zeylanicum Blume (Lauraceae). Food Chem Toxicol 48:3274–3280PubMedCrossRefGoogle Scholar
  157. 157.
    Uttra KM, Devrajani BR, Shah SZ, Devrajani T, Das T, Raza S, Naseem M (2011) Lipid profile of patients with diabetes mellitus (a multidisciplinary study). World Appl Sci J 12:1382–1384Google Scholar
  158. 158.
    Vandeputte P, Ferrari S, Coste AT (2011) Antifungal resistance and new strategies to control fungal infections. Int J Microbiol 2012:1–26CrossRefGoogle Scholar
  159. 159.
    Vijay P (2015) Anti-diabetic effects of Eclipta alba on alloxan-induced diabetic mice. Int J Pharm Sci Res 6:308Google Scholar
  160. 160.
    Viswanathan V, Phadatare AG, Mukne A (2014) Antimycobacterial and antibacterial activity of Allium sativum bulbs. Indian J Pharm Sci 76:256PubMedPubMedCentralGoogle Scholar
  161. 161.
    Wan Z, Chen X (2014) Triptolide inhibits human immunodeficiency virus type 1 replication by promoting proteasomal degradation of Tat protein. Retrovirology 11:88PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Wanas AS, Radwan MM, Mehmedic Z, Jacob M, Khan IA, Elsohly MA (2016) Antifungal activity of the volatiles of high potency Cannabis sativa L. against Cryptococcus neoformans. Rec Nat Prod 10:214Google Scholar
  163. 163.
    Wang J (2009) Clinical trials on the effect of immunity 1 (Fuzheng 1) on immune reconstitution of HIV patients. Clinicaltrials.govGoogle Scholar
  164. 164.
    Wang Y, Xiang L, Wang C, Tang C, He X (2013) Antidiabetic and antioxidant effects and phytochemicals of mulberry fruit (Morus alba L.) polyphenol enhanced extract. PLoS One 8:e71144PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Wani MC, Taylor HL, Wall ME, Coggon P, McPhail AT (1971) Plant antitumor agents. VI. Isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J Am Chem Soc 93:2325–2327PubMedCrossRefGoogle Scholar
  166. 166.
    Waza SA, Anthony P, Dar S (2015) Phytochemical analysis, antioxidant and antimicrobial activities of methanolic extract of Datura Stramonium seeds. Int J Pharm Sci Res 6:3021–3026Google Scholar
  167. 167.
    Wei B, Cha SY, Kang M, Kim YJ, Cho CW, Rhee YK, Hong HD, Jang HK (2015 Jun 30) Antiviral activity of Chongkukjang extracts against influenza A virus in vitro and in vivo. J Ethnic Food 2(2):47–51CrossRefGoogle Scholar
  168. 168.
    Wernik R, Priore JL, Goldman WF, del Carmen Elias A, Borkow G (2015) Improvement in human immunodeficiency virus-1/acquired immune deficiency syndrome patients’ well-being following administration of “Phyto V7”. World 2:004Google Scholar
  169. 169.
    Wu H, Liang X, Fang Y, Qin X, Zhang Y, Liu J (2008) Resveratrol inhibits hypoxia-induced metastasis potential enhancement by restricting hypoxia-induced factor-1α expression in colon carcinoma cells. Biomed Pharmacother 62:613–621PubMedCrossRefGoogle Scholar
  170. 170.
    Xu Y, Xu G, Liu L, Xu D, Liu J (2010) Anti-invasion effect of rosmarinic acid via the extracellular signal-regulated kinase and oxidation–reduction pathway in Ls174-T cells. J Cell Biochem 111:370–379PubMedCrossRefGoogle Scholar
  171. 171.
    Yang J (2009) Brazil nuts and associated health benefits: a review. LWT-Food Sci Technol 42:1573–1580CrossRefGoogle Scholar
  172. 172.
    Zhang L, Chang W, Sun B, Groh M, Speicher A, Lou H (2011) Bisbibenzyls, a new type of antifungal agent, inhibit morphogenesis switch and biofilm formation through upregulation of DPP3 in Candida albicans. PLoS One 6:e28953PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Zhang HJ, Rumschlag-Booms E, Guan YF, Liu KL, Wang DY, Li WF, Cuong NM, Soejarto DD, Fong HH, Rong L (2017) Anti-HIV diphyllin glycosides from Justicia gendarussa. Phytochemistry 136:94–100PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Vijay Nema
    • 1
  • Yogita Dhas
    • 2
  • Joyita Banerjee
    • 2
  • Neetu Mishra
    • 2
  1. 1.Division of Molecular BiologyNational AIDS Research InstitutePuneIndia
  2. 2.Symbiosis School of Biological SciencesSymbiosis International (Deemed University)PuneIndia

Personalised recommendations