Aldose Reductase Inhibitors in the Functional Foods: Regulation of Diabetic Complications

  • Arpita Devi
  • Aramati B. M. Reddy
  • Umesh C. S. YadavEmail author


Aldose reductase (AR) is implicated in the precipitation of diabetic complications including the microangiopathy such as nephropathy, neuropathy, retinopathy as well as macroangiopathy such as cardiovascular disease in diabetes patients. A number of synthetic inhibitors of AR have been tested in laboratories as well as in the clinical settings but with limited success due to their low bioavailability and safety concerns. Since the epidemiological studies suggest the enormous increase in incidence of diabetes globally, there is urgent need for potent yet safe AR inhibitors. The molecules derived from plants usually show greater biocompatibility and lack toxicity and other harmful side effects due to their coevolution with human and also because they have been the part of the local diet regimen for the millennia. Several researchers have reported that crude extracts as well as pure molecules derived from natural sources such as plants and various plant parts possess excellent AR inhibitory activity. Such compounds have shown remarkable inhibition of elevated AR activity during diabetic condition. Although the chemical nature of the plant extracts is of mixed type, the pure molecules isolated from plants are of varied chemical nature such as flavonoids, alkaloids, phenolics, tannins, coumarins, terpenoids, etc. In this chapter the different plant-derived extracts and compounds have been discussed that have been shown to have potential AR inhibition activity and may qualify to be considered as the functional food for prevention of diabetes and diabetic complications.


Aldose reductase Diabetes Functional food AR inhibitors Diabetic complications Herbal compounds Phytochemicals 



Arpita Devi acknowledges financial support from CSIR for her doctoral studies. Dr. ABM Reddy acknowledges UoH-UPE-II, DBT-RGYI and DBT-RNAi, DAE-BRNS for funding. Dr. Umesh C. S. Yadav acknowledges the award of Ramanujan Fellowship and financial support from Department of Science and Technology (DST), SERB Government of India, and GSBTM, Government of Gujarat.


  1. 1.
    Graham A et al (1991) The human aldose reductase gene maps to chromosome region 7q35. Hum Genet 86(5):509–514CrossRefGoogle Scholar
  2. 2.
    Petrash JM (2004) All in the family: aldose reductase and closely related aldo-keto reductases. Cell Mol Life Sci CMLS 61(7–8):737–749CrossRefGoogle Scholar
  3. 3.
    Ferrarett A et al (1993) Aldose reductase is involved in long-term adaptation of EUE cells to hyperosmotic stress. Biochimi Biophys Acta (BBA)-Mol Cell Res 1175(3):283–288CrossRefGoogle Scholar
  4. 4.
    Song Z, Fu DT, Chan YS, Leung S, Chung SS, Chung SK (2003) Transgenic mice overexpressing aldose reductase in Schwann cells show more severe nerve conduction velocity deficit and oxidative stress under hyperglycemic stress. Mol Cell Neurosci 23(4):638–647CrossRefGoogle Scholar
  5. 5.
    Dunlop M (2000) Aldose reductase and the role of the polyol pathway in diabetic nephropathy. Kidney Int 58:S3–S12CrossRefGoogle Scholar
  6. 6.
    Jaquinod M, Potier N, Klarskov K, Jean-Marc R, Sorokine O, Kieffer S, Barth P, Andriantomanga V, Biellmann J-F, Alain D (1993) Sequence of pig lens aldose reductase and electrospray mass spectrometry of non-covalent and covalent complexes. Eur J Biochem 218(3):893–903CrossRefGoogle Scholar
  7. 7.
    Tarle I, Borhani DW, Wilson DK, Quiocho FA, Petrash JM (1993) Probing the active site of human aldose reductase. Site-directed mutagenesis of Asp-43, Tyr-48, Lys-77, and His-110. J Biol Chem 268(34):25687–25693PubMedGoogle Scholar
  8. 8.
    Barski OA, Gabbay KH, Bohren KM (1999) Characterization of the human aldehyde reductase gene and promoter. Genomics 60(2):188–198CrossRefGoogle Scholar
  9. 9.
    Wilson DK, Bohren KM, Gabbay KH, Quiocho FA (1992) An unlikely sugar substrate site in the 1.65 A structure of the human aldose reductase holoenzyme implicated in diabetic complications. Science 257(5066):81–84CrossRefGoogle Scholar
  10. 10.
    Rondeau JM, Tete-Favier F, Podjarny A, Reymann JM, Barth P, Biellmann JF, Moras D (1992) Novel NADPH-binding domain revealed by the crystal structure of aldose reductase. Nature 355(6359):469–472CrossRefGoogle Scholar
  11. 11.
    Singh R, White MA, Ramana KV, Petrash JM, Watowich SJ, Bhatnagar A, Srivastava SK (2006) Structure of a glutathione conjugate bound to the active site of aldose reductase. Proteins: Struct, Funct, Bioinf 64(1):101–110CrossRefGoogle Scholar
  12. 12.
    Ruiz F, Hazemann I, Mitschler A, Joachimiak A, Schneider T, Karplus M, Podjarny A (2004) The crystallographic structure of the aldose reductase–IDD552 complex shows direct proton donation from tyrosine 48. Acta Crystallogr D Biol Crystallogr 60(8):1347–1354CrossRefGoogle Scholar
  13. 13.
    Nakano T, Mark Petrash J (1996) Kinetic and spectroscopic evidence for active site inhibition of human aldose reductase. Biochemistry 35(34):11196–11202CrossRefGoogle Scholar
  14. 14.
    Baba SP, Hoetker JD, Merchant M, Klein JB, Cai J, Barski OA, Conklin DJ, Bhatnagar A (2013) Role of aldose reductase in the metabolism and detoxification of carnosine-acrolein conjugates. J Biol Chem 288(39):28163–28179CrossRefGoogle Scholar
  15. 15.
    Ramana KV, Bhatnagar A, Srivastava S, Yadav UC, Awasthi S, Awasthi YC, Srivastava SK (2006) Mitogenic responses of vascular smooth muscle cells to lipid peroxidation-derived aldehyde 4-hydroxy-trans-2-nonenal (HNE) role of aldose reductase-catalyzed reduction of the HNE-glutathione conjugates in regulating cell growth. J Biol Chem 281(26):17652–17660CrossRefGoogle Scholar
  16. 16.
    Srivastava SK, Ramana KV, Bhatnagar A (2005) Role of aldose reductase and oxidative damage in diabetes and the consequent potential for therapeutic options. Endocr Rev 26(3):380–392CrossRefGoogle Scholar
  17. 17.
    Srivastava S, Chandra A, Bhatnagar A, Srivastava SK, Ansari NH (1995) Lipid peroxidation product, 4-hydroxynonenal and its conjugate with GSH are excellent substrates of bovine lens aldose reductase. Biochem Biophys Res Commun 217(3):741–746CrossRefGoogle Scholar
  18. 18.
    Srivastava SK, Ramana, KV Treatment of cancer with aldose reductase inhibitors. U.S. Patent Application No. 12/807,033Google Scholar
  19. 19.
    Alexiou P, Pegklidou K, Chatzopoulou M, Nicolaou I, Demopoulos VJ (2009) Aldose reductase enzyme and its implication to major health problems of the 21st century. Curr Med Chem 16(6):734–752CrossRefGoogle Scholar
  20. 20.
    Greene DA, Arezzo JC, Brown MB, Zenarestat Study Group (1999) Effect of aldose reductase inhibition on nerve conduction and morphometry in diabetic neuropathy. Neurology 53(3):580–580CrossRefGoogle Scholar
  21. 21.
    Varma SD, Schocket SS, Richards RD (1979) Implications of aldose reductase in cataracts in human diabetes. Invest Ophthalmol Vis Sci 18(3):237–241PubMedGoogle Scholar
  22. 22.
    Yadav U, Ramana KV (2013) Regulation of NF-B-induced inflammatory signaling by lipid peroxidation-derived aldehydes. Oxidative Med Cellular Longev 2013:690545CrossRefGoogle Scholar
  23. 23.
    Hotta N, Sakamoto N, Shigeta Y, Kikkawa R, Goto Y, in Japan, D. N. S. G. (1996) Clinical investigation of epalrestat, an aldose reductase inhibitor, on diabetic neuropathy in Japan: multicenter study. J Diabetes Complicat 10(3):168–172Google Scholar
  24. 24.
    Boulton AJM, Levin S, Comstock J (1990) A multicentre trial of the aldose-reductase inhibitor, tolrestat, in patients with symptomatic diabetic neuropathy. Diabetologia 33(7):431–437CrossRefGoogle Scholar
  25. 25.
    Beyer-Mears A, Mistry K, Diecke FPJ, Cruz E (1996) Zopolrestat prevention of proteinuria, albuminuria and cataractogenesis in diabetes mellitus. Pharmacology 52(5):292–302CrossRefGoogle Scholar
  26. 26.
    Sima AA, Bril V, Nathaniel V, McEwen TA, Brown MB, Lattimer SA, Greene DA (1988) Regeneration and repair of myelinated fibers in sural-nerve biopsy specimens from patients with diabetic neuropathy treated with sorbinil. N Engl J Med 319(9):548–555CrossRefGoogle Scholar
  27. 27.
    Bril V, Buchanan RA (2006) Long-term effects of ranirestat (AS-3201) on peripheral nerve function in patients with diabetic sensorimotor polyneuropathy. Diabetes Care 29(1):68–72CrossRefGoogle Scholar
  28. 28.
    Showalter HDH, Johnson JL, Werbel LM, Leopold WR, Jackson RC, Elslager EF (1984) Tolrestat, a potent, orally active aldose reductase inhibitor. J Med Chem 27:255–256CrossRefGoogle Scholar
  29. 29.
    Mylari BL, Zembrowski J, Aldinger E (1991) iNovel, potent aldose reductase inhibitors: 3, 4 Dihydro 4 oxo 3 [[5 (trifluoromethyl) 2 benzothiazolyl] methyl] 1 phthalazine acetic acid (zopolrestat) and congeners, w+ PVSOBM PG. J Med Chem 34(1):108–122CrossRefGoogle Scholar
  30. 30.
    Dirlam NL, Moore BS, Urban FJ (1987) Novel synthesis of the aldose reductase inhibitor sorbinil via amidoalkylation, intramolecular oxazolidin-5-one alkylation and chymotrypsin resolution. J Org Chem 52(16):3587–3591CrossRefGoogle Scholar
  31. 31.
    Oka M, Matsumoto Y, Sugiyama S, Tsuruta N, Matsushima M (2000) A potent aldose reductase inhibitor,(2 S, 4 S)-6-fluoro-2′, 5′-dioxospiro [chroman-4, 4′-imidazolidine]-2-carboxamide (Fidarestat): its absolute configuration and interactions with the aldose reductase by X-ray crystallography. J Med Chem 43(12):2479–2483CrossRefGoogle Scholar
  32. 32.
    Hotta N, Toyota T, Matsuoka K, Shigeta Y, Kikkawa R, Kaneko T et al (2001) Clinical efficacy of fidarestat, a novel aldose reductase inhibitor, for diabetic peripheral neuropathy. Diabetes Care 24(10):1776–1782CrossRefGoogle Scholar
  33. 33.
    Sun W, Oates PJ, Coutcher JB, Gerhardinger C, Lorenzi M (2006) A selective aldose reductase inhibitor of a new structural class prevents or reverses early retinal abnormalities in experimental diabetic retinopathy. Diabetes 55(10):2757–2762CrossRefGoogle Scholar
  34. 34.
    Bahn YS, Park JM, Bai DH, Takase S, Yu JH (1998) YUA001, a novel aldose reductase inhibitor isolated from alkalophilic Corynebacterium sp. YUA25. I. Taxonomy, fermentation, isolation and characterization. J Antibiot 51(10):902–907CrossRefGoogle Scholar
  35. 35.
    Sankyo Co., Ltd.., JP Pat. 7010857, 1995Google Scholar
  36. 36.
    Hayashi K-i et al (1995) Thermorubin and 2-hydroayphenyl acetic acid, aldose reductase inhibitors. J Antibiot 48(11):1345–1346CrossRefGoogle Scholar
  37. 37.
    Deruiter J, Jacyno JM, Cutler HG, Davis RA (1993) Studies on aldose reductase inhibitors from fungi. II. Moniliformin and small ring analogues. J Enzym Inhib 7(4):249–256CrossRefGoogle Scholar
  38. 38.
    Shionogi Seiyaku Kabushiki Kaisha, EP Pat. 0557939, 1993Google Scholar
  39. 39.
    Deruiter J et al (1992) Studies on aldose reductase inhibitors from fungi. I. Citrinin and related benzopyran derivatives. J Enzym Inhib 6(3):201–210CrossRefGoogle Scholar
  40. 40.
    Matsumoto K et al (1995) Salfredins, new aldose reductase inhibitors produced by Crucibulum sp. RF-3817. I. Fermentation, isolation and structures of salfredins. J Antibiot 48(6):439–446CrossRefGoogle Scholar
  41. 41.
    Toyo Jozo Co., Ltd., US Pat. 4749571, 1988Google Scholar
  42. 42.
    Nishikawa M et al (1991) WF-2421, a new aldose reductase inhibitor produced from a fungus, Humicola grisea. J Antibiot 44(2):130–135CrossRefGoogle Scholar
  43. 43.
    Yamanouchi Pharm. Co., Ltd., JP Pat. 63030493, 1988Google Scholar
  44. 44.
    Toyo Jozo Co., Ltd., JP Pat. 1181793, 1989Google Scholar
  45. 45.
    Nishikawa M, Tsurumi Y, Namiki T, Yoshida K, Okuhara M (1987) Studies on WF-3681, a novel aldose reductase inhibitor. I. Taxonomy, fermentation, isolation and characterization. J Antibiot 40(10):1394–1399CrossRefGoogle Scholar
  46. 46.
    Nakamura H, Yamaguchi S, Hayashi T, Baba M, Okada Y, Tanaka J et al (1997) Studies on the biological activities of marine algae (III) Anti-tumor promoting activity and inhibitory effect on aldose reductase. Nat Med 51:162–169Google Scholar
  47. 47.
    Sato A, Morishita T, Shiraki T, Yoshioka S, Horikoshi H, Kuwano H et al (1993) Aldose reductase inhibitors from a marine sponge, Dictyodendrilla sp. J Org Chem 58(27):7632–7634CrossRefGoogle Scholar
  48. 48.
    Sugano M, Sato A, Nagak H, Yoshiok S, Shiraki T, Horikoshi H (1990) Aldose reductase inhibitors from the red alga, Asparagopsis taxiformis. Tetrahedron Lett 31(48):7015–7016CrossRefGoogle Scholar
  49. 49.
    Shimizu M et al (1989) Studies on aldose reductase inhibitors from natural products. II.: active components of a Paraguayan crude drug “para-parai mi”, Phyllanthus niruri. Chem Pharm Bull 37(9):2531–2532CrossRefGoogle Scholar
  50. 50.
    Michinori K et al (1994) Studies of anti-cataract drugs from natural sources. I. Effects of a methanolic extract and the alkaloidal components from Corydalis tuber on in vitro aldose reductase activity. Biol Pharm Bull 17(3):458–459CrossRefGoogle Scholar
  51. 51.
    Kubo I, Chaudhuri SK (1994) Structure of maesaquinone. Bioorg Med Chem Lett 4(9):1131–1134CrossRefGoogle Scholar
  52. 52.
    Tezuka Y et al (1997) Aodose reductase inhibitory constituents of the root of Salvia miltiorrhiza bunge. Chem Pharm Bull 45(8):1306–1311CrossRefGoogle Scholar
  53. 53.
    Kasimu R et al (1998) Comparative study of seventeen Salvia plants: aldose reductase inhibitory activity of water and MeOH extracts and liquid chromatography-mass spectrometry (LC-MS) analysis of water extracts. Chem Pharm Bull 46(3):500–504CrossRefGoogle Scholar
  54. 54.
    Fujita T et al (1995) Inhibitory effect of perillosides A and C, and related monoterpene glucosides on aldose reductase and their structure-activity relationships. Chem Pharm Bull 43(6):920–926CrossRefGoogle Scholar
  55. 55.
    Puppala M, Ponder J, Suryanarayana P, Reddy GB, Petrash JM, LaBarbera DV (2012) The isolation and characterization of β-glucogallin as a novel aldose reductase inhibitor from Emblica officinalis. PloS One 7(4):e31399CrossRefGoogle Scholar
  56. 56.
    Suryanarayana P, Kumar PA, Saraswat M, Petrash JM, Reddy GB (2004) Inhibition of aldose reductase by tannoid principles of Emblica officinalis: implications for the prevention of sugar cataract. Mol Vis 10:148–154Google Scholar
  57. 57.
    Trevisan MTS, Pfundstein B, Haubner R, Würtele G, Spiegelhalder B, Bartsch H, Owen RW (2006) Characterization of alkyl phenols in cashew (Anacardium occidentale) products and assay of their antioxidant capacity. Food Chem Toxicol 44(2):188–197CrossRefGoogle Scholar
  58. 58.
    Matsuda H, Murakami T, Yashiro K, Yamahara J, Yoshikawa M (1999) Antidiabetic principles of natural medicines. IV. Aldose reductase and α-glucosidase inhibitors from the roots of Salacia oblonga Wall. (Celastraceae): structure of a new friedelane-type triterpene, kotalagenin 16-acetate. Chem Pharm Bull 47(12):1725–1729CrossRefGoogle Scholar
  59. 59.
    Nishizawa M, Yamagishi T, Nonaka GI, Nishioka I (1982) Tannins and related compounds. Part 5. Isolation and characterization of polygalloylglucoses from Chinese gallotannin. J Chem Soc Perkin Trans 1982:2963–2968Google Scholar
  60. 60.
    Nishizawa M, Yamagishi T, Nonaka GI, Nishioka I (1983) Tannins and related compounds. Part 9. Isolation and characterization of polygalloylglucoses from Turkish galls (Quercus infectoria). J Chem Soc Perkin Trans 1983:961–965Google Scholar
  61. 61.
    Kohda H et al (1989) Studies on lens-aldose-reductase inhibitor in medicinal plants II. Active constituents of Monochasma savatierii Franch. et Maxim. Chem Pharm Bull 37(11):3153–3154CrossRefGoogle Scholar
  62. 62.
    Ravn H, Nishibe S, Sasahara M, Xuebo LI (1990) Phenolic compounds from Plantago asiatica. Phytochemistry 29(11):3627–3631CrossRefGoogle Scholar
  63. 63.
    Matsuda H, Nishida N, Yoshikawa M (2002) Antidiabetic principles of natural medicines. V. Aldose reductase inhibitors from Myrcia multiflora DC.(2): structures of myrciacitrins III, IV, and V. Chem Pharm Bull 50(3):429–431CrossRefGoogle Scholar
  64. 64.
    Yoshikawa M et al (1998) Antidiabetic principles of natural medicines. II. aldose reductase and α-glucosidase inhibitors from Brazilian natural medicine, the leaves of Myrcia multiflora DC. (Myrtacae): structures of myrciacitrins I and II and myrciaphenones A and B. Chem Pharm Bull 46(1):113–119CrossRefGoogle Scholar
  65. 65.
    Yoshikawa M et al (1999) Medicinal flowers. I. Aldose reductase inhibitors and three new eudesmane-type sesquiterpenes, kikkanols A, B, and C, from the flowers of Chrysanthemum indicum L. Chem Pharm Bull 47(3):340–345CrossRefGoogle Scholar
  66. 66.
    Deck LM, Vander Jagt DL, Royer RE (1991) Gossypol and derivatives: a new class of aldose reductase inhibitors. J Med Chem 34(11):3301–3305CrossRefGoogle Scholar
  67. 67.
    Tsumura & Co., JP Pat. 01172354, 1989Google Scholar
  68. 68.
    Moon CK, Yun YP, Lee JH, Wagner H, Shin YS (1985) Inhibition of lens-aldose reductase activity by brazilin and haematoxylin. Planta Med 51(01):66–67CrossRefGoogle Scholar
  69. 69.
    Murata M, Yamakoshi Y, Homma S, Arai K, Nakamura Y (1992) Macrocarpals, antibacterial compounds from Eucalyptus, inhibit aldose reductase. Biosci, Biotechnol, Biochem 56(12):2062–2063CrossRefGoogle Scholar
  70. 70.
    Tsumura & Co., JP Pat. 02180846, 1990.Google Scholar
  71. 71.
    Saraswat M, Muthenna P, Suryanarayana P, Petrash JM, Reddy GB (2008) Dietary sources of aldose reductase inhibitors: prospects for alleviating diabetic complications. Asia Pac J Clin Nutr 17(4):558–565PubMedGoogle Scholar
  72. 72.
    Kim TH, Kim JK, Kang YH, Lee JY, Kang IJ, Lim SS (2013) Aldose reductase inhibitory activity of compounds from Zea mays L. BioMed Res Int 2013:727143PubMedPubMedCentralGoogle Scholar
  73. 73.
    Sowmya V, Kalekhan F, Kamath K, Baliga MS Fruits in the prevention of cataractogenesis by targeting the aldose reductase: promise from pre-clinical observations. In: Watson RR (ed) Foods and dietary supplements in the prevention and treatment of disease in older adults. Academic, London, pp 105, 2015–108Google Scholar
  74. 74.
    Yawadio R, Tanimori S, Morita N (2007) Identification of phenolic compounds isolated from pigmented rices and their aldose reductase inhibitory activities. Food Chem 101(4):1616–1625CrossRefGoogle Scholar
  75. 75.
    Murata M, Irie J, Homma S (1994) Aldose reductase inhibitors from green tea. LWT-Food Sci Technol 27(5):401–405CrossRefGoogle Scholar
  76. 76.
    Vinson JA, Zhang J (2005) Black and green teas equally inhibit diabetic cataracts in a streptozotocin-induced rat model of diabetes. J Agric Food Chem 53:3710–3713CrossRefGoogle Scholar
  77. 77.
    Sharma AK, Bharti S, Ojha S et al (2011) Up-regulation of PPAR gamma, heat shock protein-27 and -72 by naringin attenuates insulin resistance, beta-cell dysfunction, hepatic steatosis and kidney damage in a rat model of type 2 diabetes. Br J Nutr 106(11):1713–1723CrossRefGoogle Scholar
  78. 78.
    Suresh Babu P, Srinivasan K (1998) Amelioration of renal lesions associated with diabetes by dietary curcumin in streptozotocin diabetic rats. Mol Cell Biochem 181:87–96CrossRefGoogle Scholar
  79. 79.
    Sharma S, Kulkarni SK, Agrewala JN, Chopra K (2006) Curcumin attenuates thermal hyperalgesia in a diabetic mouse model of neuropathic pain. Eur J Pharmacol 536(3):256–261CrossRefGoogle Scholar
  80. 80.
    Suryanarayana P, Saraswat M, Mrudula T, Krishna TP, Krishnaswamy K, Reddy GB (2005) Curcumin and turmeric delay streptozotocin-induced diabetic cataract in rats. Invest Ophthalmol Vis Sci 46(6):2092–2099CrossRefGoogle Scholar
  81. 81.
    Kowluru RA, Kanwar M (2007) Effects of curcumin on retinal oxidative stress and inflammation in diabetes. Nutr Metab 4(1):8CrossRefGoogle Scholar
  82. 82.
    Du ZY, Bao YD, Liu Z, Qiao W, Ma L, Huang ZS et al (2006) Curcumin analogs as potent aldose reductase inhibitors. Arch Pharm 339(3):123–128CrossRefGoogle Scholar
  83. 83.
    Kawanishi K, Ueda H, Moriyasu M (2003) Aldose reductase inhibitors from nature. Curr Med Chem 10:1353–1374CrossRefGoogle Scholar
  84. 84.
    Manzanaro S, Salva J, Angel de la Fuente JA et al (2006) Phenolic marine natural products as aldose reductase inhibitors. J Nat Prod 69:1485–1487CrossRefGoogle Scholar
  85. 85.
    Hotta N, Kawamori R, Fukuda M, Shigeta Y (2012) Long-term clinical effects of epalrestat, an aldose reductase inhibitor, on progression of diabetic neuropathy and other microvascular complications: multivariate epidemiological analysis based on patient background factors and severity of diabetic neuropathy. Diabetic Med 29(12):1529–1533CrossRefGoogle Scholar
  86. 86.
    Gupta S, Singh N, Jaggi AS (2014) Alkaloids as aldose reductase inhibitors, with special reference to berberine. J Altern Complement Med 20(3):195–205CrossRefGoogle Scholar
  87. 87.
    Fatmawati S, Ersam T, Yu H, Zhang C, Jin F, Shimizu K (2014) 20 (S)-Ginsenoside Rh2 as aldose reductase inhibitor from Panax ginseng. Bioorg Med Chem Lett 24(18):4407–4409CrossRefGoogle Scholar
  88. 88.
    Fatmawati S, Ersam T, Shimizu K (2015) The inhibitory activity of aldose reductase in vitro by constituents of Garcinia mangostana Linn. Phytomedicine 22(1):49–51CrossRefGoogle Scholar
  89. 89.
    Motaal AA, El-Askary H, Crockett S, Kunert O, Sakr B, Shaker S et al (2015) Aldose reductase inhibition of a saponin-rich fraction and new furostanol saponin derivatives from Balanites aegyptiaca. Phytomedicine 22(9):829–836CrossRefGoogle Scholar
  90. 90.
    Ajish KR, Antu KA, Riya MP, Preetharani MR, Raghu KG, Dhanya BP, Radhakrishnan KV (2015) Studies on α-glucosidase, aldose reductase and glycation inhibitory properties of sesquiterpenes and flavonoids of Zingiber zerumbet Smith. Nat Prod Res 29(10):947–952CrossRefGoogle Scholar
  91. 91.
    Kumar MP, Sankeshi V, Naik RR, Thirupathi P, Das B, Raju TN (2015) The inhibitory effect of Isoflavones isolated from Caesalpinia pulcherrima on aldose reductase in STZ induced diabetic rats. Chem Biol Interact 237:18–24CrossRefGoogle Scholar
  92. 92.
    Gupta S, Singh N, Jaggi AS (2014) Evaluation of in vitro aldose reductase inhibitory potential of alkaloidal fractions of Piper nigrum, Murraya koenigii, Argemone mexicana, and Nelumbo nucifera. J Basic Clin Physiol Pharmacol 25(2):255–265CrossRefGoogle Scholar
  93. 93.
    Ramirez MA, Borja NL (2008) Epalrestat: an aldose reductase inhibitor for the treatment of diabetic neuropathy. Pharmacotherapy, J Hum Pharmacol Drug Ther 28(5):646–655CrossRefGoogle Scholar
  94. 94.
    Sato K, Yama K, Murao Y, Tatsunami R, Tampo Y (2014) Epalrestat increases intracellular glutathione levels in Schwann cells through transcription regulation. Redox Biol 2:15–21CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Arpita Devi
    • 1
  • Aramati B. M. Reddy
    • 1
  • Umesh C. S. Yadav
    • 2
    Email author
  1. 1.Department of Animal Biology, School of Life SciencesUniversity of HyderabadHyderabadIndia
  2. 2.Metabolic Disorder & Inflammatory Pathologies Laboratory, School of Life SciencesCentral University of GujaratGandhinagarIndia

Personalised recommendations