Advertisement

Functional Foods As Personalised Nutrition: Definitions and Genomic Insights

  • Sujata Mohanty
  • Kopal Singhal
Chapter

Abstract

Diet has always been the major factor determining the health and well-being of an individual. Technological advancements have lead human beings to fall prey to sedentary lifestyle which in turn has become the root cause of major lifestyle disorders such as type 2 diabetes and cardiovascular diseases. The advent of the genomics era has proven to be a boon in such a scenario. With the human genome sequence in hand and the use of different omics techniques, it is now possible to understand the gene-diet interactions and find significant components in functional foods modulating the disease aetiology. The knowledge of functional foods and their integration with individual requirements can together become the basis of the personalised nutrition. This chapter provides a basic understanding of the functional foods, discusses the different phytochemicals as functional foods and finally highlights the different genomics approaches to personalised nutrition.

Keywords

Diet Phytochemicals Functional food Health Personalised nutrition 

References

  1. 1.
    Al-Shahib W, Marshall RJ (2003) The fruit of the date palm: its possible use as the best food for the futureInt. J Food Sci Nutr 54(4):247–259Google Scholar
  2. 2.
    Althunibat OY, Al-Mustafa AH, Tarawneh K, Khleifat KM, Ridzwan BH, Qaralleh HN (2010) Protective role of Punicagranatum L. peel extract against oxidative damage in experimental diabetic rats. Process Biochem 45(4):581–585CrossRefGoogle Scholar
  3. 3.
    America IN (1999) Safety assessment and potential health benefits of food components based on selected scientific criteria. ILSI North America technical committee on food components for health promotion. Crit Rev Food Sci Nutr 39:203–316CrossRefGoogle Scholar
  4. 4.
    Ariga T, Seki T (2006) Antithrombotic and anticancer effects of garlic-derived sulfur compounds: a review. Biofactors 26(2):93–103CrossRefGoogle Scholar
  5. 5.
    Atale N, Chakraborty M, Mohanty S, Bhattacharya S, Nigam D, Sharma M, Rani V (2013) Cardioprotective role of Syzygiumcumini against glucose-induced oxidative stress in H9C2 cardiac myocytes. Cardiovasc Toxicol 13(3):278–289CrossRefGoogle Scholar
  6. 6.
    Atale N, Saxena S, Nirmala JG, Narendhirakannan RT, Mohanty S, Rani V (2016) Synthesis and characterization of Sygyziumcumini nanoparticles for its protective potential in high glucose-induced cardiac stress: a green approach. Biotechnol Appl Biochem:1–15Google Scholar
  7. 7.
    Avois L, Robinson N, Saudan C, Baume N, Mangin P, Saugy M (2006) Central nervous system stimulants and sport practice. Br J Sports Med 40(suppl 1):i16–i20CrossRefGoogle Scholar
  8. 8.
    Awika JM, Duodu KG (2016) Bioactive polyphenols and peptides in cowpea (Vignaunguiculata) and their health promoting properties: a review. J Funct Food 38:686.  https://doi.org/10.1016/j.jff.2016.12.002 CrossRefGoogle Scholar
  9. 9.
    Babu A, Pon V, Liu D (2008) Green tea catechins and cardiovascular health: an update. Curr Med Chem 15(18):1840–1850CrossRefGoogle Scholar
  10. 10.
    Baenas N, Moreno DA, Garcia-Viguera C (2012) Selecting sprouts of Brassicaceae for optimum phytochemical composition. J Agri Food Chem 60(45):11409–11420CrossRefGoogle Scholar
  11. 11.
    Ban HJ, Heo JY, Oh KS, Park KJ (2010) Identification of type 2 diabetes-associated combination of SNPs using support vector machine. BMC Genet 11(1):26CrossRefGoogle Scholar
  12. 12.
    Banerjee A, Dasgupta N, De B (2005) In vitro study of antioxidant activity of Syzygiumcumini fruit. Food Chem 90(4):727–733CrossRefGoogle Scholar
  13. 13.
    Borota D, Murray E, Keceli G, Chang A, Watabe JM, Ly M, Toscano JP, Yassa MA (2014) Post-study caffeine administration enhances memory consolidation in humans. Nat Neurosci 17(2):201–203CrossRefGoogle Scholar
  14. 14.
    Bouwman LI, Koelen MA (2007) Communication on personalised nutrition: individual-environment interaction. Genes Nutr 2(1):81CrossRefGoogle Scholar
  15. 15.
    Bulotta S, Celano M, Lepore SM, Montalcini T, Pujia A, Russo D (2014) Beneficial effects of the olive oil phenolic components oleuropein and hydroxytyrosol: focus on protection against cardiovascular and metabolic diseases. J Transl Med 12(1):219CrossRefGoogle Scholar
  16. 16.
    Campbell B, Wilborn C, La Bounty P, Taylor L, Nelson MT, Greenwood M, Ziegenfuss TN, Lopez HL, Hoffman JR, Stout JR, Schmitz S (2013) International Society of Sports Nutrition position stand: energy drinks. J Int Soc Sports Nutr 10(1):1CrossRefGoogle Scholar
  17. 17.
    Cancalon PF (2016) Citrus juices health benefits. In: Beverage impacts on health and nutrition. Springer, pp 115–127Google Scholar
  18. 18.
    Cartea ME, Francisco M, Soengas P, Velasco P (2010) Phenolic compounds in Brassica vegetables. Molecules 16(1):251–280CrossRefGoogle Scholar
  19. 19.
    Cencic A, Chingwaru W (2010) The role of functional foods, nutraceuticals, and food supplements in intestinal health. Nutrients 2(6):611–625CrossRefGoogle Scholar
  20. 20.
    Chacko SM, Thambi PT, Kuttan R, Nishigaki I (2010) Beneficial effects of green tea: a literature review. Chin Med 5(1):13CrossRefGoogle Scholar
  21. 21.
    Chan PC, Ramot Y, Malarkey DE, Blackshear P, Kissling GE, Travlos G, Nyska A (2010) Fourteen-week toxicity study of green tea extract in rats and mice. Toxicolpathol 38(7):1070–1084Google Scholar
  22. 22.
    Chen R, Snyder M (2012) Systems biology: personalized medicine for the future? Curr Opin Pharmacol 12(5):623–628CrossRefGoogle Scholar
  23. 23.
    Choi SW, Claycombe KJ, Martinez JA, Friso S, Schalinske KL (2013) Nutritional epigenomics: a portal to disease prevention. Adv Nutr 4(5):530–532CrossRefGoogle Scholar
  24. 24.
    Collins FS, McKusick VA (2001) Implications of the human genome project for medical science. JAMA 285(5):540–544CrossRefGoogle Scholar
  25. 25.
    Cunnane SC, Hamadeh MJ, Liede AC, Thompson LU, Wolever TM, Jenkins DJ (1995) Nutritional attributes of traditional flaxseed in healthy young adults. Am J Clin Nutr 61(1):62–68CrossRefGoogle Scholar
  26. 26.
    Davignon J, Gregg RE, Sing CF (1988) Apolipoprotein E polymorphism and atherosclerosis. Arterioscler Thromb Vasc Biol 8(1):1–21Google Scholar
  27. 27.
    Dimitriou ME, Dedoussis GV (2012) Gene–diet interactions in cardiovascular disease. Curr Nutr Rep 1(3):153–160CrossRefGoogle Scholar
  28. 28.
    Earl R, Thomas PR (eds) (1994) Opportunities in the nutrition and food sciences: research challenges and the next generation of investigators. National Academies PressGoogle Scholar
  29. 29.
    Elliott RM, Johnson IT (2007) Nutrigenomic approaches for obesity research. Obes Rev 8(s1):77–81CrossRefGoogle Scholar
  30. 30.
    Elsamanoudy AZ, Neamat-Allah MAM, Mohammad FAH, Hassanien M, Nada HA (2016) The role of nutrition related genes and nutrigenetics in understanding the pathogenesis of cancer. JMAU 4(3):115–122PubMedGoogle Scholar
  31. 31.
    Esmaillzadeh A, Tahbaz F, Gaieni I, Alavi-Majd H, Azadbakht L (2004) Concentrated pomegranate juice improves lipid profiles in diabetic patients with hyperlipidemia. J Med Food 7(3):305–308CrossRefGoogle Scholar
  32. 32.
    Fenech M (2015) Perspectives in nutrigenomics and nutrigenetics. Sight and Life 29(1):64–70Google Scholar
  33. 33.
    Fenech M, El-Sohemy A, Cahill L, Ferguson LR, French TA, Tai ES, Milner J, Koh WP, Xie L, Zucker M, Buckley M (2011) Nutrigenetics and nutrigenomics: viewpoints on the current status and applications in nutrition research and practice. J Nutrigenet Nutrigenomics 4(2):69–89CrossRefGoogle Scholar
  34. 34.
    Ferguson LR, De Caterina R, Gorman U, Allayee H, Kohlmeier M, Prasad C, Choi MS, Curi R, De Luis DA, Gill A, Kang JX (2016) Guide and position of the international society of nutrigenetics/nutrigenomics on personalised nutrition: part 1-fields of precision nutrition. J Nutrigenet Nutrigenomics 9(1):12–27CrossRefGoogle Scholar
  35. 35.
    Gaboon NE (2011) Nutritional genomics and personalized diet. Egypt J Med Hum Genet 12(1):1–7CrossRefGoogle Scholar
  36. 36.
    Gallou-Kabani C, Junien C (2005) Nutritional epigenomics of metabolic syndrome. Diabetes 54(7):1899–1906CrossRefGoogle Scholar
  37. 37.
    Garg R, Sharma N, Jain SK (2014) Nutrigenomics and nutrigenetics: concepts and applications in nutrition research and practice. Acta Med Int 1(2):124–130CrossRefGoogle Scholar
  38. 38.
    German JB, Walzem RL (2000) The health benefits of wine. Annu Rev Nutr 20(1):561–593CrossRefGoogle Scholar
  39. 39.
    Ghosh D (2010) Personalised food: how personal is it? Genes Nutr 5(1):51–53CrossRefGoogle Scholar
  40. 40.
    Ginsburg GS, Willard HF (2009) Genomic and personalized medicine: foundations and applications. Transl Res 154(6):277–287CrossRefGoogle Scholar
  41. 41.
    Gorinstein S, Martin-Belloso O, Park YS, Haruenkit R, Lojek A, Ciz M, Caspi A, Libman I, Trakhtenberg S (2001) Comparison of some biochemical characteristics of different citrus fruits. Food Chem 74(3):309–315CrossRefGoogle Scholar
  42. 42.
    Guasch-Ferre M, Hu FB, Martinez-Gonzalez MA, Fito M, Bullo M, Estruch R, Ros E, Corella D, Recondo J, Gomez-Gracia E, Fiol M (2014) Olive oil intake and risk of cardiovascular disease and mortality in the PREDIMED study. BMC Med 12(1):78CrossRefGoogle Scholar
  43. 43.
    Hansen L, Pedersen O (2005) Genetics of type 2 diabetes mellitus: status and perspectives. Diabetes Obes Metab 7(2):122–135CrossRefGoogle Scholar
  44. 44.
    Hasler CM (2002) Functional foods: benefits, concerns and challenges—a position paper from the American council on science and health. J Nutr 132(12):3772–3781CrossRefGoogle Scholar
  45. 45.
    Jeffery EH (2015) Cancer prevention with Brassica vegetables. Acta Hortic 1106:143–146CrossRefGoogle Scholar
  46. 46.
    Jimmy EO, Adelaiye AB, Umoh I, Bassey EI, Ekwere EO (2013) Stomach Histopathologic and Ulcerogenic potentials of tea beverage. J Nat Sci Res 3(8):195–199Google Scholar
  47. 47.
    Ju J, Lu G, Lambert JD, Yang CS (2007) Inhibition of carcinogenesis by tea constituents. Semin Cancer Biol 17(5):395–402CrossRefGoogle Scholar
  48. 48.
    Kanner J, Frankel E, Granit R, German B, Kinsella JE (1994) Natural antioxidants in grapes and wines. J Agric Food Chem 42(1):64–69CrossRefGoogle Scholar
  49. 49.
    Kapsak WR, Rahavi EB, Childs NM, White C (2011) Functional foods: consumer attitudes, perceptions, and behaviors in a growing market. J Am Diet Assoc 111(6):804–810CrossRefGoogle Scholar
  50. 50.
    Kirkham S, Akilen R, Sharma S, Tsiami A (2009) The potential of cinnamon to reduce blood glucose levels in patients with type 2 diabetes and insulin resistance. Diabetes Obes Metab 11(12):1100–1113CrossRefGoogle Scholar
  51. 51.
    Knowles LM, Milner JA (2000) Allyl sulfides modify cell growth. Drug Metabol Drug Interact 17(1/4):81–108PubMedGoogle Scholar
  52. 52.
    Kris-Etherton PM, Hecker KD, Bonanome A, Coval SM, Binkoski AE, Hilpert KF, Griel AE, Etherton TD (2002) Bioactive compounds in foods: their role in the prevention of cardiovascular disease and cancer. Am J Med 113(9):71–88CrossRefGoogle Scholar
  53. 53.
    Kwon YI, Apostolidis E, Kim YC, Shetty K (2007) Health benefits of traditional corn, beans, and pumpkin: in vitro studies for hyperglycemia and hypertension management. J Med Food 10(2):266–275CrossRefGoogle Scholar
  54. 54.
    Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, Funke R (2001) Initial sequencing and analysis of the human genome. Nature 409(6822):860–921CrossRefGoogle Scholar
  55. 55.
    Lee KW, Kim YJ, Lee HJ, Lee CY (2003) Cocoa has more phenolic phytochemicals and a higher antioxidant capacity than teas and red wine. J Agric Food Chem 51(25):7292–7295CrossRefGoogle Scholar
  56. 56.
    Lesko LJ (2007) Personalized medicine: elusive dream or imminent reality? Clin Pharmacol Ther 81(6):807–816CrossRefGoogle Scholar
  57. 57.
    Li S, Lo CY, Pan MH, Lai CS, Ho CT (2013) Black tea: chemical analysis and stability. Food Funct 4(1):10–18CrossRefGoogle Scholar
  58. 58.
    Lippi G, Franchini M, Favaloro EJ, Targher G (2010) Moderate red wine consumption and cardiovascular disease risk: beyond the “French paradox”. Semin Thromb Hemost 31(1):59–70CrossRefGoogle Scholar
  59. 59.
    Mandel SA, Amit T, Kalfon L, Reznichenko L, Youdim MB (2008) Targeting multiple neurodegenerative diseases etiologies with multimodal-acting green tea catechins. J Nutr 138(8):1578S–1583SCrossRefGoogle Scholar
  60. 60.
    Maron DJ, Lu GP, Cai NS, Wu ZG, Li YH, Chen H, Zhu JQ, Jin XJ, Wouters BC, Zhao J (2003) Cholesterol-lowering effect of a theaflavin-enriched green tea extract: a randomized controlled trial. Arch Intern Med 163(12):1448–1453CrossRefGoogle Scholar
  61. 61.
    Milner JA (2001) Mechanisms by which garlic and allyl sulfur compounds suppress carcinogen bioactivation. In: Nutrition and cancer prevention. Springer, New York, pp 69–81CrossRefGoogle Scholar
  62. 62.
    Mohamed GA, Ibrahim SR, Elkhayat ES, El Dine RS (2014) Natural anti-obesity agents. B-FOPCU 52(2):269–284Google Scholar
  63. 63.
    Mozaffarian D (2016) Dietary and policy priorities for cardiovascular disease, diabetes, and obesity. Circulation 133(2):187–225CrossRefGoogle Scholar
  64. 64.
    Neeha VS, Kinth P (2013) Nutrigenomics research: a review. JFST 50(3):415–428Google Scholar
  65. 65.
    Nian H, Delage B, Ho E, Dashwood RH (2009) Modulation of histone deacetylase activity by dietary isothiocyanates and allyl sulfides: studies with sulforaphane and garlic organosulfur compounds. Environ Mol Mutagen 50(3):213–221CrossRefGoogle Scholar
  66. 66.
    Palou A (2007) From nutrigenomics to personalised nutrition. Genes Nutr 2(1):5–7CrossRefGoogle Scholar
  67. 67.
    Phillips CM (2013) Nutrigenetics and metabolic disease: current status and implications for personalised nutrition. Nutrients 5(1):32–57CrossRefGoogle Scholar
  68. 68.
    Qin B, Polansky MM, Harry D, Anderson RA (2010) Green tea polyphenols improve cardiac muscle mRNA and protein levels of signal pathways related to insulin and lipid metabolism and inflammation in insulin-resistant rats. Mol Nutr Food Res 54(S1):S14–S23CrossRefGoogle Scholar
  69. 69.
    Ramesha C, Kumari SS, Anuradha CM, Lakshmi H, Kumar CS (2010) Nutrigenomic analysis of mulberry silkworm (Bombyxmori L.) strains using polymerase chain reaction-simple sequence repeats (PCR-SSR). Int J Biotechnol Mol Biol Res 1(7):92–100Google Scholar
  70. 70.
    Rampersaud GC, Valim MF (2017) 100% Citrus juice: nutritional contribution, dietary benefits, and association with anthropometric measures. Crit Rev Food Sci Nutr 57(1):129–140CrossRefGoogle Scholar
  71. 71.
    Ranilla LG, Kwon YI, Apostolidis E, Shetty K (2010) Phenolic compounds, antioxidant activity and in vitro inhibitory potential against key enzymes relevant for hyperglycemia and hypertension of commonly used medicinal plants, herbs and spices in Latin America. Bioresour Technol 101(12):4676–4689CrossRefGoogle Scholar
  72. 72.
    Richelle M, Tavazzi I, Offord E (2001) Comparison of the antioxidant activity of commonly consumed polyphenolic beverages (coffee, cocoa, and tea) prepared per cup serving. J Agric Food Chem 49(7):3438–3442CrossRefGoogle Scholar
  73. 73.
    Ruf JC (2002) Overview of epidemiological studies on wine, health and mortality. Drugs Exp Clin Res 29(5–6):173–179Google Scholar
  74. 74.
    Sales NMR, Pelegrini PB, Goersch MC (2014) Nutrigenomics: definitions and advances of this new science. J Nutr Metab 1:202759.  https://doi.org/10.1155/2014/202759 CrossRefGoogle Scholar
  75. 75.
    Schwingshackl L, Hoffmann G (2014) Adherence to Mediterranean diet and risk of cancer: a systematic review and meta-analysis of observational studies. Int J Cancer 135(8):1884–1897CrossRefGoogle Scholar
  76. 76.
    Seeram NP (2008) Berry fruits for cancer prevention: current status and future prospects. J Agric Food Chem 56(3):630–635CrossRefGoogle Scholar
  77. 77.
    Shukla Y (2007) Tea and cancer chemoprevention: a comprehensive review. Asian Pac J Cancer Prev 8(2):155PubMedGoogle Scholar
  78. 78.
    Singh NP, Pratap A (2016) Food legumes for nutritional security and health benefits. In: Biofortification of food crops. Springer, New Delhi, pp 41–50CrossRefGoogle Scholar
  79. 79.
    Singh JP, Kaur A, Singh N, Nim L, Shevkani K, Kaur H, Arora DS (2016) In vitro antioxidant and antimicrobial properties of jambolan (Syzygiumcumini) fruit polyphenols. Food Scitechnol 65:1025–1030Google Scholar
  80. 80.
    Skrovankova S, Sumczynski D, Mlcek J, Jurikova T, Sochor J (2015) Bioactive compounds and antioxidant activity in different types of berries. Int J Mol Sci 16(10):24673–24706CrossRefGoogle Scholar
  81. 81.
    Slavin J (2013) Fiber and prebiotics: mechanisms and health benefits. Nutrients 5(4):1417–1435CrossRefGoogle Scholar
  82. 82.
    Slavin JL, Jacobs D, Marquart L, Wiemer K (2001) The role of whole grains in disease prevention. J Am Diet Assoc 101(7):780–785CrossRefGoogle Scholar
  83. 83.
    Song L, Thornalley PJ (2007) Effect of storage, processing and cooking on glucosinolate content of Brassica vegetables. Food Chem Toxicol 45(2):216–224CrossRefGoogle Scholar
  84. 84.
    Stark AH, Kossoy G, Zusman I, Yarden G, Madar Z (2003) Olive oil consumption during pregnancy and lactation in rats influences mammary cancer development in female offspring. Nutr Cancer 46(1):59–65CrossRefGoogle Scholar
  85. 85.
    Stoner GD, Wang LS, Zikri N, Chen T, Hecht SS, Huang C, Sardo C, Lechner JF (2007) Cancer prevention with freeze-dried berries and berry components. Semin Cancer Biol 17(5):403–410CrossRefGoogle Scholar
  86. 86.
    Strimbu K, Tavel JA (2010) What are biomarkers? Curr Opin HIV AIDS 5(6):463CrossRefGoogle Scholar
  87. 87.
    Thomson LU, Rickard SE, Orcheson LJ, Seidl MM (1996) Flaxseed and its lignan and oil components reduce mammary tumor growth at a late stage of carcinogeneis. Carcinogenesis 17:1373–1376CrossRefGoogle Scholar
  88. 88.
    Thomson C, Bloch AS, Hasler CM, Kubena K, Earl R, Heins J (1999) Position of the American dietetic association. J Am Diet Assoc 99(10):1278–1285CrossRefGoogle Scholar
  89. 89.
    Tufarelli V, Laudadio V (2016) An overview on the functional food concept: prospectives and applied researches in probiotics, prebiotics and synbiotics. J Exp Biol 4:3SGoogle Scholar
  90. 90.
    Uylaşer V, Yildiz G (2014) The historical development and nutritional importance of olive and olive oil constituted an important part of the Mediterranean diet. Crit Rev Food Sci Nutr 54(8):1092–1101CrossRefGoogle Scholar
  91. 91.
    Van Poppel G, Verhoeven DT, Verhagen H, Goldbohm RA (1999) Brassica vegetables and cancer prevention. In: Advances in nutrition and cancer 2. Springer, New York, pp 159–168CrossRefGoogle Scholar
  92. 92.
    Vattem DA, Ghaedian R, Shetty K (2005) Enhancing health benefits of berries through phenolic antioxidant enrichment: focus on cranberry. Asia Pac J Clin Nutr 14(2):120PubMedGoogle Scholar
  93. 93.
    Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M, Evans CA, Holt RA, Gocayne JD (2001) The sequence of the human genome. Science 291(5507):1304–1351CrossRefGoogle Scholar
  94. 94.
    Verhoeven DT, Goldbohm RA, Van Poppel G, Verhagen H, Van den Brandt PA (1996) Epidemiological studies on brassica vegetables and cancer risk. Cancer Epidemiol Biomarkers Prev 5(9):733–748PubMedGoogle Scholar
  95. 95.
    Verkerk R, Schreiner M, Krumbein A, Ciska E, Holst B, Rowland I, De Schrijver R, Hansen M, Gerhauser C, Mithen R, Dekker M (2009) Glucosinolates in Brassica vegetables: the influence of the food supply chain on intake, bioavailability and human health. Mol Nutr Food Res 53(S2):S219–S219CrossRefGoogle Scholar
  96. 96.
    Wahle KW, Caruso D, Ochoa JJ, Quiles JL (2004) Olive oil and modulation of cell signaling in disease prevention. Lipids 39(12):1223–1231CrossRefGoogle Scholar
  97. 97.
    Wahyuono RA, Hesse J, Hipler UC, Elsner P, Bohm V (2017) In vitro lipophilic antioxidant capacity, antidiabetic and antibacterial activity of citrus fruits extracts from Aceh, Indonesia. Antioxidants 6(1):11CrossRefGoogle Scholar
  98. 98.
    Wallace TC, Murray R, Zelman KM (2016) The nutritional value and health benefits of chickpeas and hummus. Nutrients 8(12):766CrossRefGoogle Scholar
  99. 99.
    Weerawatanakorn M, Hung WL, Pan MH, Li S, Li D, Wan X, Ho CT (2015) Chemistry and health beneficial effects of oolong tea and theasinensins. Food Sci Human Wellness 4(4):133–146CrossRefGoogle Scholar
  100. 100.
    Weststrate JA, Van Poppel G, Verschuren PM (2002) Functional foods, trends and future. Br J Nutr 88(S2):S233–S235CrossRefGoogle Scholar
  101. 101.
    Winham DM, Florian TLA, Thompson SV (2016) Low-income US women under-informed of the specific health benefits of consuming beans. PloS One 11(1):p.e0147592CrossRefGoogle Scholar
  102. 102.
    Yang TT, Koo MW (1999) Chinese green tea lowers cholesterol level through an increase in fecal lipid excretion. Life Sci 66(5):411–423CrossRefGoogle Scholar
  103. 103.
    Yang CS, Wang H (2016) Cancer preventive activities of tea catechins. Molecules 21(12):1679CrossRefGoogle Scholar
  104. 104.
    Yang CS, Ju J, Lu G, Xiao H, Hao X, Sang S, Lambert JD (2008) Cancer prevention by tea and tea polyphenols. Asia Pac J Clin Nutr 17(Suppl 1):245PubMedPubMedCentralGoogle Scholar
  105. 105.
    Yang CS, Wang X, Lu G, Picinich SC (2009) Cancer prevention by tea: animal studies, molecular mechanisms and human relevance. Nat Rev Cancer 9(6):429–439CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of BiotechnologyJaypee Institute of Information TechnologyNoidaIndia

Personalised recommendations