Phytochemicals in Clinical Studies: Current Perspective

  • Shashank Kumar
  • Deepak Kumar
  • Audesh Bhat
  • Ajay KumarEmail author


Natural plants and their derived products are effective against various diseases for their prevention and treatment for several years. Availability of synthetic drugs with faster and selective responses against various diseases decreased the use of herbal products. However, due to adverse side effects of synthetic drugs, in the last few years, the clinical use of plant-derived medicines has been exponentially increased in developing as well as developed countries due to their easy availability, low cost, and least toxicity. Therefore, in recent years, several human trials have been done to analyze the toxicology, pharmacokinetics, and biologically effective dose of phytochemicals against cancer, diabetes, and bacterial and viral diseases for their clinical application. In the present book chapter, we have discussed the clinical studies on phytochemicals against several diseases including diabetes, cancer, and diseases associated with microbial infections including women health problems.


Phytochemicals Drug discovery Clinical trial Women health Cancer Bacterial diseases Viral diseases 



AK acknowledges the University Grants Commission and Department of Science and Technology, New Delhi, India, for providing financial support in the form of UGC-Start-Up Research and Early Career Research Award, respectively. AK also acknowledges the University Grants Commission, Government of India, for providing Center of Advanced Studies to Department of Zoology, Banaras Hindu University, India. SK acknowledges the University Grants Commission, India, for providing financial support in the form of UGC-Start-Up Research Grant [No.F.30-372/2017(BSR); FD Diary No.6755] and the Central University of Punjab for providing necessary infrastructure facilities. DK acknowledges the Central University of Jammu for providing necessary infrastructure facilities along with financial support in the form of Minor Research Grant (No: CUJ/Acad/Proj-PLS/2017/158) and also to SERB, DST for providing financial support. AB acknowledges the Central University of Jammu for providing necessary infrastructure facilities and the financial support in the form of Minor Research Grant (No: CUJ/Acad/Proj-CMB/2017/159).


  1. 1.
    Ameh SJ, Obodozie OO, Inyang US, Abubakar MS, Garba M (2010) Current phytotherapy – a perspective on the science and regulation of herbal medicine. J Med Plants Res 4:072–081Google Scholar
  2. 2.
    WHO (2008) Traditional medicine. WHO fact sheet no. 134. Revised. December 2008Google Scholar
  3. 3.
    BBC News (2006) Can herbal medicine combat aids? Wednesday, 15 March, 13:10 GMT. Accessed 16 Apr 2011
  4. 4.
    van Breemen RB (2015) Development of safe and effective botanical dietary supplements. J Med Chem 58:8360–8372PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Pferschy-Wenzig EM, Bauer R (2015) The relevance of pharmacognosy in pharmacological research on herbal medicinal products. Epilepsy Behav 52:344–362PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Betz JM, Brown PN, Roman MC (2011) Accuracy, precision, and reliability of chemical measurements in natural products research. Fitoterapia 82:44–52PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Pauli GF, Chen SN, Simmler C, Lankin DC, Gödecke T, Jaki BU, Friesen JB, McAlpine JB, Napolitano JG (2014) Importance of purity evaluation and the potential of quantitative 1H NMR as a purity assay. J Med Chem 57:9220–9231PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Piersen CE, Booth NL, Sun Y, Liang W, Burdette JE, van Breemen RB, Geller SE, Gu C, Banuvar S, Shulman LP, Bolton JL, Farnsworth NR (2004) Chemical and biological characterization and clinical evaluation of botanical dietary supplements: a phase I red clover extract as a model. Curr Med Chem 11:1361–1374PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Bisson J, McAlpine JB, Friesen JB, Chen SN, Graham J, Pauli GF (2016) Can invalid bioactives undermine natural product-based drug discovery. J Med Chem 59:1671–1690PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Wagner H (2011) Synergy research: approaching a new generation of phytopharmaceuticals. Fitoterapia 82:34–37PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Pelkonen O, Xu Q, Fan TP (2014) Why is research on herbal medicinal products important and how can we improve its quality? J Tradit Complement Med 4:1–7PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Chou TC, Talalay P (1984) Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 22:27–55PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Drews J (2000) Drug discovery: a historical perspective. Science 287:1960–1964PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Ojima I (2008) Modern molecular approaches to drug design and discovery. Acc Chem Res 41:2–3PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Wadood A, Ahmed N, Shah L, Ahmad A, Hassan H, Shams S (2013) In-silico drug design: an approach which revolutionarised the drug discovery process. OA Drug Des Deliv 1:4Google Scholar
  16. 16.
    Le Tourneau C, Lee JJ, Siu LL (2009) Dose escalation methods in phase I cancer clinical trials. J Natl Cancer Inst 101:708–720PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Elsäßer A, Regnstrom J, Vetter T, Koenig F, Hemmings RJ, Greco M, Papaluca-Amati M, Posch M (2014) Adaptive clinical trial designs for European marketing authorization: a survey of scientific advice letters from the European Medicines Agency. Trials 15:383PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Bernabe RD, Van Thiel GJ, Raaijmakers JA, Van Delden JJ (2014) The fiduciary obligation of the physician-researcher in phase IV trials. BMC Med Ethics 15:1CrossRefGoogle Scholar
  19. 19.
    AbouZahr C (2014) Progress and challenges in women’s health: an analysis of levels and patterns of mortality and morbidity. Contraception 90:S3–S13PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Clark IA, Vissel B (2013) Treatment implications of the altered cytokine-insulin axis in neurodegenerative disease. Biochem Pharmacol 86:862–871PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Ren SY, Xu X (2015) Role of autophagy in metabolic syndrome-associated heart disease. Biochim Biophys Acta 1852:225–231PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Taylor M (2015) Complementary and alternative approaches to menopause. Endocrinol Metab Clin North Am 44:619–648PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Imai A, Ichigo S, Matsunami K, Takagi H (2015) Premenstrual syndrome: management and pathophysiology. Clin Exp Obstet Gynecol 42:123–128PubMedPubMedCentralGoogle Scholar
  24. 24.
    Nickel JC (2007) Urinary tract infections and resistant bacteria: highlights of a symposium at the Combined Meeting of the 25th International Congress of Chemotherapy (ICC) and the 17th European Congress of Clinical Microbiology and Infectious Diseases (ECCMID), Munich, Germany. Rev Urol 9:78–80PubMedPubMedCentralGoogle Scholar
  25. 25.
    Gabay MP (2002) Galactogogues: medications that induce lactation. J Hum Lact 18:274–279PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Marcellin L, Chantry AA (2015) Breastfeeding (part III): breastfeeding complications– guidelines for clinical practice. J Gynecol Obstet Biol Reprod (Paris) 44:1084–1090CrossRefGoogle Scholar
  27. 27.
    Nelson HD (2008) Menopause. Lancet 371:760–770PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Chlebowski RT, Manson JE, Anderson GL, Cauley JA, Aragaki AK, Stefanick ML, Lane DS, Johnson KC, Wactawski-Wende J, Chen C, Qi L, Yasmeen S, Newcomb PA, Prentice RL (2013) Estrogen plus progestin and breast cancer incidence and mortality in the Women’s Health Initiative Observational Study. J Natl Cancer Inst 105:526–535PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Manson J, Branch H (2014) The women’s health initiative: the latest findings from long-term follow-up. Womens Health (Lond Engl) 10:125–128CrossRefGoogle Scholar
  30. 30.
    Meier B, Berger D, Hoberg E, Sticher O, Schaffner W (2000) Pharmacological activities of Vitex agnus-castus extracts in vitro. Phytomedicine 7:373–381PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Tamagno G (2009) Are changes of prolactin levels the effectors of vitex agnus castus beneficial effects on the pre-menstrual syndrome? Maturitas 63:369PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Chen XP, Li W, Xiao XF, Zhang LL, Liu CX (2013) Phytochemical and pharmacological studies on Radix Angelica sinensis. Chin J Nat Med 11:577–587PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Jarboe CH, Schmidt CM, Nicholson JA, Zirvi KA (1966) Uterine relaxant properties of Viburnum. Nature 212:837PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Nicholson JA, Darby TD, Jarboe CH (1972) Viopudial, a hypotensive and smooth muscle antispasmodic from Viburnum opulus. Proc Soc Exp Biol Med 140:457–461PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Cometa MF, Parisi L, Palmery M, Meneguz A, Tomassini L (2009) In vitro relaxant and spasmolytic effects of constituents from Viburnum prunifolium and HPLC quantification of the bioactive isolated iridoids. J Ethnopharmacol 123:201–207PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    van Andel T, de Boer HJ, Barnes J, Vandebroek I (2014) Medicinal plants used for menstrual disorders in Latin America, the Caribbean, sub-Saharan Africa, South and Southeast Asia and their uterine properties: a review. J Ethnopharmacol 155:992–1000PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Ahmad B, Rehman MU, Amin I, Arif A, Rasool S, Bhat SA, Afzal I, Hussain I, Bilal S, Mir M (2015) A review on pharmacological properties of zingerone (4-(4- hydroxy-3-methoxyphenyl)-2-butanone). Sci World J 2015:816364Google Scholar
  38. 38.
    Occhiuto F, Pino A, Palumbo DR, Samperi S, De Pasquale R, Sturlese E, Circosta C (2009) Relaxing effects of Valeriana officinalis extracts on isolated human nonpregnant uterine muscle. J Pharm Pharmacol 61:251–256PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Mirabi P, Dolatian M, Mojab F, Majd HA (2011) Effects of valerian on the severity and systemic manifestations of dysmenorrhea. Int J Gynaecol Obstet 115:285–288PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Kashani L, Saedi N, Akhondzadeh S (2010) Femicomfort in the treatment of premenstrual syndromes: a double-blind, randomized and placebo controlled trial. Iran J Psychiatry 5:47–50PubMedPubMedCentralGoogle Scholar
  41. 41.
    Foo LY, Lu Y, Howell AB, Vorsa N (2000) The structure of cranberry proanthocyanidins which inhibit adherence of uropathogenic P-fimbriated Escherichia coli in vitro. Phytochemistry 54:173–181PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Guay DR (2009) Cranberry and urinary tract infections. Drugs 69:775–807PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Vasileiou I, Katsargyris A, Theocharis S, Giaginis C (2013) Current clinical status on the preventive effects of cranberry consumption against urinary tract infections. Nutr Res 33:595–607PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    de Arriba SG, Naser B, Nolte KU (2013) Risk assessment of free hydroquinone derived from Arctostaphylos Uva-ursi folium herbal preparations. Int J Toxicol 32:442–453PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Micklefield GH, Redeker Y, Meister V, Jung O, Greving I, May B (1999) Effects of ginger on gastroduodenal motility. Int J Clin Pharmacol Ther 37:341–346PubMedPubMedCentralGoogle Scholar
  46. 46.
    Wu KL, Rayner CK, Chuah SK, Changchien CS, Lu SN, Chiu YC, Chiu KW, Lee CM (2008) Effects of ginger on gastric emptying and motility in healthy humans. Eur J Gastroenterol Hepatol 20:436–440PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Greenlee H, Abascal K, Yarnell E, Ladas E (2007) Clinical applications of Silybum marianum in oncology. Integr Cancer Ther 6:158–165PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Forinash AB, Yancey AM, Barnes KN, Myles TD (2012) The use of galactogogues in the breastfeeding mother. Ann Pharmacother 46:1392–1404PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Borrelli F, Ernst E (2008) Black cohosh (Cimicifuga racemosa) for menopausal symptoms: a systematic review of its efficacy. Pharmacol Res 58:8–14PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Powell SL, Gödecke T, Nikolic D, Chen SN, Ahn S, Dietz B, Farnsworth NR, van Breemen RB, Lankin DC, Pauli GF, Bolton JL (2008) In vitro serotonergic activity of black cohosh and identification of N(omega)-methylserotonin as a potential active constituent. J Agric Food Chem 56:11718–11726PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Wuttke W, Jarry H, Haunschild J, Stecher G, Schuh M, Seidlova-Wuttke D (2014) The non-estrogenic alternative for the treatment of climacteric complaints: black cohosh (Cimicifuga or Actaea racemosa). J Steroid Biochem Mol Biol 139:302–310PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Dietz BM, Mahady GB, Pauli GF, Farnsworth NR (2005) Valerian extract and valerenic acid are partial agonists of the 5-HT5a receptor in vitro. Brain Res Mol Brain Res 138:191–197PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Lethaby A, Marjoribanks J, Kronenberg F, Roberts H, Eden J, Brown J (2013) Phytoestrogens for menopausal vasomotor symptoms. Cochrane Database Syst Rev 12:CD001395Google Scholar
  54. 54.
    Aghamiri V, Mirghafourvand M, Mohammad-Alizadeh-Charandabi S, Nazemiyeh H (2016) The effect of Hop (Humulus lupulus L.) on early menopausal symptoms and hot flashes: a randomized placebo-controlled trial. Complement Ther Clin Pract 23:130–135PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Mersereau JE, Levy N, Staub RE, Baggett S, Zogovic T, Chow S, Ricke WA, Tagliaferri M, Cohen I, Bjeldanes LF, Leitman DC (2008) Liquiritigenin is a plant-derived highly selective estrogen receptor beta agonist. Mol Cell Endocrinol 283:49–57PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    World Health Organization (2016) Global report on diabetes. World Health Organization, GenevaGoogle Scholar
  57. 57.
    Cefalu WT, Stephens JM, Ribnicky DM (2011) Diabetes and herbal (botanical) medicine. In: Benzie IFF, Wachtel-Galor S, Herbal medicine: biomolecular and clinical aspects, 2nd edn. CRC Press/Taylor & Francis, Boca Raton; Chapter 19Google Scholar
  58. 58.
    Roglic G (2016) WHO Global report on diabetes: a summary. Int J Non-Commun Dis 1:3–8CrossRefGoogle Scholar
  59. 59.
    Anderson RA, Zhan Z, Luo R, Guo X, Guo Q, Zhou J, Kong J, Davis PA, Stoecker BJ (2015) Cinnamon extract lowers glucose, insulin and cholesterol in people with elevated serum glucose. J Tradit Complement Med 6:332–336PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Bailey CJ, Day C (1989) Traditional plant medicines as treatments for diabetes. Diabetes Care 12:553–564PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Shane-McWhorter L (2009) Dietary supplements for diabetes: an evaluation of commonly used products. Diabetes Spectr 22:206–213CrossRefGoogle Scholar
  62. 62.
    Oubré AY, Carlson TJ, King SR, Reaven GM (1997) From plant to patient: an ethnomedical approach to the identification of new drugs for the treatment of NIDDM. Diabetologia 40:614–617PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Cao H, Polansky MM, Anderson RA (2007) Cinnamon extract and polyphenols affect the expression of tristetraprolin, insulin receptor, and glucose transporter 4 in mouse 3T3-L1 adipocytes. Arch Biochem Biophys 459:214–222PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Sheng X, Zhang Y, Gong Z, Huang C, Zang YQ (2008) Improved insulin resistance and lipid metabolism by cinnamon extract through activation of peroxisome proliferator-activated receptors. PPAR Res 2008:581348PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Adisakwattana S, Lerdsuwankij O, Poputtachai U, Minipun A, Suparpprom C (2011) Inhibitory activity of cinnamon bark species and their combination effect with acarbose against intestinal α-glucosidase and pancreatic α-amylase. Plant Foods Hum Nutr 66:143–148PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Madar Z (1984) Fenugreek (trigonella foenumgraceum) as a means of reducing postprandial glucose levels in diabetic rats. Nutr Rep Int 29:1267–1273Google Scholar
  67. 67.
    Raghuram TC, Sharma RD, Sivakumar, Sahay BK (1994) Effect of fenugreek seeds on intravenous glucose disposition in non-insulin dependent diabetic patients. Phytother Res 8:83–86CrossRefGoogle Scholar
  68. 68.
    Shanmugasundaram ER, Panneerselvam C, Samudram P, Shanmugasundaram ERB (1983) Enzyme changes and glucose utilisation in diabetic rabbits: the effect of gymnema sylvestre. J Ethnopharmacol 7:205–234PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Persaud SJ, Al-Majed H, Raman A, Jones PM (1999) Gymnema sylvestre stimulates insulin release in vitro by increased membrane permeability. J Endocrinol 163:207–212PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Jellin JM, Batz F, Hitchens K (1999) Pharmacist’s letter/prescribers letter natural medicines comprehensive database. Therapeutic Research Faculty, Stockton, Available from
  71. 71.
    Joseph B, Jini D (2013) Antidiabetic effects of Momordica charantia (bitter melon) and its medicinal potency. Asian Pac J Trop Dis 3:93–102PubMedCentralCrossRefGoogle Scholar
  72. 72.
    Yuan HD, Kim JT, Kim SH, Chung SH (2012) Ginseng and diabetes: the evidences from in vitro, animal and human studies. J Ginseng Res 36:27–39PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Chandalia M, Garg A (2000) Beneficial effects of high dietary fiber intake in patients with type 2 diabetes mellitus. NEJM 342:1392–1398PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Alarcon-Aguilar FJ, Valdes-Arzate A (2003) Hypoglycemic activity of two polysaccharides isolated from Opuntia ficus-indica and O. streptacantha. Proc West Pharmacol Soc 46:139–142PubMedPubMedCentralGoogle Scholar
  75. 75.
    Stevinson C, Pittler MH, Ernst E (2000) Garlic for treating hypercholesterolemia: a meta-analysis of randomized clinical trials. Ann Intern Med 133:420–429PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Reinhart KM, Talati R, White CM, Coleman CI (2009) The impact of garlic on lipid parameters: a systematic review and meta-analysis. Nutr Res Rev 22:39–48PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Ghosh D, Konishi T (2007) Anthocyanins and anthocyanin-rich extracts: role in diabetes and eye function. Asia Pac J Clin Nutr 16:200–208PubMedPubMedCentralGoogle Scholar
  78. 78.
    Guigas B, Naboulsi R, Villanueva GR, Taleux N, Lopez-Novoa JM, Leverve XM, El-Mir LY (2007) The flavonoid silybinin decreases glucose-6-phosphate hydrolysis in perifused rat hepatocytes by an inhibitory effect on glucose-6-phosphatase. Cell Physiol Biochem 20:925–934PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Cheng B, Gong H, Li X, Sun Y, Zhang X, Chen H, Liu X, Zheng L, Huang Kl (2012) silybinin inhibits the toxic aggregation of human islet amyloid polypeptide. Biochem Biophys Res Commun 419:495–499PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Khan A, Safdar M, Ali Khan MM, Khattak KN, Anderson RA (2003) Cinnamon improves glucose and lipids of people with type 2 diabetes. Diabetes Care 26:3215–3218PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Mang B, Wolters M, Schmitt B, Kelb K, Lichtinghagen R, Stichtenoth DO, Hahn A (2006) Effects of a cinnamon extract on plasma glucose, HbA, and serum lipids in diabetes mellitus type 2. Eur J Clin Invest 36:340–344PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Crawford P (2009) Effectiveness of cinnamon for lowering hemoglobin A1C in patients with type 2 diabetes: a randomized, controlled trial. J Am Board Fam Med 22:507–512PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Akilen R, Tsiami A, Devendra D, Robinson N (2010) Glycated haemoglobin and blood pressure-lowering effect of cinnamon in multi-ethnic Type 2 diabetic patients in the UK: a randomized, placebo-controlled, double-blind clinical trial. Diabet Med 27:1159–1167PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Suppapitiporn S, Kanpaksi N, Suppapitiporn S (2006) The effect of cinnamon cassia powder in type 2 diabetes mellitus. J Med Assoc Thai 89(Suppl 3):S200–S205PubMedPubMedCentralGoogle Scholar
  85. 85.
    Sahib AS (2016) Anti-diabetic and antioxidant effect of cinnamon in poorly controlled type-2 diabetic Iraqi patients: a randomized, placebo-controlled clinical trial. J Intercultural Ethnopharmacol 5:108–113CrossRefGoogle Scholar
  86. 86.
    Neelakantan N, Narayanan M, de Souza RJ, van Dam RM (2014) Effect of fenugreek (Trigonella foenum-graecum L.) intake on glycemia: a meta-analysis of clinical trials. Nutr J 13:7PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Sharma RD, Raghuram TC, Rao NS (1990) Effect of fenugreek seeds on blood glucose and serum lipids in type I diabetes. Eur J Clin Nutr 44:301–306PubMedPubMedCentralGoogle Scholar
  88. 88.
    Lakholia AN (1956) The use of bitter gourd in diabetes mellitus. Antiseptic 53:608–610Google Scholar
  89. 89.
    Fuangchana A, Sonthisombata P, Seubnukarnb T, Chanouanc R, Chotchaisuwatd P, Sirigulsatiene V (2011) Hypoglycemic effect of bitter melon compared with metformin in newly diagnosed type 2 diabetes patients. J Ethnopharmacol 134:422–428CrossRefGoogle Scholar
  90. 90.
    Madkor HR, Mansour SW, Ramadan G (2011) Modulatory effects of garlic, ginger, turmeric and their mixture on hyperglycaemia, dyslipidaemia and oxidative stress in streptozotocin-nicotinamide diabetic rats. Br J Nutr 105:1210–1217PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Banerjee SK, Maulik SK (2002) Effect of garlic on cardiovascular disorders: a review. Nutr J 19:4CrossRefGoogle Scholar
  92. 92.
    Bunyapraphatsara N, Yongchaiyudha S, Rungpitarangsi V, Chokechaijaroenporn O (1996) Antidiabetic activity of aloe vera L. juice. II. Clinical trial in diabetes mellitus patients in combination with glibenclamide. Phytomedicine 3:245–248PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Yongchaiyudha S, Rungpitarangsi V, Bunyapraphatsara N, Chokechaijaroenporn O (1996) Antidiabetic activity of aloe vera L. juice. I. Clinical trial in new cases of diabetes mellitus. Phytomedicine 3:241–243PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Frati-Munari AC, Gordillo BE, Altamirano P, Ariza CR (1988) Hypoglycemic effect of opuntia streptacantha lemaire in NIDDM. Diabetes Care 11:63–66PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Frati AC, Gordillo BE, Altamirano P, Ariza CR, Cortes-Franco R, Chavez-Negrete A (1990) Acute hypoglycemic effect of opuntia streptacantha lemaire in NIDDM (Letter). Diabetes Care 13:455–456PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Velussi M, Cernigoi AM, Viezzoli L, Dapas F, Caffau C, Zilli M (1993) Silymarin reduces hyperinsulinemia, malondialdehyde levels, and daily insulin need in cirrhotic diabetic patients. Curr Therap Res 53:533–545CrossRefGoogle Scholar
  97. 97.
    Fallahzadeh MK, Dormanesh B, Sagheb MM, Roozbeh J, Vessal G, Pakfetrat M, Daneshbod Y, Kamali-Sarvestani E, Lankarani KB (2012) Effect of addition of silymarin to renin-angiotensin system inhibitors on proteinuria in type 2 diabetic patients with overt nephropathy: a randomized, double-blind, placebo-controlled trial. Am J Kidney Dis 60:896–903PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Huseini HF, Larijani B, Heshmat R, Fakhrzadeh H, Radjabipour B, Toliat T, Raza M (2006) The efficacy of Silybum marianum (L.) Gaertn. (silymarin) in the treatment of type II diabetes: a randomized, double-blind, placebo-controlled, clinical trial. Phytother Res 20:1036–1039PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Di Pierro F, Putignano P, Montesi L, Moscatiello S, MarchesiniReggiani G, Villanova N (2013) Preliminary study about the possible glycemic clinical advantage in using a fixed combination of Berberis aristata and Silybum marianum standardized extracts versus only Berberis aristata in patients with type 2 diabetes. Clin Pharmacol 5:167–174PubMedPubMedCentralGoogle Scholar
  100. 100.
    Büchner FL, Bueno-de-Mesquita HB, Linseisen J, Boshuizen HC, Kiemeney LA, Ros MM, Overvad K, Hansen L, Tjonneland A, Raaschou-Nielsen O, Clavel-Chapelon F, Boutron-Ruault MC, Touillaud M, Kaaks R, Rohrmann S, Boeing H, Nöthlings U, Trichopoulou A, Zylis D, Dilis V, Palli D, Sieri S, Vineis P, Tumino R, Panico S, Peeters PH, van Gils CH, Lund E, Gram IT, Braaten T, Martinez C, Agudo A, Arriola L, Ardanaz E, Navarro C, Rodríguez L, Manjer J, Wirfält E, Hallmans G, Rasmuson T, Key TJ, Roddam AW, Bingham S, Khaw KT, Slimani N, Bofetta P, Byrnes G, Norat T, Michaud D, Riboli E (2010) Fruits and vegetables consumption and the risk of histological subtypes of lung cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC). Cancer Causes Control 21:357–371PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Michels KB, Giovannucci E, Joshipura KJ, Rosner BA, Stampfer MJ, Fuchs CS, Colditz GA, Speizer FE, Willett WC (2000) Prospective study of fruit and vegetable consumption and incidence of colon and rectal cancers. J Natl Cancer Inst 92:1740–1752PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Larsson SC, Holmberg L, Wolk A (2004) Fruit and vegetable consumption in relation to ovarian cancer incidence: the Swedish Mammography Cohort. Br J Cancer 90:2167–2170PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Gutheil WG, Reed G, Ray A, Dhar A (2012) Crocetin: an agent derived from saffron for prevention and therapy for cancer. Curr Pharm Biotechnol 13:173–179PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Aggarwal BB, Sung B (2009) Pharmacological basis for the role of curcumin in chronic diseases: an age-old spice with modern targets. Trends Pharmacol Sci 30:85–94PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Aggarwal BB, Harikumar KB (2009) Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int J Biochem Cell Biol 41:40–59PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Shankar T, Shantha NV, Ramesh HP, Murthy IA, Murthy VS (1980) Toxicity studies on turmeric (Curcuma longa): acute toxicity studies in rats, guinea pigs and monkeys. Indian J Exp Biol 18:73–75PubMedPubMedCentralGoogle Scholar
  107. 107.
    Soni K, Kuttan R (1992) Effect of oral curcumin administration on serum peroxides and cholesterol levels in human volunteers. Indian J Physiol Pharmacol 36:273–275PubMedPubMedCentralGoogle Scholar
  108. 108.
    Kuttan R, Sudheeran PC, Josph CD (1987) Turmeric and curcumin as topical agents in cancer therapy. Tumori 73:29–31PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Cheng AL, Hsu CH, Lin JK, Hsu MM, Ho YF, Shen TS, Ko JY, Lin JT, Lin BR, Ming-Shiang W, Yu HS, Jee SH, Chen GS, Chen TM, Chen CA, Lai MK, Pu YS, Pan MH, Wang YJ, Tsai CC, Hsieh CY (2001) Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or premalignant lesions. Anticancer Res 21:2895–2900PubMedPubMedCentralGoogle Scholar
  110. 110.
    Sharma RA, McLelland HR, Hill KA, Ireson CR, Euden SA, Manson MM, Pirmohamed M, Marnett LJ, Gescher AJ, Steward WP (2001) Pharmacodynamic and pharmacokinetic study of oral curcuma extract in patients with colorectal cancer. Clin Cancer Res 7:1894–1900PubMedPubMedCentralGoogle Scholar
  111. 111.
    Sharma RA, Euden SA, Platton SL, Cooke DN, Shafayat A, Hewitt HR, Marczylo TH, Morgan B, Hemingway D, Plummer SM, Pirmohamed M, Gescher AJ, Steward WP (2004) Phase I clinical trial of oral curcumin: biomarkers of systemic activity and compliance. Clin Cancer Res 10:6847–6854PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Garcea G, Berry DP, Jones DJ, Singh R, Dennison AR, Farmer PB, Sharma RA, Steward WP, Gescher AJ (2005) Consumption of the putative chemopreventive agent curcumin by cancer patients: assessment of curcumin levels in the colorectum and their pharmacodynamic consequences. Cancer Epidemiol Biomarkers Prev 14:120–125PubMedPubMedCentralGoogle Scholar
  113. 113.
    He ZY, Shi CB, Wen H, Li FL, Wang BL, Wang J (2011) Upregulation of p53 expression in patients with colorectal cancer by administration of curcumin. Cancer Investig 29:208–213CrossRefGoogle Scholar
  114. 114.
    Cruz-Correa M, Shoskes DA, Sanchez P, Zhao R, Hylind LM, Wexner SD, Giardiello FM (2006) Combination treatment with curcumin and quercetin of adenomas in familial adenomatous polyposis. Clin Gastroenterol Hepatol 4:1035–1038CrossRefGoogle Scholar
  115. 115.
    Irving GR, Howells LM, Sale S, Kralj-Hans I, Atkin WS, Clark SK, Britton RG, Jones DJ, Scott EN, Berry DP, Hemingway D, Miller AS, Brown K, Gescher AJ, Steward WP (2013) Prolonged biologically active colonic tissue levels of curcumin achieved after oral administration--a clinical pilot study including assessment of patient acceptability. Cancer Prev Res (Phila) 6:119–128CrossRefGoogle Scholar
  116. 116.
    Irving GR, Iwuji CO, Morgan B, Berry DP, Steward WP, Thomas A, Brown K, Howells LM (2015) Combining curcumin (C3-complex, Sabinsa) with standard care FOLFOX chemotherapy in patients with inoperable colorectal cancer (CUFOX): study protocol for a randomised control trial. Trials 16:110PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    James MI, Iwuji C, Irving G, Karmokar A, Higgins JA, Griffin-Teal N, Thomas A, Greaves P, Cai H, Patel SR, Morgan B, Dennison A, Metcalfe M, Garcea G, Lloyd DM, Berry DP, Steward WP, Howells LM, Brown K (2015) Curcumin inhibits cancer stem cell phenotypes in ex vivo models of colorectal liver metastases, and is clinically safe and tolerable in combination with FOLFOX chemotherapy. Cancer Lett 364:135–141PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Dhillon N, Aggarwal BB, Newman RA, Wolff RA, Kunnumakkara AB, Abbruzzese JL, Ng CS, Badmaev V, Kurzrock R (2008) Phase II trial of curcumin in patients with advanced pancreatic cancer. Clin Cancer Res 14:4491–4499PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Epelbaum R, Schaffer M, Vizel B, Badmaev V, Bar-Sela G (2010) Curcumin and gemcitabine in patients with advanced pancreatic cancer. Nutr Cancer 62:1137–1141CrossRefGoogle Scholar
  120. 120.
    Kanai M, Yoshimura K, Asada M, Imaizumi A, Suzuki C, Matsumoto S, Nishimura T, Mori Y, Masui T, Kawaguchi Y, Yanagihara K, Yazumi S, Chiba T, Guha S, Aggarwal BB (2011) A phase I/II study of gemcitabine-based chemotherapy plus curcumin for patients with gemcitabine resistant pancreatic cancer. Cancer Chemother Pharmacol 68:157–164PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Vadhan-Raj S, Weber D, Wang M, Giralt S, Alexanian R, Thomas SK, Alexanian R, Zhou X, Patel P, Bueso-Ramos CE, Newman RA, Aggarwal BB (2007) Curcumin downregulates NF-КB and related genes in patients with multiple myeloma: results of a phase I/II study. Blood 357a:110Google Scholar
  122. 122.
    Golombick T, Diamond TH, Badmaev V, Manoharan A, Ramakrishna R (2009) The potential role of curcumin in patients with monoclonal gammopathy of undefined significance-its effect on paraproteinemia and the urinary N-telopeptide of type I collagen bone turnover marker. Clin Cancer Res 15:5917–5922PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Golombick T, Diamond TH, Manoharan A, Ramakrishna R (2012) Monoclonal gammopathy of undetermined significance, smoldering multiple myeloma, and curcumin: a randomized, double-blind placebo-controlled cross-over 4g study and an open-label 8g extension study. Am J Hematol 87:455–460PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Bayet-Robert M, Kwiatkowski F, Leheurteur M, Gachon F, Planchat E, Abrial C, Mouret-Reynier MA, Durando X, Barthomeuf C, Chollet P (2010) Phase I dose escalation trial of docetaxel plus curcumin in patients with advanced and metastatic breast cancer. Cancer Biol Ther 9:8–14PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Ryan JL, Heckler CE, Ling M, Katz A, Williams JP, Pentland AP, Morrow GR (2013) Curcumin for radiation dermatitis: a randomized, double-blind, placebo-controlled clinical trial of thirty breast cancer patients. Radiat Res 180:34–43PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Ide H, Tokiwa S, Sakamaki K, Nishio K, Isotani S, Muto S, Hama T, Masuda H, Horie S (2010) Combined inhibitory effects of soy isoflavones and curcumin on the production of prostate-specific antigen. Prostate 70:1127–1133PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Mahammedi H, Planchat E, Pouget M, Durando X, Curé H, Guy L, Van-Praagh I, Savareux L, Atger M, Bayet-Robert M, Gadea E, Abrial C, Thivat E, Chollet P, Eymard JC (2016) The new combination docetaxel, prednisone and curcumin in patients with castration-resistant prostate cancer: a pilot phase II study. Oncology 90:69–78PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Kim SG, Veena MS, Basak SK, Han E, Tajima T, Gjertson DW, Starr J, Eidelman O, Pollard HB, Srivastava M, Srivatsan ES, Wang MB (2011) Curcumin treatment suppresses IKKβ kinase activity of salivary cells of patients with head and neck cancer: a pilot study. Clin Cancer Res 17:5953–5961PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Ghalaut VS, Sangwan L, Dahiya K, Ghalaut PS, Dhankhar R, Saharan R (2012) Effect of imatinib therapy with and without turmeric powder on nitric oxide levels in chronic myeloid leukemia. J Oncol Pharm Pract 18:186–190CrossRefGoogle Scholar
  130. 130.
    Panahi Y, Saadat A, Beiraghdar F, Sahebkar A (2014) Adjuvant therapy with bioavailability-boosted curcuminoids suppresses systemic inflammation and improves quality of life in patients with solid tumors: a randomized double-blind placebo-controlled trial. Phytother Res 28:1461–1467CrossRefGoogle Scholar
  131. 131.
    Zhao H, Zhu W, Xie P, Li H, Zhang X, Sun X, Yu J, Xing L (2014) A phase I study of concurrent chemotherapy and thoracic radiotherapy with oral epigallocatechin-3-gallate protection in patients with locally advanced stage III non-small-cell lung cancer. Radiother Oncol 110:132–136PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Zhao H, Xie P, Li X, Zhu W, Sun X, Sun X, Chen X, Xing L, Yu J (2015a) A prospective phase II trial of EGCG in treatment of acute radiation-induced esophagitis for stage III lung cancer. Radiother Oncol 114:351–356PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Zhao H, Zhu W, Jia L, Sun X, Chen G, Zhao X, Li X, Meng X, Kong L, Xing L, Yu J (2016) Phase I study of topical epigallocatechin-3-gallate (EGCG) in patients with breast cancer receiving adjuvant radiotherapy. Br J Radiol 89:20150665PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Alumkal JJ, Slottke R, Schwartzman J, Cherala G, Munar M, Graff JN, Beer TM, Ryan CW, Koop DR, Gibbs A, Gao L, Flamiatos JF, Tucker E, Kleinschmidt R, Mori M (2015) A phase II study of sulforaphane-rich broccoli sprout extracts in men with recurrent prostate cancer. Invest New Drugs 33:480–489PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Cipolla BG, Mandron E, Lefort JM, Coadou Y, Della Negra E, Corbel L, Le Scodan R, Azzouzi AR, Mottet N (2015) Effect of sulforaphane in men with biochemical recurrence after radical prostatectomy. Cancer Prev Res (Phila) 8:712–719CrossRefGoogle Scholar
  136. 136.
    Atwell LL, Zhang Z, Mori M, Farris PE, Vetto JT, Naik AM, Oh KY, Thuillier P, Ho E, Shannon J (2015) Sulforaphane bioavailability and chemopreventive activity in women scheduled for breast biopsy. Cancer Prev Res (Phila) 8:1184–1191CrossRefGoogle Scholar
  137. 137.
    Markovits J, Linassier C, Fossé P, Couprie J, Pierre J, Jacquemin-Sablon A, Saucier JM, Le Pecq JB, Larsen AK (1989) Inhibitory effects of the tyrosine kinase inhibitor genistein on mammalian DNA topoisomerase II. Cancer Res 49:5111–5117PubMedGoogle Scholar
  138. 138.
    López-Lazaro M, Willmore E, Austin CA (2007) Cells lacking DNA topoisomerase II beta are resistant to genistein. J Nat Prod 70:763–767PubMedCrossRefPubMedCentralGoogle Scholar
  139. 139.
    Spagnuolo C, Russo GL, Orhan IE, Habtemariam S, Daglia M, Sureda A, Nabavi SF, Devi KP, Loizzo MR, Tundis R, Nabavi SM (2015) Genistein and cancer: current status, challenges, and future directions. Adv Nutr 6:408–419PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    deVere White RW, Hackman RM, Soares SE, Beckett LA, Li Y, Sun B (2004) Effects of a genistein-rich extract on PSA levels in men with a history of prostate cancer. Urology 63:259–263PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Lazarevic B, Boezelijn G, Diep LM, Kvernrod K, Ogren O, Ramberg H, Moen A, Wessel N, Berg RE, Egge-Jacobsen W, Hammarstrom C, Svindland A, Kucuk O, Saatcioglu F, Taskèn KA, Karlsen SJ (2011) Efficacy and safety of short-term genistein intervention in patients with localized prostate cancer prior to radical prostatectomy: a randomized, placebo-controlled, double-blind phase 2 clinical trial. Nutr Cancer 63:889–898PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    Messing E, Gee JR, Saltzstein DR, Kim K, diSant’Agnese A, Kolesar J, Harris L, Faerber A, Havighurst T, Young JM, Efros M, Getzenberg RH, Wheeler MA, Tangrea J, Parnes H, House M, Busby JE, Hohl R, Bailey H (2012) A phase 2 cancer chemoprevention biomarker trial of isoflavone G-2535 (genistein) in presurgical bladder cancer patients. Cancer Prev Res (Phila) 5:621–630PubMedCentralCrossRefGoogle Scholar
  143. 143.
    Lazarevic B, Hammarström C, Yang J, Ramberg H, Diep LM, Karlsen SJ, Kucuk O, Saatcioglu F, Taskèn KA, Svindland A (2012) The effects of short-term genistein intervention on prostate biomarker expression in patients with localised prostate cancer before radical prostatectomy. Br J Nutr 108:2138–2147PubMedCrossRefPubMedCentralGoogle Scholar
  144. 144.
    Brown VA, Patel KR, Viskaduraki M, Crowell JA, Perloff M, Booth TD, Vasilinin G, Sen A, Schinas AM, Piccirilli G, Brown K, Steward WP, Gescher AJ, Brenner DE (2010) Repeat dose study of the cancer chemopreventive agent resveratrol in healthy volunteers: safety, pharmacokinetics, and effect on the insulin-like growth factor axis. Cancer Res 70:9003–9011PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Singh CK, Ndiaye MA, Ahmad N (2015) Resveratrol and cancer: challenges for clinical translation. Biochim Biophys Acta 1852:1178–1185PubMedCrossRefPubMedCentralGoogle Scholar
  146. 146.
    Nguyen AV, Martinez M, Stamos MJ, Moyer MP, Planutis K, Hope C, Holcombe RF (2009) Results of a phase I pilot clinical trial examining the effect of plant-derived resveratrol and grape powder on Wnt pathway target gene expression in colonic mucosa and colon cancer. Cancer Manag Res 1:25–37PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Patel KR, Brown VA, Jones DJ, Britton RG, Hemingway D, Miller AS, West KP, Booth TD, Perloff M, Crowell JA, Brenner DE, Steward WP, Gescher AJ, Brown K (2010) Clinical pharmacology of resveratrol and its metabolites in colorectal cancer patients. Cancer Res 70:7392–7399PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Howells LM, Berry DP, Elliott PJ, Jacobson EW, Hoffmann E, Hegarty B, Brown K, Steward WP, Gescher AJ (2011) Phase I randomized, double-blind pilot study of micronized resveratrol (SRT501) in patients with hepatic metastases--safety, pharmacokinetics, and pharmacodynamics. Cancer Prev Res (Phila) 4:1419–1425CrossRefGoogle Scholar
  149. 149.
    Zhu W, Qin W, Zhang K, Rottinghaus GE, Chen YC, Kliethermes B, Sauter ER (2012) Trans-resveratrol alters mammary promoter hypermethylation in women at increased risk for breast cancer. Nutr Cancer 64:393–400PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Popat R, Plesner T, Davies F, Cook G, Cook M, Elliott P, Jacobson E, Gumbleton T, Oakervee H, Cavenagh J (2013) A phase 2 study of SRT501 (resveratrol) with bortezomib for patients with relapsed and or refractory multiple myeloma. Br J Haematol 160:714–717PubMedCrossRefPubMedCentralGoogle Scholar
  151. 151.
    Benayache S, Benayache F, Benyahia S (2001) Leaf oils of some eucalyptus species growing in Algeria. J Essent Oil Res 13:210–213CrossRefGoogle Scholar
  152. 152.
    Benhassaini H, Enabderrahmane MB, Chikhi K (2003) Contribution à l’évaluation de l’activité antiseptique de l’oléorésine et des huiles essentielles du pistachier de l’Atlas sur certaines sources microbiennes: candida albicans (ATC 20027), candida albicans (ATCC 20032) et saccharomyces cerevisiae: ethnopharmacologie, fév. 30, pp 38–46Google Scholar
  153. 153.
    Nostro A (2006) Activity of plant extracts and plant-derived compounds against drug-resistant microorganisms. Wiley-VCH, Weinheim, pp 199–231Google Scholar
  154. 154.
    Warnke PH, Becker ST, Podschun R, Sivananthan S, Springer IN, Russo PA, Wiltfang J, Fickenscher H, Sherry E (2009) The battle against multi-resistant strains: renaissance of antimicrobial essential oils as a promising force to fight hospital-acquired infections. J CranioMaxillofacial Surg 37:392–397CrossRefGoogle Scholar
  155. 155.
    Burt S (2004) Essential oils: their antibacterial properties and potential applications in foods-a review. Int J Food Microbiol 94:223–253PubMedCrossRefGoogle Scholar
  156. 156.
    Giron LM, Aguilar GA, Caceres A, Arroyo GL (1988) Anticandidal activity of plants used for the treatment of vaginitis in Guatemala and clinical trial of a Solanum nigrescens preparation. J Ethnopharmacol 22:307–313PubMedCrossRefPubMedCentralGoogle Scholar
  157. 157.
    Jayaprakasha GK, Negi PS, Jena BS (2006) Antimicrobial activities of pomegranate. In: Seeram NP, Schulman RN, Heber D (eds) Pomegranates: ancient roots to modern medicine. CRC Press, NewYork, p 168Google Scholar
  158. 158.
    Reddy MK, Gupta SK, Jacob MR, Khan SI, Ferreira D (2007) Antioxidant, antimalarial and antimicrobial activities of tannin-rich fractions, ellagitannins and phenolic acids from Punica granatum L. Planta Med 73:461–467PubMedCrossRefPubMedCentralGoogle Scholar
  159. 159.
    Naz S, Siddiqi R, Ahmad S, Rasool SA, Sayeed SA (2007) Antibacterial activity directed isolation of compounds from Punica granatum. J Food Sci 72:341–345CrossRefGoogle Scholar
  160. 160.
    Menezes SM, Cordeiro LN, Viana GS (2006) Punica granatum (pomegranate) extract is active against dental plaque. J Herb Pharmacother 6:79–92PubMedCrossRefPubMedCentralGoogle Scholar
  161. 161.
    Somu CA, Ravindra S, Ajith S, Ahamed MG (2012) Efficacy of a herbal extract gel in the treatment of gingivitis: a clinical study. J Ayurveda Integr Med 3:85–90PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Sastravaha G, Gassmann G, Sangtherapitikul P, Grimm WD (2005) Adjunctive periodontal treatment with Centella asiatica and Punica granatum extracts in supportive periodontal therapy. J Int Acad Periodontol 7:70–79PubMedPubMedCentralGoogle Scholar
  163. 163.
    Hajimahmoodi M, Shams-Ardakani M, Saniee P, Siavoshi F, Mehrabani M, Hosseinzadeh H, Foroumadi P, Safavi M, Khanavi M, Akbarzadeh T, Shafiee A, Foroumadi A (2011) In vitro antibacterial activity of some Iranian medicinal plant extracts against Helicobacter pylori. Nat Prod Res 25:1059–1066PubMedCrossRefPubMedCentralGoogle Scholar
  164. 164.
    Jepson RG, Mihaljevic L, Craig J (2002) Cranberries for treating urinary tract infections. (Cochrane Rewiew). In The Cochrane Library, Issue 4, Update Software, OxfordGoogle Scholar
  165. 165.
    Paranjpe P, Kulkarni PH (1995) Comparative efficacy of four Ayuredic formulations in the treatment of acne vulgaris: a double-blind randomised placebo-controlled clinical evaluation. J Ethnopharmacol 49:127–132PubMedCrossRefPubMedCentralGoogle Scholar
  166. 166.
    Aydin A, Ersoz G, Tekesin O, Akcicek E, Tuncyurek M, Batur Y (1997) Does garlic oil have a role in the treatment of Helicobacter pylori infection? Turkish J Gastroenterol 8:181–184Google Scholar
  167. 167.
    Di Mario F, Cavallaro LG, Nouvenne A, Stefani N, Cavestro GM, Iori V, Maino M, Comparato G, Fanigliulo L, Morana E, Pilotto A, Martelli L, Martelli M, Leandro G, Franzè A (2007) A curcumin-based 1-week triple therapy for eradication of Helicobacter pylori infection: something to learn from failure? Helicobacter 12:238–243PubMedCrossRefPubMedCentralGoogle Scholar
  168. 168.
    Liu JP, Manheimer E, Tsutani K, Gluud C (2001) Medicinal herbs for hepatitis C virus infection. Cochrane Database Syst Rev 4:CD003183Google Scholar
  169. 169.
    James JS (1996) Curcumin: clinical trial finds no antiviral effect. AIDS Treat News 1:1–2Google Scholar
  170. 170.
    Basu P, Dutta S, Begum R, Mittal S, Dutta PD, Bharti AC, Panda CK, Biswas J, Dey B, Talwar GP, Das BC (2013) Clearance of cervical human papillomavirus infection by topical application of curcumin and curcumin containing polyherbal cream: a phase II randomized controlled study. Asian Pac J Cancer Prev 14:5753–5759PubMedPubMedCentralCrossRefGoogle Scholar
  171. 171.
    Ahn WS, Yoo J, Huh SW, Kim CK, Lee JM, Namkoong SE, Bae SM, Lee IP (2003) Protective effects of green tea extracts (polyphenon E and EGCG) on human cervical lesions. Eur J Cancer Prev 12:383–390PubMedCrossRefPubMedCentralGoogle Scholar
  172. 172.
    Halegoua-De Marzio D, Kraft WK, Daskalakis C, Ying X, Hawke RL, Navarro VJ (2012) Limited sampling estimates of epigallocatechin gallate exposures in cirrhotic and noncirrhotic patients with hepatitis C after single oral doses of green tea extract. Clin Ther 34:2279–2285PubMedCrossRefPubMedCentralGoogle Scholar
  173. 173.
    Zhao M, Zheng R, Jiang J, Dickinson D, Fu B, Chu TC, Lee LH, Pearl H, Hsu S (2015b) Topical lipophilic epigallocatechin-3-gallate on herpes labialis: a phase II clinical trial of AverTeaX formula. Oral Surg Oral Med Oral Pathol Oral Radiol 120:717–724PubMedCrossRefPubMedCentralGoogle Scholar
  174. 174.
    Müller L, Meyer M, Bauer RN, Zhou H, Zhang H, Jones S, Robinette C, Noah TL, Jaspers I (2016) Effect of broccoli sprouts and live attenuated influenza virus on peripheral blood natural killer cells: a randomized, double-blind study. PLoS One 11:e0147742PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Shashank Kumar
    • 1
  • Deepak Kumar
    • 2
  • Audesh Bhat
    • 3
  • Ajay Kumar
    • 4
    Email author
  1. 1.Centre of Biochemistry and Microbial SciencesCentral University of PunjabBathindaIndia
  2. 2.Department of BotanyCentral University of JammuJammuIndia
  3. 3.Centre for Molecular BiologyCentral University of JammuJammuIndia
  4. 4.Department of ZoologyBanaras Hindu UniversityVaranasiIndia

Personalised recommendations