Nano-delivery of Food-Derived Biomolecules: An Overview

  • Dhwani Jhala
  • Hilal Rather
  • Rajesh Vasita


Certain bioactive molecules present in food have therapeutic effects such as antioxidant, anti-carcinogenic, anti-mutagenic, anti-ageing and anti-inflammatory activity. Although these molecules can be consumed via food, their effects are often subordinated due to degradation during digestion and lesser bioavailability at target site. Nanocarriers such as nanoparticles, nanoliposomes and nanopolymersomes have been developed for the food-derived biomolecules that can overcome traditional drug delivery limitations and provide advantages such as increased solubility and stability, protection against degradation, target specificity, increased bioavailability and regulated release. This chapter discusses different types of nanocarriers for delivery of food-derived biomolecules along with their advantages over conventional drug delivery methods. It also addresses the clearance of these nanocarriers from the body, their toxicity and ethics-related concerns. Overall, it provides an overview of nanocarriers used for delivery of food-derived bioactive molecules.


Drug delivery Nanocarriers Nanoparticles Nanoliposomes Polymersomes Nanotoxicity Nutraceuticals 



Authors DJ and HR appreciatively acknowledge the Council of Scientific and Industrial Research and University Grant Commission, India, for fellowship support, respectively, whereas RV would like to acknowledge SERB, Department of Science and Technology, Govt. of India, and Gujarat State Biotechnology Mission, Govt. of Gujarat, India, for their financial support.


  1. 1.
    Aklakur M, Asharf Rather M, Kumar N (2016) Nanodelivery: an emerging avenue for nutraceuticals and drug delivery. Crit Rev Food Sci Nutr 56:2352–2361PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Jani P, Halbert GW, Langridge J et al (1990) Nanoparticle uptake by the rat gastrointestinal mucosa: quantitation and particle size dependency. J Pharm Pharmacol 42:821–826PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Sikorska M, Lanthier P, Miller H et al (2014) Nanomicellar formulation of coenzyme Q(10) (Ubisol-Q(10)) effectively blocks ongoing neurodegeneration in the mouse 1-methyl-4- phenyl-1,2,3,6-tetrahydropyridine model: potential use as an adjuvant treatment in Parkinson’s disease. Neurobiol Aging 35:2329–2346PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Muthukumaran K, Leahy S, Harrison K et al (2014) Orally delivered water soluble Coenzyme Q10 (Ubisol-Q10) blocks on-going neurodegeneration in rats exposed to paraquat: potential for therapeutic application in Parkinson’s disease. BMC Neurosci 15:21–31PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Silva HD, Cerqueira MÂ, Vicente AA (2012) Nanoemulsions for food applications: development and characterization. Food Bioprocess Technol 5:854–867CrossRefGoogle Scholar
  6. 6.
    Ranjan S, Dasgupta N, Chakraborty AR et al (2014) Nanoscience and nanotechnologies in food industries: opportunities and research trends. J Nanopart Res 16:2464–2489Google Scholar
  7. 7.
    Tonnesen HH, Masson M, Loftsson T (2002) Studies of curcumin and curcuminoids. XXVII. Cyclodextrin complexation: solubility, chemical and photochemical stability. Int J Pharm 244:127–135PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Aggarwal BB, Kumar A, Bharti AC (2003) Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Res 23:363–398PubMedPubMedCentralGoogle Scholar
  9. 9.
    Anand P, Thomas SG, Kunnumakkara AB et al (2008) Biological activities of curcumin and its analogues (Congeners) made by man and mother nature. Biochem Pharmacol 76:1590–1611CrossRefGoogle Scholar
  10. 10.
    Yallapu MM, Jaggi M, Chauhan SC (2012) Curcumin nanoformulations: a future nanomedicine for cancer. Drug Discov Today 17:71–80PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Kakkar V, Singh S, Singla D et al (2010) Pharmacokinetic applicability of a validated liquid chromatography tandem mass spectroscopy method for orally administered curcumin loaded solid lipid nanoparticles to rats. J Chromatogr B Anal Technol Biomed Life Sci 878:3427–3431CrossRefGoogle Scholar
  12. 12.
    Kundu P, Mohanty C, Sahoo SK (2012) Antiglioma activity of curcumin-loaded lipid nanoparticles and its enhanced bioavailability in brain tissue for effective glioblastoma therapy. Acta Biomater 8:2670–2687PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Hernell O, Staggers JE, Carey MC (1990) Physical-chemical behavior of dietary and biliary lipids during intestinal digestion and absorption. 2. Phase analysis and aggregation states of luminal lipids during duodenal fat digestion in healthy adult human beings. Biochemistry 29:2041–2056PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Faulks RM, Southon S (2005) Challenges to understanding and measuring carotenoid bioavailability. Biochim Biophys Acta 1740:95–100PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Desai MP, Labhasetwar V, Amidon GL et al (1996) Gastrointestinal uptake of biodegradable microparticles: effect of particle size. Pharm Res 13:1838–1845PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Hussain N, Jaitley V, Florence AT (2001) Recent advances in the understanding of uptake of microparticulates across the gastrointestinal lymphatics. Adv Drug Deliv Rev 50:107–142PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Delie F (1998) Evaluation of nano- and microparticle uptake by the gastrointestinal tract. Adv Drug Deliv Rev 34:221–233PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    des Rieux A, Fievez V, Garinot M et al (2006) Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach. J Control Release 116:1–27PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Panyam J, Labhasetwar V (2003) Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev 55:329–347PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Roney C, Kulkarni P, Arora V et al (2005) Targeted nanoparticles for drug delivery through the blood-brain barrier for Alzheimer’s disease. J Control Release 108:193–214PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Duncan R (2006) Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer 6:688–701PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Gratzel M (2001) Photoelectrochemical cells. Nature 414:338–344PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Dai J, Bruening ML (2002) Catalytic nanoparticles formed by reduction of metal ions in multilayered polyelectrolyte films. Nano Lett 2:497–501CrossRefGoogle Scholar
  24. 24.
    Murray CB, Sun S, Doyle H et al (2001) Monodisperse 3d transition-metal (Co,Ni,Fe) nanoparticles and their assembly into nanoparticle superlattices. MRS Bull 26:985–991CrossRefGoogle Scholar
  25. 25.
    Bhattacharya R, Mukherjee P (2008) Biological properties of “naked” metal nanoparticles. Adv Drug Deliv Rev 60:1289–1306PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Khoobchandani M, Zambre A, Katti K et al (2013) Green nanotechnology from Brassicaceae: development of broccoli phytochemicals–encapsulated gold nanoparticles and their applications in nanomedicine. Int J Green Nanotechnol 1:1–15CrossRefGoogle Scholar
  27. 27.
    Katti K, Chanda N, Shukla R et al (2009) Green nanotechnology from cumin phytochemicals: generation of biocompatible gold nanoparticles. Int J Green Nanotechnol Biomed 1:39–52CrossRefGoogle Scholar
  28. 28.
    Ahmad N, Sharma S, Alam Md K et al (2010) Rapid synthesis of silver nanoparticles using dried medicinal plant of basil. Colloids Surf B Biointerfaces 81:81–86PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Krishnaswamy K, Vali H, Orsat V (2014) Value-adding to grape waste: green synthesis of gold nanoparticles. J Food Eng 142:210–220CrossRefGoogle Scholar
  30. 30.
    Bankar A, Joshi B, Kumar AR et al (2010) Banana peel extract mediated synthesis of gold nanoparticles. Colloids Surf B, Biointerfaces 80:45–50PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Li L, Xi L, Changhui F et al (2015) Biosynthesis of fluorescent gold nanoclusters for in vitro and in vivo tumor imaging. Opt Commun 355:567–574CrossRefGoogle Scholar
  32. 32.
    Philip D (2009) Honey mediated green synthesis of gold nanoparticles. Spectrochim Acta Mol 73:650–653CrossRefGoogle Scholar
  33. 33.
    Sujitha MV, Kannan S (2013) Green synthesis of gold nanoparticles using Citrus fruits (Citrus limon, Citrus reticulata and Citrus sinensis) aqueous extract and its characterization. Spectrochim Acta Mol 102:15–23CrossRefGoogle Scholar
  34. 34.
    Khalil MMH, Ismail Eman H, Fatma E-M (2012) Biosynthesis of Au nanoparticles using olive leaf extract: 1st Nano Updates. Arab J Chem 5:431–437CrossRefGoogle Scholar
  35. 35.
    Nune SK, Nripen C, Ravi S et al (2009) Green nanotechnology from tea: phytochemicals in tea as building blocks for production of biocompatible gold nanoparticles. J Mater Chem 19:2912–2920PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Menon D, Basanth A, Retnakumari A et al (2012) Green synthesis of biocompatible gold nanocrystals with tunable surface plasmon resonance using garlic phytochemicals. J Biomed Nanotechnol 8:901–911PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Nie S, Xing Y, Kim GJ et al (2007) Nanotechnology applications in cancer. Annu Rev Biomed Eng 9:257–288PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Gref R, Domb A, Quellec P et al (1995) The controlled intravenous delivery of drugs using PEG-coated sterically stabilized nanospheres. Adv Drug Deliv Rev 16:215–233PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Han DH, Lee MJ, Kim JH (2006) Antioxidant and apoptosis-inducing activities of ellagic acid. Anticancer Res 26:3601–3606PubMedPubMedCentralGoogle Scholar
  40. 40.
    Zhang H-M, Lei Z, Hao L et al (2014) Research progress on the anticarcinogenic actions and mechanisms of ellagic acid. Cancer Biol Med 11:92–100PubMedPubMedCentralGoogle Scholar
  41. 41.
    Bala I, Bhardwaj V, Hariharan S et al (2005) Design of biodegradable nanoparticles: a novel approach to encapsulating poorly soluble phytochemical ellagic acid. Nanotechnology 16:2819–2822CrossRefGoogle Scholar
  42. 42.
    Jose Merlin JP, Rajendra Prasad N, Shibli SMA et al (2012) Ferulic acid loaded Poly-d,l-lactide-co-glycolide nanoparticles: systematic study of particle size, drug encapsulation efficiency and anticancer effect in non-small cell lung carcinoma cell line in vitro. Biomed Prev Nutr 2:69–76CrossRefGoogle Scholar
  43. 43.
    Mukerjee A, Vishwanatha JK (2009) Formulation, characterization and evaluation of curcumin-loaded PLGA nanospheres for cancer therapy. Anticancer Res 29:3867–3875PubMedPubMedCentralGoogle Scholar
  44. 44.
    Gupta V, Aseh A, Ríos CN et al (2009) Fabrication and characterization of silk fibroin-derived curcumin nanoparticles for cancer therapy. Int J Nanomed 4:115–122CrossRefGoogle Scholar
  45. 45.
    Zhang J, Li S, An FF et al (2015) Self-carried curcumin nanoparticles for in vitro and in vivo cancer therapy with real-time monitoring of drug release. Nanoscale 7:13503–13510PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Yallapu MM, Gupta BK, Jaggi M et al (2010) Fabrication of curcumin encapsulated PLGA nanoparticles for improved therapeutic effects in metastatic cancer cells. J Colloid Interface Sci 351:19–29PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Kumar SS, Surianarayanan M, Vijayaraghavan R et al (2014) Curcumin loaded poly(2-hydroxyethyl methacrylate) nanoparticles from gelled ionic liquid – in vitro cytotoxicity and anti-cancer activity in SKOV-3 cells. Eur J Pharm Sci 51:34–44PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Kumar Das R, Kasoju N, Bora U (2010) Encapsulation of curcumin in alginate-chitosan-pluronic composite nanoparticles for delivery to cancer cells. Nanomed Nanotech Biol Med 6:153–160CrossRefGoogle Scholar
  49. 49.
    Anand P, Nair HB, Sung B et al (2010) Design of curcumin-loaded PLGA nanoparticles formulation with enhanced cellular uptake, and increased bioactivity in vitro and superior bioavailability in vivo. Biochem Pharmacol 79:330–338PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Ramalingam P, Yoo SW, Ko YT (2016) Nanodelivery systems based on mucoadhesive polymer coated solid lipid nanoparticles to improve the oral intake of food curcumin. Food Res Int 84:113–119CrossRefGoogle Scholar
  51. 51.
    Smith A, Giunta B, Bickford PC et al (2010) Nanolipidic particles improve the bioavailability and alpha-secretase inducing ability of epigallocatechin-3-gallate (EGCG) for the treatment of Alzheimer’s disease. Int J Pharm 389:207–212PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Huang X, Huang X, Gong Y et al (2016) Enhancement of curcumin water dispersibility and antioxidant activity using core–shell protein–polysaccharide nanoparticles. Food Res Int 87:1–9PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Tan Q, Liu W, Guo C et al (2011) Preparation and evaluation of quercetin-loaded lecithin-chitosan nanoparticles for topical delivery. Int J Nanomed 6:1621–1630CrossRefGoogle Scholar
  54. 54.
    Zhang M, Viennois E, Prasad M et al (2016) Edible ginger-derived nanoparticles: a novel therapeutic approach for the prevention and treatment of inflammatory bowel disease and colitis-associated cancer. Biomaterials 101:321–340PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Anh NT, Quan DT, Duc CTD et al (2016) Micro and nano liposome vesicles containing curcumin for a drug delivery system. Adv Nat Sci, Nanosci Nanotechnol 7:035003–035008Google Scholar
  56. 56.
    Langer R (1990) New methods of drug delivery. Science 249:1527–1533PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Mozafari MR, Johnson C, Hatziantoniou S et al (2008) Nanoliposomes and their applications in food nanotechnology. J Liposome Res 18:309–327PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Mozafari MR, Pardakhty A, Azarmi S et al (2009) Role of nanocarrier systems in cancer nanotherapy. J Liposome Res 19:310–321PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Shoji Y, Nakashima H (2004) Nutraceutics and delivery systems. J Drug Target 12:385–391PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Li C, Zhang X, Huang X et al (2013) Preparation and characterization of flexible nanoliposomes loaded with daptomycin, a novel antibiotic, for topical skin therapy. Int J Nanomed 8:1285–1292CrossRefGoogle Scholar
  61. 61.
    Sercombe L, Veerati T, Moheimani F et al (2015) Advances and challenges of liposome assisted drug delivery. Front Pharmacol 6:286–298Google Scholar
  62. 62.
    Thangapazham RL, Puri A, Tele S et al (2008) Evaluation of a nanotechnology-based carrier for delivery of curcumin in prostate cancer cells. Int J Oncol 32:1119–1123PubMedPubMedCentralGoogle Scholar
  63. 63.
    Li L, Braiteh FS, Kurzrock R (2005) Liposome-encapsulated curcumin: in vitro and in vivo effects on proliferation, apoptosis, signaling, and angiogenesis. Cancer 104:1322–1331CrossRefGoogle Scholar
  64. 64.
    Chen C, Johnston TD, Jeon H et al (2009) An in vitro study of liposomal curcumin: stability, toxicity and biological activity in human lymphocytes and Epstein-Barr virus-transformed human B-cells. Int J Pharm 366:133–139PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Wang D, Veena MS, Stevenson K et al (2008) Liposome-encapsulated curcumin suppresses growth of head and neck squamous cell carcinoma in vitro and in xenografts through the inhibition of nuclear factor kappaB by an AKT-independent pathway. Clin Cancer Res 14:6228–6236PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Mourtas S, Lazar AN, Markoutsa E et al (2014) Multifunctional nanoliposomes with curcumin-lipid derivative and brain targeting functionality with potential applications for Alzheimer disease. Eur J Med Chem 80:175–183PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Gharib A, Faezizadeh Z, Godarzee M (2015) Preparation and characterization of nanoliposomal beta-cryptoxanthin and its effect on proliferation and apoptosis in human leukemia cell line K562. Trop J Pharm Res 14:187–194CrossRefGoogle Scholar
  68. 68.
    Tanaka T, Tanaka T, Tanaka M et al (2012) Cancer chemoprevention by citrus pulp and juices containing high amounts of beta-cryptoxanthin and hesperidin. J Biomed Biotechnol 2012:516981PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Wu C, Han L, Riaz H et al (2013) The chemopreventive effect of beta-cryptoxanthin from mandarin on human stomach cells (BGC-823). Food Chem 136:1122–1129PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Shimoda H, Shan SJ, Tanaka J et al (2012) Beta-Cryptoxanthin suppresses UVB-induced melanogenesis in mouse: involvement of the inhibition of prostaglandin E2 and melanocyte-stimulating hormone pathways. J Pharm Pharmacol 64:1165–1176PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Mohan A, Narayanan S, Sethuraman S et al (2014) Novel resveratrol and 5-fluorouracil coencapsulated in PEGylated nanoliposomes improve chemotherapeutic efficacy of combination against head and neck squamous cell carcinoma. Biomed Res Int 2014:424239–424252CrossRefGoogle Scholar
  72. 72.
    Meng F, Zhiyuan Z (2011) Polymersomes spanning from nano- to microscales: advanced vehicles for controlled drug delivery and robust vesicles for virus and cell mimicking. J Phys Chem Lett 2:1533–1539CrossRefGoogle Scholar
  73. 73.
    Bermudez H, Brannan AK, Hammer DA et al (2002) Molecular weight dependence of polymersome membrane structure, elasticity, and stability. Macromolecules 35:8203–8208CrossRefGoogle Scholar
  74. 74.
    Battaglia G, Ryan AJ, Tomas S (2006) Polymeric vesicle permeability: a facile chemical assay. Langmuir 22:4910–4913PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Photos PJ, Lucie B, Bohdana D et al (2003) Polymer vesicles in vivo: correlations with PEG molecular weight. J Control Release 90:323–334PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Awasthi VD, Garcia D, Klipper R et al (2004) Neutral and anionic liposome-encapsulated hemoglobin: effect of postinserted poly(ethylene glycol)-distearoylphosphatidylethanolamine on distribution and circulation kinetics. J Pharmacol Exp Ther 309:241–248PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Anajafi T, Mallik S (2015) Polymersome-based drug-delivery strategies for cancer therapeutics. Ther Deliv 6:521–534PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Jia T, Sun Z, Lu Y et al (2016) A dual brain-targeting curcumin-loaded polymersomes ameliorated cognitive dysfunction in intrahippocampal amyloid-beta1-42-injected mice. Int J Nanomed 11:3765–3775CrossRefGoogle Scholar
  79. 79.
    Cao Y, Li Y, Wu Y et al (2016) Co-delivery of angiostatin and curcumin by a biodegradable polymersome for antiangiogenic therapy. RSC Adv 6:105442–105448CrossRefGoogle Scholar
  80. 80.
    Franklin J, Jinu G (2014) Curcumin encapsulated alginate/pluronic block copolymer micelles as a promising therapeutic agent. UKJPB 2:6–12Google Scholar
  81. 81.
    Choi HS, Liu W, Misra P et al (2007) Renal clearance of quantum dots. Nat Biotechnol 25:1165–1170PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Chan KW, Wong WT (2007) Small molecular gadolinium(III) complexes as MRI contrast agents for diagnostic imaging. Coord Chem Rev 251:2428–2451CrossRefGoogle Scholar
  83. 83.
    Miller JC, Thrall JH (2004) Clinical molecular imaging. J Am Coll Radiol 1:4–23PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Barstow L, Small RE (1990) Liver function assessment by drug metabolism. Pharmacotherapy 10:280–288PubMedPubMedCentralGoogle Scholar
  85. 85.
    Longmire M, Choyke PL, Kobayashi H (2008) Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine 3:703–717PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Ohlson M, Sorensson J, Haraldsson B (2001) A gel-membrane model of glomerular charge and size selectivity in series. Am J Physiol Renal Physiol 280:396–405CrossRefGoogle Scholar
  87. 87.
    Longmire MR, Ogawa M, Choyke PL et al (2011) Biologically optimized nanosized molecules and particles: more than just size. Bioconjug Chem 22:993–1000PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Zhang YN, Poon W, Tavares AJ et al (2016) Nanoparticle–liver interactions: cellular uptake and hepatobiliary elimination. J Controll Release 240:332–348CrossRefGoogle Scholar
  89. 89.
    Choi HS, Liu W, Misra P et al (2007) Renal clearance of nanoparticles. Nat Biotechnol 25:1165–1170PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    He C, Hu Y, Yin L et al (2010) Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials 31:3657–3666PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Ogawara K, Yoshida M, Higaki K et al (1999) Hepatic uptake of polystyrene microspheres in rats: effect of particle size on intrahepatic distribution. J Controll Release 59:15–22CrossRefGoogle Scholar
  92. 92.
    Kuntz E, Hans-Dieter K (2006) Hepatology: principles and practice: history, morphology, biochemistry, diagnostics, clinic, therapy, vol XIII, 2nd edn. Springer, Heidelberg, 906 pGoogle Scholar
  93. 93.
    Wang H, Thorling CA, Liang X et al (2015) Diagnostic imaging and therapeutic application of nanoparticles targeting the liver. J Mater Chem B 3:939–958CrossRefGoogle Scholar
  94. 94.
    Poelstra K, Prakash J, Beljaars L (2012) Drug targeting to the diseased liver. J Controll Release 161:188–197CrossRefGoogle Scholar
  95. 95.
    Bartsch M, Weeke-Klimp AH, Meijer DK et al (2002) Massive and selective delivery of lipid-coated cationic lipoplexes of oligonucleotides targeted in vivo to hepatic endothelial cells. Pharm Res 19:676–680PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Oberdorster G (2010) Safety assessment for nanotechnology and nanomedicine: concepts of nanotoxicology. J Intern Med 267:89–105PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Puri A, Loomis K, Smith B et al (2009) Lipid-based nanoparticles as pharmaceutical drug carriers: from concepts to clinic. Crit Rev Ther Drug Carrier Syst 26:523–580PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Love SA, Maurer-Jones MA, Thompson JW et al (2012) Assessing nanoparticle toxicity. Annu Rev Anal Chem 5:181–205CrossRefGoogle Scholar
  99. 99.
    Verma A, Stellacci F (2010) Effect of surface properties on nanoparticle-cell interactions. Small 6:12–21PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Dhawan A, Sharma V (2010) Toxicity assessment of nanomaterials: methods and challenges. Anal Bioanal Chem 398:589–605PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Pan Y, Neuss S, Leifert A et al (2007) Size-dependent cytotoxicity of gold nanoparticles. Small 3:1941–1949PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Szoka FC, Milholland D, Barza M (1987) Effect of lipid composition and liposome size on toxicity and in vitro fungicidal activity of liposome-intercalated amphotericin B. Antimicrob Agents Chemother 31:421–429PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    De Jong WH, Borm PJ (2008) Drug delivery and nanoparticles: applications and hazards. Int J Nanomed 3:133–149CrossRefGoogle Scholar
  104. 104.
    Fischer D, Li Y, Ahlemeyer B et al (2003) In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomaterials 24:1121–1131PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Mecke A, Majoros IJ, Patri AK et al (2005) Lipid bilayer disruption by polycationic polymers: the roles of size and chemical functional group. Langmuir 21:10348–10354PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Chen HT, Neerman MF, Parrish AR et al (2004) Cytotoxicity, hemolysis, and acute in vivo toxicity of dendrimers based on melamine, candidate vehicles for drug delivery. J Am Chem Soc 126:10044–10048PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Dokka S, Toledo D, Shi X et al (2000) Oxygen radical-mediated pulmonary toxicity induced by some cationic liposomes. Pharm Res 17:521–525PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Wei X, Bin S, Zhiyao H et al (2015) Cationic nanocarriers induce cell necrosis through impairment of Na+/K+ -ATPase and cause subsequent inflammatory response. Cell Res 25:237–253PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Knudsen KB, Northeved H, Kumar PE et al (2015) In vivo toxicity of cationic micelles and liposomes. Nanomedicine 11:467–477PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Lockman PR, Koziara JM, Mumper RJ et al (2004) Nanoparticle surface charges alter blood-brain barrier integrity and permeability. J Drug Target 12:635–641PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Powers KW, Brown SC, Krishna VB et al (2006) Research strategies for safety evaluation of nanomaterials. Part VI. Characterization of nanoscale particles for toxicological evaluation. Toxicol Sci 90:296–303PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Manocha B, Margaritis A (2008) Production and characterization of gamma-polyglutamic acid nanoparticles for controlled anticancer drug release. Crit Rev Biotechnol 28:83–99PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Beyerle A, Andrea B, Atrayee B et al (2011) Inflammatory responses to pulmonary application of PEI-based siRNA nanocarriers in mice. Biomaterials 32:8694–8701PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Moghimi SM, Andersen AJ, Hashemi SH et al (2010) Complement activation cascade triggered by PEG-PL engineered nanomedicines and carbon nanotubes: the challenges ahead. J Control Release 146:175–181PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Szebeni J, Muggia F, Gabizon A et al (2011) Activation of complement by therapeutic liposomes and other lipid excipient-based therapeutic products: prediction and prevention. Adv Drug Deliv Rev 63:1020–1030PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Szebeni J (2005) Complement activation-related pseudoallergy: a new class of drug-induced acute immune toxicity. Toxicology 216:106–121PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Borm P, Klaessig FC, Landry TD et al (2006) Research strategies for safety evaluation of nanomaterials. Part V: Role of dissolution in biological fate and effects of nanoscale particles. Toxicol Sci 90:23–32PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Hall JB, Dobrovolskaia MA, Patri AK et al (2007) Characterization of nanoparticles for therapeutics. Nanomedicine 2:789–803PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Mendes LP, Delgado JM, Costa AD et al (2015) Biodegradable nanoparticles designed for drug delivery: the number of nanoparticles impacts on cytotoxicity. Toxicol In Vitro 29:1268–1274PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Mayhew E, Ito M, Lazo R (1987) Toxicity of non-drug-containing liposomes for cultured human cells. Exp Cell Res 171:195–202PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Zhang Y, Wan-Xi Y (2016) Tight junction between endothelial cells: the interaction between nanoparticles and blood vessels. Beilstein J Nanotechnol 7:675–684PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Aitken RJ, Creely KS, Tran CL (2004) Nanoparticles: an occupational hygiene review. Health safety executive, research report, vol 274. HSE Books, LondonGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Dhwani Jhala
    • 1
  • Hilal Rather
    • 1
  • Rajesh Vasita
    • 1
  1. 1.Biomaterials and Biomimetics Laboratory, School of Life SciencesCentral University of GujaratGandhinagarIndia

Personalised recommendations