Nutraceuticals and Their Role in Human Health and Disease

  • Arpita Devi
  • S. Chennakesavulu
  • Chava Suresh
  • Aramati B. M. ReddyEmail author


Nutraceuticals, a growing market since the 1990s, is being used for prevention and treatment of various diseases. Nutraceuticals are used as drugs all over the world. While on one hand, researchers are working to discover disease-preventing potential of nutrients found in microorganisms and plants, on the other hand, pharmaceutical industry is trying to enrich food with those compounds.

Nutraceuticals have been found to have anti-inflammat ory, anti-oxidative, antitumor, antidiabetic, and anti-obesity properties. While dietary fibers, probiotics, and prebiotics play a role in digestive system, antioxidants and polyphenols help in relief from ROS and cellular stress. Spices and PUFAs have a number of roles to play in disease prevention.


Dietary fibers Probiotics Prebiotics PUFAs Antioxidant vitamins Polyphenols 



Arpita Devi, S. Chennakesavulu, and Chava Suresh acknowledge CSIR for fellowship for doctoral studies and Dr. ABM Reddy acknowledges UoH-UPE-II, DBT-RGYI, DBT-RNAi, and DAE-BRNS for funding laboratory.


  1. 1.
    Kalra EK (2003) Nutraceutical--definition and introduction. AAPS PharmSci 5(3):E25PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Molyneux RJ et al (2007) Phytochemicals: the good, the bad and the ugly? Phytochemistry 68(22–24):2973–2985PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Hardy G (2000) Nutraceuticals and functional foods: introduction and meaning. Nutrition 16(7–8):688–689PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Koneri R, Balaraman R, Saraswati C (2006) Antiovulatory and abortifacient potential of the ethanolic extract of roots of Momordica cymbalaria Fenzl in rats. Indian J Pharmacol 38(2):111–114CrossRefGoogle Scholar
  5. 5.
    Arena MP et al (2014) Barley beta-glucans-containing food enhances probiotic performances of beneficial bacteria. Int J Mol Sci 15(2):3025–3039PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Roberfroid M (2007) Prebiotics: the concept revisited. J Nutr 137(3 Suppl 2):830S–837SPubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Gomez B et al (2014) Purification, characterization, and prebiotic properties of pectic oligosaccharides from orange peel wastes. J Agric Food Chem 62(40):9769–9782PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Kelly GS (1999) Larch arabinogalactan: clinical relevance of a novel immune-enhancing polysaccharide. Altern Med Rev 4(2):96–103PubMedPubMedCentralGoogle Scholar
  9. 9.
    Zaman SA, Sarbini SR (2016) The potential of resistant starch as a prebiotic. Crit Rev Biotechnol 36(3):578–584PubMedPubMedCentralGoogle Scholar
  10. 10.
    Jain I, Kumar V, Satyanarayana T (2015) Xylooligosaccharides: an economical prebiotic from agroresidues and their health benefits. Indian J Exp Biol 53(3):131–142PubMedPubMedCentralGoogle Scholar
  11. 11.
    Meister A (1994) Glutathione-ascorbic acid antioxidant system in animals. J Biol Chem 269(13):9397–9400PubMedPubMedCentralGoogle Scholar
  12. 12.
    Wells WW et al (1990) Mammalian thioltransferase (glutaredoxin) and protein disulfide isomerase have dehydroascorbate reductase activity. J Biol Chem 265(26):15361–15364PubMedPubMedCentralGoogle Scholar
  13. 13.
    Herrera E, Barbas C (2001) Vitamin E: action, metabolism and perspectives. J Physiol Biochem 57(2):43–56PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Packer L, Weber SU, Rimbach G (2001) Molecular aspects of alpha-tocotrienol antioxidant action and cell signalling. J Nutr 131(2):369S–373SPubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Ninfali P et al (2005) Antioxidant capacity of vegetables, spices and dressings relevant to nutrition. Br J Nutr 93(2):257–266PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Salas-Salvado J et al (2006) Dietary fibre, nuts and cardiovascular diseases. Br J Nutr 96(Suppl 2):S46–S51PubMedPubMedCentralGoogle Scholar
  17. 17.
    Liu RH (2004) Potential synergy of phytochemicals in cancer prevention: mechanism of action. J Nutr 134(12 Suppl):3479S–3485SPubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Khanna P et al (1981) Hypoglycemic activity of polypeptide-p from a plant source. J Nat Prod 44(6):648–655PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Husain J, Tickle IJ, Wood SP (1994) Crystal structure of momordin, a type I ribosome inactivating protein from the seeds of Momordica charantia. FEBS Lett 342(2):154–158PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Chandalia M et al (2000) Beneficial effects of high dietary fiber intake in patients with type 2 diabetes mellitus. N Engl J Med 342(19):1392–1398PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Ajani UA, Ford ES, Mokdad AH (2004) Dietary fiber and C-reactive protein: findings from national health and nutrition examination survey data. J Nutr 134(5):1181–1185PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    El-Serag HB, Satia JA, Rabeneck L (2005) Dietary intake and the risk of gastro-oesophageal reflux disease: a cross sectional study in volunteers. Gut 54(1):11–17PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Ryan-Harshman M, Aldoori W (2004) How diet and lifestyle affect duodenal ulcers. Review of the evidence. Can Fam Physician 50:727–732PubMedPubMedCentralGoogle Scholar
  24. 24.
    Seo G (1989) Inhibition of growth of some enteropathogenic strains in mixed cultures of Streptococcus faecalis and Clostridium butyricum. Microb Lett 40:151–160Google Scholar
  25. 25.
    Reddy BS, Rivenson A (1993) Inhibitory effect of Bifidobacterium longum on colon, mammary, and liver carcinogenesis induced by 2-amino-3-methylimidazo[4,5-f]quinoline, a food mutagen. Cancer Res 53(17):3914–3918PubMedPubMedCentralGoogle Scholar
  26. 26.
    Van de Water J, Keen CL, Gershwin ME (1999) The influence of chronic yogurt consumption on immunity. J Nutr 129(7 Suppl):1492S–1495SPubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Alvarez-Sieiro P et al (2016) Bacteriocins of lactic acid bacteria: extending the family. Appl Microbiol Biotechnol 100(7):2939–2951PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Roberfroid MB (2000) Prebiotics and probiotics: are they functional foods? Am J Clin Nutr 71(6 Suppl):1682S–1687S Discussion 1688S–90SPubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Iwasaki K et al (2016) Daily intake of heat-killed lactobacillus plantarum L-137 decreases the probing depth in patients undergoing supportive periodontal therapy. Oral Health Prev Dent 14(3):207–214PubMedPubMedCentralGoogle Scholar
  30. 30.
    Pereira DI, Gibson GR (2002) Effects of consumption of probiotics and prebiotics on serum lipid levels in humans. Crit Rev Biochem Mol Biol 37(4):259–281PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Moro G et al (2002) Dosage-related bifidogenic effects of galacto- and fructooligosaccharides in formula-fed term infants. J Pediatr Gastroenterol Nutr 34(3):291–295PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Pool-Zobel B et al (2002) Experimental evidences on the potential of prebiotic fructans to reduce the risk of colon cancer. Br J Nutr 87(Suppl 2):S273–S281PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Griffin IJ, Davila PM, Abrams SA (2002) Non-digestible oligosaccharides and calcium absorption in girls with adequate calcium intakes. Br J Nutr 87(Suppl 2):S187–S191PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Tahiri M et al (2003) Effect of short-chain fructooligosaccharides on intestinal calcium absorption and calcium status in postmenopausal women: a stable-isotope study. Am J Clin Nutr 77(2):449–457PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Ma DW et al (2004) n-3 PUFA alter caveolae lipid composition and resident protein localization in mouse colon. FASEB J 18(9):1040–1042PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Hughes DA, Southon S, Pinder AC (1996) (n-3) polyunsaturated fatty acids modulate the expression of functionally associated molecules on human monocytes in vitro. J Nutr 126(3):603–610PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Cominacini L et al (1997) Antioxidants inhibit the expression of intercellular cell adhesion molecule-1 and vascular cell adhesion molecule-1 induced by oxidized LDL on human umbilical vein endothelial cells. Free Radic Biol Med 22(1–2):117–127PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Kim HS, Quon MJ, Kim JA (2014) New insights into the mechanisms of polyphenols beyond antioxidant properties; lessons from the green tea polyphenol, epigallocatechin 3-gallate. Redox Biol 2:187–195PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Hou Z et al (2005) Mechanism of action of (−)-epigallocatechin-3-gallate: auto-oxidation-dependent inactivation of epidermal growth factor receptor and direct effects on growth inhibition in human esophageal cancer KYSE 150 cells. Cancer Res 65(17):8049–8056PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Zang M et al (2006) Polyphenols stimulate AMP-activated protein kinase, lower lipids, and inhibit accelerated atherosclerosis in diabetic LDL receptor-deficient mice. Diabetes 55(8):2180–2191PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Kampa M et al (2004) Antiproliferative and apoptotic effects of selective phenolic acids on T47D human breast cancer cells: potential mechanisms of action. Breast Cancer Res 6(2):R63–R74PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Weinreb O et al (2009) Neuroprotective molecular mechanisms of (−)-epigallocatechin-3-gallate: a reflective outcome of its antioxidant, iron chelating and neuritogenic properties. Genes Nutr 4(4):283–296PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Khan BA, Abraham A, Leelamma S (1995) Hypoglycemic action of Murraya koenigii (curry leaf) and Brassica juncea (mustard): mechanism of action. Indian J Biochem Biophys 32(2):106–108PubMedPubMedCentralGoogle Scholar
  44. 44.
    Diao W-R et al (2014) Chemical composition, antibacterial activity and mechanism of action of essential oil from seeds of fennel (Foeniculum vulgare Mill.). Food Control 35(1):109–116CrossRefGoogle Scholar
  45. 45.
    Lambert RJ et al (2001) A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. J Appl Microbiol 91(3):453–462PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Prakash D et al (2007) Total phenol, antioxidant and free radical scavenging activities of some medicinal plants. Int J Food Sci Nutr 58(1):18–28PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Qin B, Panickar KS, Anderson RA (2010) Cinnamon: potential role in the prevention of insulin resistance, metabolic syndrome, and type 2 diabetes. J Diabetes Sci Technol 4(3):685–693PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Peterson DW et al (2009) Cinnamon extract inhibits tau aggregation associated with Alzheimer’s disease in vitro. J Alzheimers Dis 17(3):585–597PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Zhang K et al (2017) Cinnamon extract reduces VEGF expression via suppressing HIF-1alpha gene expression and inhibits tumor growth in mice. Mol Carcinog 56(2):436–446PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Tabak M, Armon R, Neeman I (1999) Cinnamon extracts’ inhibitory effect on Helicobacter pylori. J Ethnopharmacol 67(3):269–277PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Johnston CS et al (2010) Examination of the antiglycemic properties of vinegar in healthy adults. Ann Nutr Metab 56(1):74–79PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Liatis S et al (2010) Vinegar reduces postprandial hyperglycaemia in patients with type II diabetes when added to a high, but not to a low, glycaemic index meal. Eur J Clin Nutr 64(7):727–732PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Naziroglu M et al (2014) Apple cider vinegar modulates serum lipid profile, erythrocyte, kidney, and liver membrane oxidative stress in ovariectomized mice fed high cholesterol. J Membr Biol 247(8):667–673PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Shishehbor F et al (2008) Apple cider vinegar attenuates lipid profile in normal and diabetic rats. Pak J Biol Sci 11(23):2634–2638PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Ohnishi M et al (1994) Inhibitory effects of chlorogenic acids on linoleic acid peroxidation and haemolysis. Phytochemistry 36(3):579–583CrossRefGoogle Scholar
  56. 56.
    Feng R et al (2005) Inhibition of activator protein-1, NF-kappaB, and MAPKs and induction of phase 2 detoxifying enzyme activity by chlorogenic acid. J Biol Chem 280(30):27888–27895PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Lee WJ, Zhu BT (2006) Inhibition of DNA methylation by caffeic acid and chlorogenic acid, two common catechol-containing coffee polyphenols. Carcinogenesis 27(2):269–277PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Cho AS et al (2010) Chlorogenic acid exhibits anti-obesity property and improves lipid metabolism in high-fat diet-induced-obese mice. Food Chem Toxicol 48(3):937–943PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Mehmood MH et al (2011) Pharmacological basis for the medicinal use of psyllium husk (Ispaghula) in constipation and diarrhea. Dig Dis Sci 56(5):1460–1471PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Marlett JA, Kajs TM, Fischer MH (2000) An unfermented gel component of psyllium seed husk promotes laxation as a lubricant in humans. Am J Clin Nutr 72(3):784–789PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Zaman V et al (2002) The presence of antiamoebic constituents in psyllium husk. Phytother Res 16(1):78–79PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Sakanaka S et al (1989) Antibacterial substances in Japanese green tea extract against Streptococcus mutans, a cariogenic bacterium. Agric Biol Chem 53(9):2307–2311Google Scholar
  63. 63.
    Ruch RJ, Cheng SJ, Klaunig JE (1989) Prevention of cytotoxicity and inhibition of intercellular communication by antioxidant catechins isolated from Chinese green tea. Carcinogenesis 10(6):1003–1008PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Graham HN (1992) Green tea composition, consumption, and polyphenol chemistry. Prev Med 21(3):334–350PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Kim SH et al (2006) Gallic acid inhibits histamine release and pro-inflammatory cytokine production in mast cells. Toxicol Sci 91(1):123–131PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Kroes BH et al (1992) Anti-inflammatory activity of gallic acid. Planta Med 58(6):499–504PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Hsieh CL et al (2015) The teratogenicity and the action mechanism of gallic acid relating with brain and cervical muscles. PLoS One 10(6):e0119516PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Paolini A et al (2015) Gallic acid exerts a protective or an anti-proliferative effect on glioma T98G cells via dose-dependent epigenetic regulation mediated by miRNAs. Int J Oncol 46(4):1491–1497PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Khan N et al (2006) Targeting multiple signaling pathways by green tea polyphenol (−)-epigallocatechin-3-gallate. Cancer Res 66(5):2500–2505PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Kuriyama S et al (2006) Green tea consumption and mortality due to cardiovascular disease, cancer, and all causes in Japan: the Ohsaki study. JAMA 296(10):1255–1265PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Ahmad N et al (1997) Green tea constituent epigallocatechin-3-gallate and induction of apoptosis and cell cycle arrest in human carcinoma cells. J Natl Cancer Inst 89(24):1881–1886PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Lee DK et al (1998) Momordins inhibit both AP-1 function and cell proliferation. Anticancer Res 18(1A):119–124PubMedPubMedCentralGoogle Scholar
  73. 73.
    Kim JH et al (2002) Induction of apoptosis by momordin I in promyelocytic leukemia (HL-60) cells. Anticancer Res 22(3):1885–1889PubMedPubMedCentralGoogle Scholar
  74. 74.
    Wang J et al (2013) Momordin Ic induces HepG2 cell apoptosis through MAPK and PI3K/Akt-mediated mitochondrial pathways. Apoptosis 18(6):751–765PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Wang HY et al (2014) Differential anti-diabetic effects and mechanism of action of charantin-rich extract of Taiwanese Momordica charantia between type 1 and type 2 diabetic mice. Food Chem Toxicol 69:347–356PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Chithra P, Sajithlal GB, Chandrakasan G (1998) Influence of Aloe vera on collagen characteristics in healing dermal wounds in rats. Mol Cell Biochem 181(1–2):71–76PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Tanaka M et al (2006) Identification of five phytosterols from Aloe vera gel as anti-diabetic compounds. Biol Pharm Bull 29(7):1418–1422PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Arunkumar S, Muthuselvam M (2009) Analysis of phytochemical constituents and antimicrobial activities of Aloe vera L. against clinical pathogens. World J Agric Sci 5(5):572–576Google Scholar
  79. 79.
    Jorige A, Akula A (2015) Neuroprotective role of wheatgrass powder in experimental diabetic neuropathy via modulating oxidative stress markers in rat sciatic nerves. Am J Phytomed Clin Ther 3(7):529–540Google Scholar
  80. 80.
    Kashudhan H, Dixit A, Upadhyay A (2017) Optimization of ingredients for the development of wheatgrass based therapeutical juice using response surface methodology (RSM). J Pharmacogn Phytochem 6(2):338–345Google Scholar
  81. 81.
    Tsai CC et al (2013) The immunologically active oligosaccharides isolated from wheatgrass modulate monocytes via Toll-like receptor-2 signaling. J Biol Chem 288(24):17689–17697PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Shakya G, Balasubramanian S, Rajagopalan R (2015) Methanol extract of wheatgrass induces G1 cell cycle arrest in a p53-dependent manner and down regulates the expression of cyclin D1 in human laryngeal cancer cells-an in vitro and in silico approach. Pharmacogn Mag 11(Suppl 1):S139PubMedPubMedCentralGoogle Scholar
  83. 83.
    Satrija F et al (1995) Anthelmintic activity of papaya latex against patent Heligmosomoides polygyrus infections in mice. J Ethnopharmacol 48(3):161–164PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Collard E, Roy S (2010) Improved function of diabetic wound-site macrophages and accelerated wound closure in response to oral supplementation of a fermented papaya preparation. Antioxid Redox Signal 13(5):599–606PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Adeneye A et al (2009) The aqueous seed extract of Carica papaya Linn. Prevents carbon tetrachloride induced hepatotoxicity in rats. Int J Appl Res Nat Prod 2(2):19–32Google Scholar
  86. 86.
    Borek C (2001) Antioxidant health effects of aged garlic extract. J Nutr 131(3):1010S–1015SPubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Rahman K, Lowe GM, Smith S (2016) Aged garlic extract inhibits human platelet aggregation by altering intracellular signaling and platelet shape change. J Nutr 146(2):410S–415SPubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Alkreathy H et al (2010) Aged garlic extract protects against doxorubicin-induced cardiotoxicity in rats. Food Chem Toxicol 48(3):951–956PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Ankri S, Mirelman D (1999) Antimicrobial properties of allicin from garlic. Microbes Infect 1(2):125–129PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Ross Z et al (2001) Antimicrobial properties of garlic oil against human enteric bacteria: evaluation of methodologies and comparisons with garlic oil sulfides and garlic powder. Appl Environ Microbiol 67(1):475–480PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Sheela C, Augusti K (1992) Antidiabetic effects of S-allyl cysteine sulphoxide isolated from garlic Allium sativum Linn. Indian J Exp Biol 30(6):523–526PubMedPubMedCentralGoogle Scholar
  92. 92.
    Fatima N et al (2017) Ellagic acid in Emblica officinalis exerts anti-diabetic activity through the action on β-cells of pancreas. Eur J Nutr 56(2):591–601PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Justin Thenmozhi A et al (2016) Tannoid principles of Emblica officinalis renovate cognitive deficits and attenuate amyloid pathologies against aluminum chloride induced rat model of Alzheimer’s disease. Nutr Neurosci 19(6):269–278PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Suryanarayana P et al (2004) Inhibition of aldose reductase by tannoid principles of Emblica officinalis: implications for the prevention of sugar cataract. Mol Vis 10:148PubMedPubMedCentralGoogle Scholar
  95. 95.
    Bhuvaneswari R, Chidambaranathan N, Jegatheesan K (2014) Hepatoprotective effect of embilica officinalis and its silver nanoparticles against CCl4 induced hepatotoxicity in wistar albino rats. Dig J Nanomater Biostruct (DJNB) 9(1):223Google Scholar
  96. 96.
    Kim HJ et al (2005) Influence of amla (Emblica officinalis Gaertn.) on hypercholesterolemia and lipid peroxidation in cholesterol-fed rats. J Nutr Sci Vitaminol 51(6):413–418PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Vadde R et al (2016) Indian gooseberry (Emblica officinalis Gaertn.) suppresses cell proliferation and induces apoptosis in human colon cancer stem cells independent of p53 status via suppression of c-Myc and cyclin D1. J Funct Foods 25:267–278CrossRefGoogle Scholar
  98. 98.
    Shah R, Gulati V, Palombo EA (2012) Pharmacological properties of guggulsterones, the major active components of gum guggul. Phytother Res 26(11):1594–1605PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Lv N et al (2008) Guggulsterone, a plant sterol, inhibits NF-κB activation and protects pancreatic β cells from cytokine toxicity. Mol Cell Endocrinol 289(1):49–59PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Macha MA et al (2013) Guggulsterone decreases proliferation and metastatic behavior of pancreatic cancer cells by modulating JAK/STAT and Src/FAK signaling. Cancer Lett 341(2):166–177PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Brobst DE et al (2004) Guggulsterone activates multiple nuclear receptors and induces CYP3A gene expression through the pregnane X receptor. J Pharmacol Exp Ther 310(2):528–535PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Tripathi YB, Malhotra O, Tripathi S (1984) Thyroid stimulating action of Z-guggulsterone obtained from Commiphora mukul. Planta Med 50(01):78–80PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Wu J et al (2002) The hypolipidemic natural product guggulsterone acts as an antagonist of the bile acid receptor. Mol Endocrinol 16(7):1590–1597PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Chander R, Khanna A, Kapoor N (1996) Lipid lowering activity of guggulsterone from Commiphora mukul in hyperlipaemic rats. Phytother Res 10(6):508–511CrossRefGoogle Scholar
  105. 105.
    Baldwa VS et al (1981) Effects of Commiphora Mukul (Guggul) in experimentally induced hyperlipemia and atherosclerosis. J Assoc Physicians India 29(1):13–17PubMedPubMedCentralGoogle Scholar
  106. 106.
    Duester G (2008) Retinoic acid synthesis and signaling during early organogenesis. Cell 134(6):921–931PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Frederich M et al (2009) Thiaminylated adenine nucleotides. Chemical synthesis, structural characterization and natural occurrence. FEBS J 276(12):3256–3268PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Snell EE (1953) Summary of known metabolic functions of nicotinic acid, riboflavin and vitamin B6. Physiol Rev 33(4):509–524PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Mandula B, Beutler E (1970) Synthesis of riboflavin nucleotides by mature human erythrocytes. Blood 36(4):491–499PubMedPubMedCentralGoogle Scholar
  110. 110.
    Gravel RA, Robinson BH (1985) Biotin-dependent carboxylase deficiencies (propionyl-CoA and pyruvate carboxylases). Ann N Y Acad Sci 447:225–234PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Goh YI, Koren G (2008) Folic acid in pregnancy and fetal outcomes. J Obstet Gynaecol 28(1):3–13PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Mierzejewski K, Rozengurt E (1976) Stimulation of DNA synthesis and cell division in a chemically defined medium: effect of epidermal growth factor, insulin and vitamin B12 on resting cultures of 3T6 cells. Biochem Biophys Res Commun 73(2):271–278PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Zittoun J (1993) Anemias due to disorder of folate, vitamin B12 and transcobalamin metabolism. Rev Prat 43(11):1358–1363PubMedPubMedCentralGoogle Scholar
  114. 114.
    Peterkofsky B (1991) Ascorbate requirement for hydroxylation and secretion of procollagen: relationship to inhibition of collagen synthesis in scurvy. Am J Clin Nutr 54(6 Suppl):1135S–1140SPubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Yamada SSMYK (2004) Vitamin D and rickets, vol 6. Karger Publishers, pp 50–68Google Scholar
  116. 116.
    Price PA, Williamson MK (1985) Primary structure of bovine matrix Gla protein, a new vitamin K-dependent bone protein. J Biol Chem 260(28):14971–14975PubMedPubMedCentralGoogle Scholar
  117. 117.
    Rose CR (2002) Book review: Na+ signals at central synapses. Neuroscientist 8(6):532–539PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Titze J et al (2006) Extrarenal Na+ balance, volume, and blood pressure homeostasis in intact and ovariectomized deoxycorticosterone-acetate salt rats. Hypertension 47(6):1101–1107PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Ransom CB, Ransom BR, Sontheimer H (2000) Activity-dependent extracellular K+ accumulation in rat optic nerve: the role of glial and axonal Na+ pumps. J Physiol 522(Pt 3):427–442PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Ebashi S, Endo M (1968) Calcium ion and muscle contraction. Prog Biophys Mol Biol 18:123–183PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Stipanuk MH (2004) Sulfur amino acid metabolism: pathways for production and removal of homocysteine and cysteine. Annu Rev Nutr 24:539–577PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Thorslund A, Lindskog S (1967) Studies of the esterase activity and the anion inhibition of bovine zinc and cobalt carbonic anhydrases. Eur J Biochem 3(1):117–123PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Schneider WC (1946) Phosphorus compounds in animal tissues; a comparison of methods for the estimation of nucleic acids. J Biol Chem 164(2):747–751PubMedPubMedCentralGoogle Scholar
  124. 124.
    Morgan EH (1961) Plasma-iron and haemoglobin levels in pregnancy. The effect of oral iron. Lancet 1(7167):9–12PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Sun W (2014) Iodine-131 and thyroid function. Environ Health Perspect 122(2):A40PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    DelaFuente G, Lagunas R, Sols A (1970) Induced fit in yeast hexokinase. Eur J Biochem 16(2):226–233PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Zipkin I, Mc CF (1952) Deposition of fluorine in the bones and teeth of the growing rat. J Nutr 47(4):611–620PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Ravindranath SD, Fridovich I (1975) Isolation and characterization of a manganese-containing superoxide dismutase from yeast. J Biol Chem 250(15):6107–6112PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Arpita Devi
    • 1
  • S. Chennakesavulu
    • 1
  • Chava Suresh
    • 1
  • Aramati B. M. Reddy
    • 1
    Email author
  1. 1.Department of Animal Biology, School of Life SciencesUniversity of HyderabadHyderabadIndia

Personalised recommendations