Metabolic Syndrome and Nutritional Interventions

  • Bhawna Kumari
  • Akanksha Sharma
  • Umesh C. S. YadavEmail author


Metabolic syndrome is a cluster of pathophysiological conditions that are associated with many other diseases including dyslipidaemia, cardiovascular diseases, insulin resistance and type 2 diabetes. Obesity is one of the many factors implicated in the progression of metabolic syndrome. Although some genetic components have been shown to be responsible for obesity, recent increase in the rate of obesity globally is mainly associated with the altered life-style (mostly sedentary) and food habit which includes consuming many and frequent meals during the day and energy-rich Westernized diet which are usually deficient of fibres and supply excessive calorie in shorter duration. Therefore, the weight loss by hypocaloric diet and life-style modifications are recommended to manage obesity and associated complications that come under metabolic syndrome. Recent focus on the functional food-derived nutrient components including polyphenols such as alkaloids, flavonoids, terpenes, saponins, etc. has advocated nutritional intervention in patients as a preventive and therapeutic approach for metabolic syndrome and life-style-associated diseases. In the present chapter, recent insight in the field of nutraceuticals and metabolic syndrome has been discussed.


Metabolic disorder Nutraceuticals Dyslipidaemia Phytochemicals Nutritional intervention 



The Ramanujan Fellowship to UCSY from DST, Government of India, is acknowledged thankfully.


  1. 1.
    Grundy SM et al (2004) Implications of recent clinical trials for the National Cholesterol Education Program Adult Treatment Panel III guidelines. Circulation 110:227PubMedCrossRefGoogle Scholar
  2. 2.
    Reaven GM (1988) Role of insulin resistance in human disease. Diabetes 37:1595PubMedCrossRefGoogle Scholar
  3. 3.
    Evaluation and Treatment of High Blood Cholesterol in Adults Expert Panel on Detection (2001) Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA 285(19):2486–2497CrossRefGoogle Scholar
  4. 4.
    Luque CA, Rey JA (2002) The discovery and status of sibutramine as an anti-obesity drug. Eur J Pharmacol 440(2–3):119–128PubMedCrossRefGoogle Scholar
  5. 5.
    Xiao D et al (2013) Carboxylesterase-2 is a highly sensitive target of the antiobesity agent orlistat with profound implications in the activation of anticancer prodrugs. Biochem Pharmacol 85(3):439–447PubMedCrossRefGoogle Scholar
  6. 6.
    Poolsup N, Suksomboon N, Setwiwattanakul W (2012) Efficacy of various antidiabetic agents as add-on treatments to metformin in type 2 diabetes mellitus: systematic review and meta-analysis. ISRN Endocrinol 2012:798146PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Van Gaal LF et al (2005) Effects of the cannabinoid-1 receptor blocker rimonabant on weight reduction and cardiovascular risk factors in overweight patients: 1-year experience from the RIO-Europe study. Lancet 365(9468):1389–1397PubMedCrossRefGoogle Scholar
  8. 8.
    Yki-Järvinen H (2004) Thiazolidinediones. N Engl J Med 351(11):1106–1118PubMedCrossRefGoogle Scholar
  9. 9.
    Giorda C et al (1995) Alpha 1-blocker doxazosin improves peripheral insulin sensitivity in diabetic hypertensive patients. Metabolism 44(5):673–676PubMedCrossRefGoogle Scholar
  10. 10.
    Carpentier A et al (2002) Ameliorated hepatic insulin resistance is associated with normalization of microsomal triglyceride transfer protein expression and reduction in very low density lipoprotein assembly and secretion in the fructose-fed hamster. J Biol Chem 277(32):28795–28802PubMedCrossRefGoogle Scholar
  11. 11.
    Knop FK, Bronden A, Vilsboll T (2017) Exenatide: pharmacokinetics, clinical use, and future directions. Expert Opin Pharmacother 18:555PubMedCrossRefGoogle Scholar
  12. 12.
    Barnett A (2006) DPP-4 inhibitors and their potential role in the management of type 2 diabetes. Int J Clin Pract 60(11):1454–1470PubMedCrossRefGoogle Scholar
  13. 13.
    Mangaloglu L et al (2002) Treatment with atorvastatin ameliorates hepatic very-low-density lipoprotein overproduction in an animal model of insulin resistance, the fructose-fed Syrian golden hamster: evidence that reduced hypertriglyceridemia is accompanied by improved hepatic insulin sensitivity. Metabolism 51(4):409–418PubMedCrossRefGoogle Scholar
  14. 14.
    Bass A, Hinderliter AL, Lee CR (2009) The impact of ezetimibe on endothelial function and other markers of cardiovascular risk. Ann Pharmacother 43(12):2021–2030PubMedCrossRefGoogle Scholar
  15. 15.
    Buchwald H et al (2009) Weight and type 2 diabetes after bariatric surgery: systematic review and meta-analysis. Am J Med 122(3):248–256 e5PubMedCrossRefGoogle Scholar
  16. 16.
    Sjostrom CD et al (1999) Reduction in incidence of diabetes, hypertension and lipid disturbances after intentional weight loss induced by bariatric surgery: the SOS Intervention Study. Obes Res 7(5):477–484PubMedCrossRefGoogle Scholar
  17. 17.
    Flum DR, Dellinger EP (2004) Impact of gastric bypass operation on survival: a population-based analysis. J Am Coll Surg 199(4):543–551PubMedCrossRefGoogle Scholar
  18. 18.
    Sowemimo OA et al (2007) Natural history of morbid obesity without surgical intervention. Surg Obes Relat Dis 3(1):73–77PubMedCrossRefGoogle Scholar
  19. 19.
    Williams S, Cunningham E, Pories WJ (2012) Surgical treatment of metabolic syndrome. Med Princ Pract 21(4):301–309PubMedCrossRefGoogle Scholar
  20. 20.
    Keidar A (2011) Bariatric surgery for type 2 diabetes reversal: the risks. Diabetes Care 34(Suppl 2):S361–S266PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Mason EE, Ito C (1967) Gastric bypass in obesity. Surg Clin North Am 47(6):1345–1351PubMedCrossRefGoogle Scholar
  22. 22.
    Marceau P et al (1998) Biliopancreatic diversion with duodenal switch. World J Surg 22(9):947–954PubMedCrossRefGoogle Scholar
  23. 23.
    Cătoi AF et al (2016) Effects of sleeve gastrectomy on insulin resistance. Clujul Med 89(2):267–272PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Muzio F et al (2005) Long-term effects of low-calorie diet on the metabolic syndrome in obese nondiabetic patients. Diabetes Care 28(6):1485–1486PubMedCrossRefGoogle Scholar
  25. 25.
    Wadden TA et al (2005) Randomized trial of lifestyle modification and pharmacotherapy for obesity. N Engl J Med 353(20):2111–2120PubMedCrossRefGoogle Scholar
  26. 26.
    Berthoud HR (2002) Multiple neural systems controlling food intake and body weight. Neurosci Biobehav Rev 26(4):393–428PubMedCrossRefGoogle Scholar
  27. 27.
    Bray GA (2008) Lifestyle and pharmacological approaches to weight loss: efficacy and safety. J Clin Endocrinol Metab 93(11 Suppl 1):S81–S88PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Knowler WC et al (2002) Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 346(6):393–403PubMedCrossRefGoogle Scholar
  29. 29.
    Orchard TJ et al (2005) The effect of metformin and intensive lifestyle intervention on the metabolic syndrome: the diabetes prevention program randomized trial. Ann Intern Med 142(8):611–619PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Fabricatore AN (2007) Behavior therapy and cognitive-behavioral therapy of obesity: is there a difference? J Am Diet Assoc 107(1):92–99PubMedCrossRefGoogle Scholar
  31. 31.
    Ferster CB, Nurnberger JI, Levitt EB (1996) The control of eating. 1962. Obes Res 4(4):401–410PubMedGoogle Scholar
  32. 32.
    Gruber KJ, Haldeman LA (2009) Using the family to combat childhood and adult obesity. Prev Chronic Dis 6(3):A106PubMedPubMedCentralGoogle Scholar
  33. 33.
    Grave RD et al (2010) Lifestyle modification in the management of the metabolic syndrome: achievements and challenges. Diabetes Metab Syndr Obes 3:373–385PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    D'Zurilla TJ, Goldfried MR (1971) Problem solving and behavior modification. J Abnorm Psychol 78(1):107–126PubMedCrossRefGoogle Scholar
  35. 35.
    Shahidi F, Ambigaipalan P (2015) Phenolics and polyphenolics in foods, beverages and spices: antioxidant activity and health effects – a review. J Func Foods 18(Part B):820–897CrossRefGoogle Scholar
  36. 36.
    Messina M, Messina V (1996) Nutritional implications of dietary phytochemicals. Adv Exp Med Biol 401:207–212PubMedCrossRefGoogle Scholar
  37. 37.
    Hegsted DM (1994) A look back at lessons learned and not learned. J Nutr 124(9 Suppl):1867S–1870SPubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Sauer S, Plauth A (2017) Health-beneficial nutraceuticals—myth or reality? Appl Microbiol Biotechnol 101(3):951–961PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Agrawal DK, Mishra PK (2010) Curcumin and its analogues: potential anticancer agents. Med Res Rev 30(5):818–860PubMedPubMedCentralGoogle Scholar
  40. 40.
    Leu TH, Maa MC (2002) The molecular mechanisms for the antitumorigenic effect of curcumin. Curr Med Chem Anticancer Agents 2(3):357–370PubMedCrossRefGoogle Scholar
  41. 41.
    Dai J, Mumper RJ (2010) Plant Phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules 15(10):7313PubMedCrossRefGoogle Scholar
  42. 42.
    Park EJ, Pezzuto JM (2015) The pharmacology of resveratrol in animals and humans. Biochim Biophys Acta 1852(6):1071–1113PubMedCrossRefGoogle Scholar
  43. 43.
    Iwai K et al (2006) α-Glucosidase inhibitory and Antihyperglycemic effects of polyphenols in the fruit of Viburnum dilatatum Thunb. J Agric Food Chem 54(13):4588–4592PubMedCrossRefGoogle Scholar
  44. 44.
    Iwai K (2008) Antidiabetic and antioxidant effects of polyphenols in brown alga Ecklonia stolonifera in genetically diabetic KK-A(y) mice. Plant Foods Hum Nutr 63(4):163–169PubMedCrossRefGoogle Scholar
  45. 45.
    Cabrera C, Artacho R, Gimenez R (2006) Beneficial effects of green tea--a review. J Am Coll Nutr 25(2):79–99PubMedCrossRefGoogle Scholar
  46. 46.
    Kobayashi Y et al (2000) Green tea polyphenols inhibit the sodium-dependent glucose transporter of intestinal epithelial cells by a competitive mechanism. J Agric Food Chem 48(11):5618–5623PubMedCrossRefGoogle Scholar
  47. 47.
    Johnston K et al (2005) Dietary polyphenols decrease glucose uptake by human intestinal Caco-2 cells. FEBS Lett 579(7):1653–1657PubMedCrossRefGoogle Scholar
  48. 48.
    Rivera L et al (2008) Quercetin ameliorates metabolic syndrome and improves the inflammatory status in obese Zucker rats. Obesity (Silver Spring) 16(9):2081–2087CrossRefGoogle Scholar
  49. 49.
    Bose M et al (2008) The major green tea polyphenol, (−)-Epigallocatechin-3-Gallate, inhibits obesity, metabolic syndrome, and fatty liver disease in high-fat–fed mice. J Nutr 138(9):1677–1683PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Egert S et al (2010) Serum lipid and blood pressure responses to quercetin vary in overweight patients by apolipoprotein E genotype. J Nutr 140(2):278–284PubMedCrossRefGoogle Scholar
  51. 51.
    Mulvihill EE et al (2009) Naringenin prevents dyslipidemia, apolipoprotein B overproduction, and hyperinsulinemia in LDL receptor-null mice with diet-induced insulin resistance. Diabetes 58(10):2198–2210PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Yokozawa T, Kim HJ, Cho EJ (2008) Gravinol ameliorates high-fructose-induced metabolic syndrome through regulation of lipid metabolism and proinflammatory state in rats. J Agric Food Chem 56(13):5026–5032PubMedCrossRefGoogle Scholar
  53. 53.
    Shabrova EV et al (2011) Insights into the molecular mechanisms of the anti-atherogenic actions of flavonoids in normal and obese mice. PLoS One 6(10):e24634PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Mulvihill EE et al (2010) Naringenin decreases progression of atherosclerosis by improving dyslipidemia in high-fat–fed low-density lipoprotein receptor–null mice. Arterioscler Thromb Vasc Biol 30(4):742PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Huang HC, Lin JK (2012) Pu-erh tea, green tea, and black tea suppresses hyperlipidemia, hyperleptinemia and fatty acid synthase through activating AMPK in rats fed a high-fructose diet. Food Funct 3(2):170–177PubMedCrossRefGoogle Scholar
  56. 56.
    Gordon MH (2012) Significance of dietary antioxidants for health. Int J Mol Sci 13(1):173–179PubMedCrossRefGoogle Scholar
  57. 57.
    Erdman JW et al (2007) Flavonoids and heart health: proceedings of the ILSI North America flavonoids workshop, May 31–June 1, 2005, Washington, DC. J Nutr 137(3):718S–737SPubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Kasubuchi M et al (2015) Dietary gut microbial metabolites, short-chain fatty acids, and host metabolic regulation. Nutrients 7(4):2839–2849PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Ley RE et al (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444(7122):1022–1023PubMedCrossRefGoogle Scholar
  60. 60.
    Yoo J, Kim S (2016) Probiotics and prebiotics: present status and future perspectives on metabolic disorders. Nutrients 8(3):173PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Muller M, Kersten S (2003) Nutrigenomics: goals and strategies. Nat Rev Genet 4(4):315–322PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Fenech M et al (2011) Nutrigenetics and nutrigenomics: viewpoints on the current status and applications in nutrition research and practice. J Nutrigenet Nutrigenomics 4(2):69–89PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Gaedigk A et al (1991) Deletion of the entire cytochrome P450 CYP2D6 gene as a cause of impaired drug metabolism in poor metabolizers of the debrisoquine/sparteine polymorphism. Am J Hum Genet 48(5):943–950PubMedPubMedCentralGoogle Scholar
  64. 64.
    Ingelman-Sundberg M (2005) Genetic polymorphisms of cytochrome P450 2D6 (CYP2D6): clinical consequences, evolutionary aspects and functional diversity. Pharmacogenomics J 5(1):6–13PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Gonzalez FJ et al (1988) Characterization of the common genetic defect in humans deficient in debrisoquine metabolism. Nature 331(6155):442–446PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Heim M, Meyer UA (1990) Genotyping of poor metabolisers of debrisoquine by allele-specific PCR amplification. Lancet 336(8714):529–532PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Kalow W (1986) Ethnic differences in reactions to drugs and xenobiotics. Caffeine and other drugs. Prog Clin Biol Res 214:331–341PubMedPubMedCentralGoogle Scholar
  68. 68.
    Simopoulos AP (2010) Genetic variants in the metabolism of omega-6 and omega-3 fatty acids: their role in the determination of nutritional requirements and chronic disease risk. Exp Biol Med (Maywood) 235(7):785–795CrossRefGoogle Scholar
  69. 69.
    Sameer AS et al (2011) ACE I/D polymorphism in hypertensive patients of Kashmiri population. Cardiol Res 1(1):1–7Google Scholar
  70. 70.
    Rahimi Z (2012) ACE insertion/deletion (I/D) polymorphism and diabetic nephropathy. J Nephropathol 1(3):143–151PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Perticone F et al (1998) Angiotensin-converting enzyme gene polymorphism is associated with endothelium-dependent vasodilation in never treated hypertensive patients. Hypertension 31(4):900PubMedCrossRefGoogle Scholar
  72. 72.
    Tiret L et al (1993) Deletion polymorphism in angiotensin-converting enzyme gene associated with parental history of myocardial infarction. Lancet 341(8851):991–992PubMedCrossRefGoogle Scholar
  73. 73.
    Ruiz J et al (1994) Insertion/deletion polymorphism of the angiotensin-converting enzyme gene is strongly associated with coronary heart disease in non-insulin-dependent diabetes mellitus. Proc Natl Acad Sci U S A 91(9):3662–3665PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Navis G et al (1999) Angiotensin-converting enzyme gene I/D polymorphism and renal disease. J Mol Med 77(11):781–791PubMedCrossRefGoogle Scholar
  75. 75.
    Rahimi Z et al (2011) The frequency of factor V Leiden mutation, ACE gene polymorphism, serum ACE activity and response to ACE inhibitor and angiotensin II receptor antagonist drugs in Iranians type II diabetic patients with microalbuminuria. Mol Biol Rep 38(3):2117–2123PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Engeli S, Negrel R, Sharma AM (2000) Physiology and pathophysiology of the adipose tissue renin-angiotensin system. Hypertension 35(6):1270–1277PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Lee YJ, Tsai JC (2002) ACE gene insertion/deletion polymorphism associated with 1998 World Health Organization definition of metabolic syndrome in Chinese type 2 diabetic patients. Diabetes Care 25(6):1002–1008PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Connor WE, Connor SL (1997) Should a low-fat, high-carbohydrate diet be recommended for everyone? The case for a low-fat, high-carbohydrate diet. N Engl J Med 337(8):562–563; discussion 566-7PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Heird WC, Lapillonne A (2005) The role of essential fatty acids in development. Annu Rev Nutr 25:549–571PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Cho HP, Nakamura M, Clarke SD (1999) Cloning, expression, and fatty acid regulation of the human delta-5 desaturase. J Biol Chem 274(52):37335–37339PubMedCrossRefGoogle Scholar
  81. 81.
    Marquardt A et al (2000) cDNA cloning, genomic structure, and chromosomal localization of three members of the human fatty acid desaturase family. Genomics 66(2):175–183PubMedCrossRefGoogle Scholar
  82. 82.
    Schaeffer L et al (2006) Common genetic variants of the FADS1 FADS2 gene cluster and their reconstructed haplotypes are associated with the fatty acid composition in phospholipids. Hum Mol Genet 15(11):1745–1756PubMedCrossRefGoogle Scholar
  83. 83.
    Pitsavos C et al (2006) Diet, exercise and the metabolic syndrome. Rev Diabet Stud 3(3):118–126PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Anderson CA, Miller ER 3rd (2006) Dietary recommendations for obese patients with chronic kidney disease. Adv Chronic Kidney Dis 13(4):394–402PubMedCrossRefGoogle Scholar
  85. 85.
    Trichopoulou A, Lagiou P (1997) Healthy traditional Mediterranean diet: an expression of culture, history, and lifestyle. Nutr Rev 55(11 Pt 1):383–389PubMedGoogle Scholar
  86. 86.
    Abramson JL, Vaccarino V (2002) Relationship between physical activity and inflammation among apparently healthy middle-aged and older US adults. Arch Intern Med 162(11):1286–1292PubMedCrossRefGoogle Scholar
  87. 87.
    MacAuley D et al (1996) Physical activity, physical fitness, blood pressure, and fibrinogen in the Northern Ireland health and activity survey. J Epidemiol Community Health 50(3):258–263PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Yamaoka K, Tango T (2012) Effects of lifestyle modification on metabolic syndrome: a systematic review and meta-analysis. BMC Med 10(1):138PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) (2002) Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III) final report. Circulation 106(25):3143–3421CrossRefGoogle Scholar
  90. 90.
    Mozaffarian D, Ludwig DS (2010) Dietary guidelines in the 21st century–a time for food. JAMA 304(6):681–682PubMedCrossRefGoogle Scholar
  91. 91.
    Myers J (2003) Exercise and cardiovascular health. Circulation 107(1):e2, 2eCrossRefGoogle Scholar
  92. 92.
    Paffenbarger RSJ et al (1993) The Association of Changes in physical-activity level and other lifestyle characteristics with mortality among men. N Engl J Med 328(8):538–545PubMedCrossRefGoogle Scholar
  93. 93.
    Mann S, Beedie C, Jimenez A (2014) Differential effects of aerobic exercise, resistance training and combined exercise modalities on cholesterol and the lipid profile: review, synthesis and recommendations. Sports med 44(2):211–221PubMedCrossRefGoogle Scholar
  94. 94.
    Srinath Reddy K, Katan MB (2004) Diet, nutrition and the prevention of hypertension and cardiovascular diseases. Public Health Nutr 7(1A):167–186PubMedGoogle Scholar
  95. 95.
    MacCracken J, Hoel D (1997) From ants to analogues. Puzzles and promises in diabetes management. Postgrad Med 101(4):138–140 143–5, 149–50PubMedCrossRefGoogle Scholar
  96. 96.
    Tipton CM (2008) Susruta of India, an unrecognized contributor to the history of exercise physiology. J Appl Physiol (1985) 104(6):1553–1556CrossRefGoogle Scholar
  97. 97.
    Westley RL, May FE (2013) A twenty-first century cancer epidemic caused by obesity: the involvement of insulin, diabetes, and insulin-like growth factors. Int J Endocrinol 2013:632461PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Riccardi G, Rivellese AA (2000) Dietary treatment of the metabolic syndrome – the optimal diet. Br J Nutr 83(Suppl 1):S143–S148PubMedGoogle Scholar
  99. 99.
    Wirth A (1995) Non-pharmacological therapy of metabolic syndrome. Herz 20(1):56–69PubMedGoogle Scholar
  100. 100.
    Garg SK et al (2014) Diabetes and cancer: two diseases with obesity as a common risk factor. Diabetes Obes Metab 16(2):97–110PubMedCrossRefGoogle Scholar
  101. 101.
    Global Burden of Disease Cancer Collaboration (2015) The global burden of cancer 2013. JAMA Oncol 1(4):505–527PubMedCentralCrossRefPubMedGoogle Scholar
  102. 102.
    Renehan AG et al (2008) Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet 371(9612):569–578CrossRefGoogle Scholar
  103. 103.
    Vigneri P et al (2009) Diabetes and cancer. Endocr Relat Cancer 16(4):1103–1123PubMedCrossRefGoogle Scholar
  104. 104.
    Shanmugam MK et al (2015) The multifaceted role of curcumin in cancer prevention and treatment. Molecules 20(2):2728–2769PubMedCrossRefGoogle Scholar
  105. 105.
    Dalziel K, Segal L (2007) Time to give nutrition interventions a higher profile: cost-effectiveness of 10 nutrition interventions. Health Promot Int 22(4):271–283PubMedCrossRefGoogle Scholar
  106. 106.
    Hoffman R, Gerber M (2015) Food processing and the Mediterranean diet. Nutrients 7(9):7925–7964PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Bhawna Kumari
    • 1
  • Akanksha Sharma
    • 1
  • Umesh C. S. Yadav
    • 2
    Email author
  1. 1.Metabolic Disorders and Inflammatory Pathologies Laboratory, School of Life SciencesCentral University of GujaratGandhinagarIndia
  2. 2.School of Life SciencesCentral University of GujaratGandhinagarIndia

Personalised recommendations