Natural Therapeutics for Alzheimer’s Disease

  • Shweta DangEmail author
  • Deeksha Mehtani
  • Atinderpal Kaur
  • Reema Gabrani


Alzheimer’s disease (AD) is a neurodegenerative disease which is serious, persistent and progressive and is linked with deterioration of memory and cognition. Commonly, Alzheimer’s is the reason to cause dementia in aged people. The pathogenesis of this disease is linked with the buildup of amyloid beta (Aβ) plaques and neurofibrillary tangles (NFTs) in brain tissues, and also the tau protein gets hyper-phosphorylated in neurons. The generation of reactive oxygen species (ROS) as a result of oxidative stress is regarded as the main cause of AD. The present treatment offers only symptomatic relief which turns down the rate of cognitive destruction related with AD. Inhibition of the enzyme acetylcholinesterase (AChE) is believed as one of the key therapeutic approach contributing only symptomatic relief and modest disease modifying result. None of the drugs currently available could delay or halt the progression of AD. Several compounds showed positive results in preclinical studies but failed in clinical trials as they had limited targeting because of their inability to cross blood-brain barrier (BBB). Several problems exist in the development of new therapeutics. Medicinal plants have been reported for promising anti-AD action in many preclinical and clinical trials. Natural compounds provide various structural characteristics and biological activities and therefore are an attractive source for developing compounds against AD. Advance in extraction and separation method leads to the generation of natural products as potential therapeutics. Various medicinal plants also in their basic structure or as secluded compounds have demonstrated to lessen the pathological characteristics related with AD. In this chapter an effort has been made to focus on natural substances having role in anti-Alzheimer’s therapy with their source, mechanism of action and limitations.


Alzheimer’s disease Berberine Herbal formulation Huperzine Phytochemical 


  1. 1.
    LaFerla FM, Oddo S (2005) Alzheimer’s disease: Aβ, tau and synaptic dysfunction. Trends Mol Med 11(4):170–176CrossRefGoogle Scholar
  2. 2.
    Sadigh-Eteghad S et al (2015) Amyloid-beta: a crucial factor in Alzheimer’s disease. Med Princ Pract 24:1–10CrossRefGoogle Scholar
  3. 3.
    Serrano-Pozo A et al (2011) Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med 1(1):a006189CrossRefGoogle Scholar
  4. 4.
    Spires-Jones TL, Hyman BT (2014) The intersection of amyloid beta and tau at synapses in Alzheimer’s disease. Neuron 82(4):756–771CrossRefGoogle Scholar
  5. 5.
    Reitz C (2012) Alzheimer’s disease and the amyloid cascade hypothesis: a critical review. Int J Alzheimer’s Dis 2012:Article ID 369808, 11 pagesGoogle Scholar
  6. 6.
    Zhang H et al (2012) Proteolytic processing of Alzheimer’s Β-amyloid precursor protein. J Neurochem 120(Suppl 1):9–21 PMCCrossRefGoogle Scholar
  7. 7.
    O’Brien RJ, Wong PC (2011) Amyloid precursor protein processing and Alzheimer’s disease. Annu Rev Neurosci 34:185–204CrossRefGoogle Scholar
  8. 8.
    Iqbal K et al (2005) Tau pathology in Alzheimer disease and other tauopathies. Biochim Biophys Acta (BBA) – Mol Basis Dis 1739(2–3):198–210CrossRefGoogle Scholar
  9. 9.
    Gong C-X, Iqbal K (2008) Hyperphosphorylation of microtubule-associated protein tau: a promising therapeutic target for Alzheimer disease. Curr Med Chem 15(23):2321–2328CrossRefGoogle Scholar
  10. 10.
    Misonou H, Kawashima MM, Ihara Y (2000) Oxidative stress induces intracellular accumulation of amyloid β-protein (Aβ) in human neuroblastoma cells. Biochemistry 39(23):6951–6959CrossRefGoogle Scholar
  11. 11.
    Federico A et al (2012, 9 pages) Mitochondria, oxidative stress and neurodegeneration. J Neurol Sci 322:254. CrossRefPubMedGoogle Scholar
  12. 12.
    Zhao Y, Zhao B (2013) Oxidative stress and the pathogenesis of Alzheimer’s disease. Oxid Med Cell Longev 2013:Article ID 316523, 10 pages. CrossRefGoogle Scholar
  13. 13.
    Giacobini E (2004) Cholinesterase inhibitors: new roles and therapeutic alternatives. Pharmacol Res 50:433–440CrossRefGoogle Scholar
  14. 14.
    Tabet N (2006) Acetylcholinesterase inhibitors for Alzheimer’s disease: anti-inflammatories in acetylcholine clothing! Age Ageing 35(4):336–338. CrossRefPubMedGoogle Scholar
  15. 15.
    Mielke MM et al (2012) Effects of FDA approved medications for Alzheimer’s disease on clinical progression. Alzheimer’s Dement: J Alzheimer’s Assoc 8(3):180–187CrossRefGoogle Scholar
  16. 16.
    Čolović MB et al (2013) Acetylcholinesterase inhibitors: pharmacology and toxicology. Curr Neuropharmacol 11(3):315–335CrossRefGoogle Scholar
  17. 17.
    Winblad B (2009) Donepezil in severe Alzheimer’s disease. Am J Alzheimer’s Dis Other Demen® 24(3):185–192CrossRefGoogle Scholar
  18. 18.
    Van Marum RJ (2009) Update on the use of memantine in Alzheimer’s disease. Neuropsychiatr Dis Treat 5:237–247CrossRefGoogle Scholar
  19. 19.
    Puangthong U, Hsiung G-YR (2009) Critical appraisal of the long-term impact of memantine in treatment of moderate to severe Alzheimer’s disease. Neuropsychiatr Dis Treat 5:553–561PubMedPubMedCentralGoogle Scholar
  20. 20.
    Bond M (2012) The effectiveness and cost-effectiveness of donepezil, galantamine, rivastigmine and memantine for the treatment of Alzheimer’s disease (review of technology appraisal no. 111): a systematic review and economic model. Health Technol Assess 16(21):1–470CrossRefGoogle Scholar
  21. 21.
    Irannejad H et al (2010) Synthesis and in vitro evaluation of novel 1,2,4-triazine derivatives as neuroprotective agents. Bioorg Med Chem 18(12):4224–4230CrossRefGoogle Scholar
  22. 22.
    Zhao B (2009) Natural antioxidants protect neurons in Alzheimer’s disease and Parkinson’s disease. Neurochem Res 34(4):630–638CrossRefGoogle Scholar
  23. 23.
    Winblad B et al (2012) Safety, tolerability, and antibody response of active Aß immunotherapy with CAD106 in patients with Alzheimer’s disease randomised, double-blind, placebo-controlled, first-in-human study. Lancet Neurol 11(7):597–604CrossRefGoogle Scholar
  24. 24.
    Frakey LL, Salloway S, Buelow M, Malloy P (2012) A randomized, double-blind, placebo-controlled trial of modafinil for the treatment of apathy in individuals with mild-to-moderate Alzheimer’s disease. J Clin Psychiatry 73(6):796–801CrossRefGoogle Scholar
  25. 25.
    Sasidharan S et al (2011) Extraction, isolation and characterization of bioactive compounds from plants’ extracts. Afr J Tradit Complement Altern Med 8(1):1–10PubMedGoogle Scholar
  26. 26.
    Asadi S et al (2010) In vitro antioxidant activities and an investigation of neuroprotection by six Salvia species from Iran: a comparative study. Food Chem Toxicol 48(5):1341–1349CrossRefGoogle Scholar
  27. 27.
    Kuruuzum-Uz A et al (2012) Investigation on anti-inflammatory and antiulcer activities of Anchusa azurea extracts and their major constituent rosmarinic acid. Z Naturforsch C 67(7–8):360–366CrossRefGoogle Scholar
  28. 28.
    Marambaud P, Zhao H, Davies P (2005) Resveratrol promotes clearance of Alzheimer’s disease amyloid-peptides. J Biol Chem 280(45):37377–37382CrossRefGoogle Scholar
  29. 29.
    Huang T-C, Kwok-Tung L, Wo Y-YP, Yao-Ju W, Yang Y-L (2011) Resveratrol protects rats from ab-induced neurotoxicity by the reduction of iNOS expression and lipid peroxidation. PLoS One 6(12):e29102. CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Walle T (2011) Bioavailability of resveratrol. Ann N Y Acad Sci 1215:9–15CrossRefGoogle Scholar
  31. 31.
    Nash and Shah (2015) Current perspectives on the beneficial role of Ginkgo biloba in neurological and cerebrovascular disorders. Integr Med Insight 10:1–9. CrossRefGoogle Scholar
  32. 32.
    Park S, Sapkota K, Kim S, Kim H, Kim S (2011) Kaempferol acts through mitogen-activated protein kinases and protein kinase B/AKT to elicit protection in a model of neuroinflammation in BV2 microglial cells. Br J Pharmacol 164(3):1008–1025. CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Barve A, Chen C, Hebbar V, Desiderio J, Saw CL-L, Kong A-N (2009) Metabolism, oral bioavailability and pharmacokinetics of chemopreventive kaempferol in rats. Biopharm Drug Dispos 30(7):356–365. CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Maria S-GA, Ignacio M-MJ, Ramírez-Pineda Jose R, Marisol L-R, Edison O, Patricia C-GG (2015) The flavonoid quercetin ameliorates Alzheimer’s disease pathology and protects cognitive and emotional function in aged triple transgenic Alzheimer’s disease model mice. Neuropharmacology 93:134–145. CrossRefPubMedCentralGoogle Scholar
  35. 35.
    Tchantchou F, Lacor PN, Cao Z, Lao L, Hou Y, Cui C, Klein WL, Luo Y (2009) Stimulation of neurogenesis and synaptogenesis by bilobalide and quercetin via common final pathway in hippocampal neurons. J Alzheimers Dis 18(4):787–798CrossRefGoogle Scholar
  36. 36.
    Monograph quercetin (2011) Altern Med Rev 16(2):172–194Google Scholar
  37. 37.
    Choi YT, Jung CH, Lee SR, Bae JH, Baek WK, Suh MH, Park J, Park CW, Suh SI (2001) The green tea polyphenol (-)-epigallocatechin gallate attenuates beta-amyloid-induced neurotoxicity in cultured hippocampal neurons. Life Sci 70(5):603–614CrossRefGoogle Scholar
  38. 38.
    Okello EJ, Leylabi R, McDougall GJ (2012) Inhibition of acetylcholinesterase by green and white tea and their simulated intestinal metabolites. Food Funct 3(6):651–661. CrossRefPubMedGoogle Scholar
  39. 39.
    Lambert JD, Hong J, Kim DH, Mishin VM, Yang CS (2004) Piperine enhances the bioavailability of the tea polyphenol (-)-epigallocatechin-3-gallate in mice. J Nutr 134(8):1948–1952CrossRefGoogle Scholar
  40. 40.
    Lambert JD, Lee MJ, Lu H, Meng X, Hong JJ, Seril DN, Sturgill MG, Yang CS (2003) Epigallocatechin-3-gallate is absorbed but extensively glucuronidated following oral administration to mice. J Nutr 133(12):4172–4177CrossRefGoogle Scholar
  41. 41.
    Khan MB, Khan MM, Khan A, Ahmed ME, Ishrat T, Tabassum R, Vaibhav K, Ahmad A, Islam F (2012) Naringenin ameliorates Alzheimer’s disease (AD)-type neurodegeneration with cognitive impairment (AD-TNDCI) caused by the intracerebroventricular-streptozotocin in rat model. Neurochem Int 61(7):1081–1093. CrossRefPubMedGoogle Scholar
  42. 42.
    Shulman M, Cohen M, Soto-Gutierrez A et al (2011) Enhancement of naringenin bioavailability by complexation with hydroxypropoyl-β-cyclodextrin. PLoS One 6(4):e18033. CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Zhu M, Chen Y, Li RC (2000) Oral absorption and bioavailability of tea catechins. Planta Med 66(5):444–447CrossRefGoogle Scholar
  44. 44.
    Mishra S, Palanivelu K (2008) The effect of curcumin (turmeric) on Alzheimer’s disease: an overview. Ann Indian Acad Neurol 11(1):13–19. CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB (2007) Bioavailability of curcumin: problems and promises. Mol Pharm 4(6):807–818. CrossRefPubMedGoogle Scholar
  46. 46.
    Imanshahidi M, Hosseinzadeh H (2008) Pharmacological and therapeutic effects of Berberis vulgaris and its active constituent, berberine. Phytother Res 22:999–1012CrossRefGoogle Scholar
  47. 47.
    Zhu F et al (2011) Decrease in the production of beta-amyloid by berberine inhibition of the expression of beta secretase in HEK293 cells. BMC Neurosci 12:125CrossRefGoogle Scholar
  48. 48.
    Panahi N, Mahmoudian M, Mortazavi P, Hashjin GS (2013) Effects of berberine on β-secretase activity in a rabbit model of Alzheimer’s disease. Arch Med Sci 1:146–150CrossRefGoogle Scholar
  49. 49.
    Cai Z, Wang C, Yang W (2016) Role of berberine in Alzheimer’s disease. Neuropsychiatr Dis Treat 12:2509–2520CrossRefGoogle Scholar
  50. 50.
    Rees TM et al (2003) The role of acetylcholinesterase in the pathogenesis of Alzheimer’s disease. Drugs Today (Barc) 39(1):75–83CrossRefGoogle Scholar
  51. 51.
    Jung HA et al (2009) Anti-Alzheimer and antioxidant activities of Coptidis Rhizoma alkaloids. Biol Pharm Bull 32(8):1433–1438CrossRefGoogle Scholar
  52. 52.
    Xiang J, Yu C, Yang F, Yang L, Ding H (2009) Conformation-activity studies on the interaction of berberine with acetylcholinesterase: physical chemistry approach. Prog Nat Sci 19(12):1721–1725CrossRefGoogle Scholar
  53. 53.
    Huang L, Luo Z, He F, Lu J, Li X (2010) Synthesis and biological evaluation of a new series of berberine derivatives as dual inhibitors of acetylcholinesterase and butyrylcholinesterase. Bioorg Med Chem 18(12):4475–4484. CrossRefPubMedGoogle Scholar
  54. 54.
    Ji H-F, Shen L (2012) Molecular basis of inhibitory activities of berberine against pathogenic enzymes in Alzheimer’s disease. Sci World J 2012:Article ID 823201, 4 pages. CrossRefGoogle Scholar
  55. 55.
    Chen W, Miao Y-Q, Fan D-J, Yang S-S, Lin X, Meng L-K, Tang X (2011) Bioavailability study of berberine and the enhancing effects of TPGS on intestinal absorption in rats. AAPS PharmSciTech 12(2):705–711. CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Ferreira A, Rodrigues M’r, Fortuna A, Falcao A’l, Alves G (2016) Huperzine A from Huperzia serrata: a review of its sources, chemistry, pharmacology and toxicology. Phytochem Rev 15(1):51–85. CrossRefGoogle Scholar
  57. 57.
    Tang XC, Han YF (1999) Pharmacological profile of Huperzine A, a novel acetylcholinesterase inhibitor from Chinese herb. CNS Drug Rev 5(3):281–300CrossRefGoogle Scholar
  58. 58.
    Wang R, Yan H, Tang X-c (2006) Progress in studies of huperzine A, a natural cholinesterase inhibitor from Chinese herbal medicine. Acta Pharmacol Sin 27(1):1–26CrossRefGoogle Scholar
  59. 59.
    Zhang H-y (2012) New insights into huperzine A for the treatment of Alzheimer’s disease. Acta Pharmacol Sin 33:1170–1175CrossRefGoogle Scholar
  60. 60.
    Tang L-l, Wang R, Xi-can T (2005) Effects of huperzine A on secretion of nerve growth factor in cultured rat cortical astrocytes and neurite outgrowth in rat PC12 cells. Acta Pharmacol Sin 26(6):673–678CrossRefGoogle Scholar
  61. 61.
    Gao X, Zheng CY, Yang L, Tang XC, Zhang HY (2009) Huperzine A protects isolated rat brain mitochondria against β-amyloid peptide. Free Radic Biol Med 46(11):1454–1462CrossRefGoogle Scholar
  62. 62.
    Liu H, Yang J, Du F, Gao X, Ma X, Huang Y, Xu F, Niu W, Wang F, Mao Y, Sun Y, Lu T, Liu C, Zhang B, Li C (2009) Absorption and disposition of ginsenosides after oral administration of Panax notoginseng extract to rats. Drug Metab Dispos 37(12):2290–2298. Epub 2009 Sep 28CrossRefPubMedGoogle Scholar
  63. 63.
    Si HH, Geng T, Sun XP, Zhao J, Xue J (2015) Absolute bioavailability of ginkgolide compounds in rats. Zhongguo Zhong Yao Za Zhi 40(14):2882–2886PubMedGoogle Scholar
  64. 64.
    Bate C, Tayebi M, Williams A (2008) Ginkgolides protect against amyloid-beta1-42-mediated synapse damage in vitro. Mol Neurodegener 3(1):1. CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Triaca V, Calissano P (2016) Impairment of the nerve growth factor pathway driving amyloid accumulation in cholinergic neurons: the incipit of the Alzheimer’s disease story? Neural Regen Res 11(10):1553–1556CrossRefGoogle Scholar
  66. 66.
    Shigeta K, Ootaki K, Tatemoto H, Nakanishi T, Inada A, Muto N (2002) Potentiation of nerve growth factor-induced neurite outgrowth in PC12 cells by a Coptidis Rhizoma extract and protoberberine alkaloids. Biosci Biotechnol Biochem 66:2491–2494CrossRefGoogle Scholar
  67. 67.
    Gao X, Tang XC (2006) Huperzine A attenuates mitochondrial dysfunction in beta-amyloid-treated PC12 cells by reducing oxygen free radicals accumulation and improving mitochondrial energy metabolism. J Neurosci Res 83(6):1048–1057CrossRefGoogle Scholar
  68. 68.
    Lei Y et al (2015) Involvement of intracellular and mitochondrial Aβ in the ameliorative effects of Huperzine A against oligomeric Aβ42-induced injury in primary rat neurons. PLoS One 10(5):e0128366. CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Kumar P, Jhanjee A, Bhatia MS, Verma D (2011) Huperzisne. Delhi Psychiatry J 14(1):177–179Google Scholar
  70. 70.
    Berberine monograph (2000) Altern Med Rev 5(2):175–177Google Scholar
  71. 71.
    Kuo CL, Chi CW, Liu TY (2004) The anti-inflammatory potential of berberine in vitro and in vivo. Cancer Lett 203:127–137CrossRefGoogle Scholar
  72. 72.
    Ahmed T, Gilani AU, Abdollahi M, Daglia M, Nabavi SF, Nabavi SM (2015) Berberine and neurodegeneration: a review of literature. Pharmacol Rep 67(5):970–979CrossRefGoogle Scholar
  73. 73.
    Selkoe DJ, Hardy J (2016) The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med 8:595–608CrossRefGoogle Scholar
  74. 74.
    Burns J, Yokota T, Ashihara H, Lean ME, Crozier A (2002) Plant foods and herbal sources of resveratrol. J Agric Food Chem 50(11):3337–3340CrossRefGoogle Scholar
  75. 75.
    Chen RS, Wu PL, Chiou RY (2002) Peanut roots as a source of resveratrol. J Agric Food Chem 50:1665–1667CrossRefGoogle Scholar
  76. 76.
    Soleas GJ, Diamandis EP, Goldberg DM (1997) Wine as a biological fluid: history, production, and role in disease prevention. J Clin Lab Anal 11:287–313CrossRefGoogle Scholar
  77. 77.
    Baur JA, Sinclair DA (2006) Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev|Drug Discov 5:493–456CrossRefGoogle Scholar
  78. 78.
    Ma T, Tattn M-S, Yu J-T, Tan L (2014) Resveratrol as a therapeutic agent for Alzheimer’s disease. BioMed Res Int 2014:Article ID 350516, 13 pages. CrossRefGoogle Scholar
  79. 79.
    Walle T, Hsieh F, DeLegge MH, Oatis JE Jr, Kristina Walle U (2004) High absorption but very low bioavailability of oral resveratrol in humans. Drug Metab Dispos 32(12):1377–1382CrossRefGoogle Scholar
  80. 80.
    Resveratrol monograph (2010) Altern Med Rev 15(2)Google Scholar
  81. 81.
    Johnson JJ, Nihal M, Siddiqui IA, Scarlett CO, Bailey HH, Mukhtar H, Ahmad N (2011) Enhancing the bioavailability of resveratrol by combining it with piperine. Mol Nutr Food Res 55(8):1169–1176CrossRefGoogle Scholar
  82. 82.
    Jacobs BP, Browner WS (2000) Ginkgo biloba: a living fossil. Am J Med 108:341–342CrossRefGoogle Scholar
  83. 83.
    Christen Y, Maixent JM (2002) What is Ginkgo biloba extract EGb 761? An overview–from molecular biology to clinical medicine. Cell Mol Biol 48(6):601–611PubMedGoogle Scholar
  84. 84.
    Bridi R, Crossetti FP, Steffen VM, Henriques AT (2001) The antioxidant activity of standardized extract of Ginkgo biloba (EGb 761) in rats. Phytother Res 15(5):449–451CrossRefGoogle Scholar
  85. 85.
    Wei T, Ni Y, Hou J, Chen C, Zhao B, Xin W (2000) Hydrogen peroxide-induced oxidative damage and apoptosis in cerebellar granule cells: protection by Ginkgo biloba extract. Pharmacol Res 41:427–433CrossRefGoogle Scholar
  86. 86.
    Eckert A, Keil U, Kressmann S, Schindowski K, Leutner S, Leutz S, Müller WE (2003) Effects of EGb 761® Ginkgo biloba extract on mitochondrial function and oxidative stress. Pharmacopsychiatry 36:15–23CrossRefGoogle Scholar
  87. 87.
    Luo Y, Smith JV, Paramasivam V, Burdick A, Curry KJ, Buford JP, Khan I, Netzer WJ, Xu H, Butko P (2002) Inhibition of amyloid-aggregation and caspase-3 activation by the Ginkgo biloba extract EGb761. PNAS 99(19):12197–12202CrossRefGoogle Scholar
  88. 88.
    Yoo K-Y, Park S-Y (2012) Terpenoids as potential anti-Alzheimer’s disease therapeutics. Molecules 17:3524–3538CrossRefGoogle Scholar
  89. 89.
    Kleijnen J, Knipschild P (1992) Ginkgo biloba. Lancet 340:1136–1139CrossRefGoogle Scholar
  90. 90.
    Monograph Ginkgo biloba (1998) Altern Med Rev 3(1):54–57Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Shweta Dang
    • 1
    Email author
  • Deeksha Mehtani
    • 1
  • Atinderpal Kaur
    • 1
  • Reema Gabrani
    • 1
  1. 1.Department of BiotechnologyJaypee Institute of Information TechnologyNoidaIndia

Personalised recommendations