Novel Biomarkers in Deep Vein Thrombosis

  • Ajay K. Khanna
  • Manbendra Vaidya
  • Soumya Khanna


Venous thromboembolic disease (VTE) remains a significant source of morbidity and mortality. As non-specific subjective complaints and a paucity of objective clinical examination findings complicate the diagnosis of both deep venous thrombosis (DVT) and pulmonary embolism (PE), diagnostic modalities remain essential. Symptoms suggestive of deep vein thrombosis are extremely common in practice but unfortunately non-specific. The modified Wells score remains the most supported clinical decision rule for risk stratifying these concerns. Compression ultrasound remains the gold standard for diagnosis of DVT. Reliable imaging is not always available, so making a serologic diagnosis, or biomarker, is highly desirable. While D-dimer, a highly sensitive biomarker, is useful for excluding acute VTE, it lacks the specificity necessary for diagnostic confirmation. As such, ongoing research efforts target and support the utility of alternative plasma biomarkers to aid in the diagnosis of VTE including selectins, microparticles, IL-10, and other inflammatory markers. These molecular markers may also predict recurrence risk, guide length and modality of treatment, and predict which thrombi will resolve spontaneously or recanalize, thus potentially identifying patients who would benefit from more aggressive therapies than standard anticoagulation [1].


  1. 1.
    Coleman DM, Thomas W. Biomarkers for the diagnosis of deep vein thrombosis. Expert Opin Med Diagn. 2012;6(4):253–7.CrossRefGoogle Scholar
  2. 2.
    Jacobs B, Obi A, Wakefield T. Diagnostic biomarkers in venous thromboembolic disease. J Vasc Surg Venous Lymphat Disord. 2016;4(4):508–17.CrossRefGoogle Scholar
  3. 3.
    Righini M, Le Gal G, Aujesky D, et al. Diagnosis of pulmonary embolism by multidetector CT alone or combined with venous ultrasonography of the leg: a randomized non-inferiority trial. Lancet. 2008;371:1343–52.CrossRefGoogle Scholar
  4. 4.
    Bockenstedt P. D-dimer in venous thromboembolism. N Engl J Med. 2003;349:1203–4.CrossRefGoogle Scholar
  5. 5.
    Cosmi B, Legnani C, Cini M, et al. D-dimer levels in combination with residual venous obstruction and the risk of recurrence after anticoagulation withdrawal for a first idiopathic deep vein thrombosis. Thromb Haemost. 2005;94(5):969–74.PubMedGoogle Scholar
  6. 6.
    Andre P, Hartwell D, Hrachovinova I, Saffaripour S, Wagner DD. Procoagulant state resulting from high levels of soluble P-selectin in blood. Proc Natl Acad Sci U S A. 2000;97:13835–40.CrossRefGoogle Scholar
  7. 7.
    Ramacciotti E, Blackburn S, Hawley AE, Vandy F, Ballard-Lipka N, Stabler C, et al. Evaluation of soluble P selectin as a marker for the diagnosis of deep venous thrombosis. Clin Appl Thromb Hemost. 2011;17:425–31.CrossRefGoogle Scholar
  8. 8.
    Nadar SK, Lip GY, Blann AD. Platelet morphology, soluble P selectin and platelet P selectin in acute ischaemic stroke. The West Brimingham Stroke Project. Thromb Haemost. 2004;92:1342–8.CrossRefGoogle Scholar
  9. 9.
    Sfyroeras GS, Kakisis JD, Moulakakis KG, Liapis CD. The role of soluble P selectin in the diagnosis of venous thromboembolism. Thromb Res. 2014;133(1):17–24.CrossRefGoogle Scholar
  10. 10.
    Mosevoll KA, Lindås R, Wendelbo Ø, Bruserud Ø, Reikvam H. Systemic levels of the endothelium-derived soluble adhesion molecules endocan and E-selectin in patients with suspected deep vein thrombosis. Springerplus. 2014;3:571. Scholar
  11. 11.
    Dudman NP. An alternative view of homocystiene. Lancet. 1999;354:2072–4.CrossRefGoogle Scholar
  12. 12.
    Den Heijer M, Lewington S, Clarke R. Homocystiene, MTHFR and risk of venous thrombosis: a meta-analysis of published epidemiological studies. J Thromb Haemost. 2005;3:292–9.CrossRefGoogle Scholar
  13. 13.
    Tillett WS, Goebel WF, Avery OT. Chemical and immunological properties of a species-specific carbohydrate of pneumococci. J Exp Med. 1930;52(6):895–900.CrossRefGoogle Scholar
  14. 14.
    Casa JP, Shah T, Hingorani AD, Danesh J, Pepys MB. Creative protein and coronary heart disease: a critical review. J Intern Med. 2008;264:295–314.CrossRefGoogle Scholar
  15. 15.
    Vormittag R, Vukovich T, Schonauer V, Lehr S, Minar E, Bialonczyk C, et al. Basal high sensitivity C- reactive protein levels in patient with spontaneous venous thromboembolism. Thromb Haemost. 2005;93:488–93.CrossRefGoogle Scholar
  16. 16.
    Tsai AW, Cushman M, Rosamond WD, Heckbert SR, Polak JF, Folsom AR. Cardiovascular risk factors and venous thromboembolism incidence: the longitudinal investigation of thromboembolism etiology. Arch Intern Med. 2002;162:1182–9.CrossRefGoogle Scholar
  17. 17.
    Folsom AR, Lutsey PL, Astor BC, Cushman M. C-reactive protein and venous thromboembolism. A prospective investigation in the ARIC cohort. Thromb Haemost. 2009;102(4):615–9.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Luxembourg B, Schmitt J, Humpich M, Glowatzki M, et al. Cardiovascular risk factors in idiopathic compared to risk-associated venous thromboembolism: a focus on fibrinogen, factor VIII, and high-sensitivity C-reactive protein (hs-CRP). Thromb Haemost. 2009;102(4):668–75.PubMedGoogle Scholar
  19. 19.
    Zacho J, Tybjaerg-Hansen A, Nordestgaard BG. C-reactive protein and risk of venous thromboembolism in the general population. Arterioscler Thromb Vasc Biol. 2010;30(8):1672–8.CrossRefGoogle Scholar
  20. 20.
    Kraaijenhagen RA, Anker PS, Koopman MM, Reitsma PH, Prins MH, van den Ende A, Buller HR. High plasma concentration of factor VIII:C is a major risk factor for venous thromboembolism. Thromb Haemost. 2000;83:5–9.CrossRefGoogle Scholar
  21. 21.
    Kyrle PA, Minar E, Hirschl M, Bialonczyk C, Stain M, Schneider B, Weltermann A, Speiser W, Lechner K, Eichinger S. High plasma levels of factor VIII and the risk of recurrent venous thromboembolism. N Engl J Med. 2000;343:457–62.CrossRefGoogle Scholar
  22. 22.
    Cristina L, Benilde C, Michela C, Mirella F, Giuliana G, Gualtiero P. High plasma levels of factor VIII and risk of recurrence of venous thromboembolism. Br J Haematol. 2004;124:504–10.CrossRefGoogle Scholar
  23. 23.
    Campello E, Spiezia L, Radu CM, Simioni P. Microparticles as biomarkers of venous thromboembolic events. Biomark Med. 2016;10(7):743–55. Scholar
  24. 24.
    Deng H-Y, Li G, Luo J, Wang Z-Q, Yang X-Y, Lin Y-D, Liu L-X. MicroRNAs are novel non-invasive diagnostic biomarkers for pulmonary embolism: a meta-analysis. J Thorac Dis. 2016;8(12):3580–7.CrossRefGoogle Scholar
  25. 25.
    Kessler T, Erdmann J, Vilne B, Bruse P, Kurowski V, Diemert P, Schunkert H, Sager HB. Serum microRNA-1233 is a specific biomarker for diagnosing acute pulmonary embolism. J Transl Med. 2016;14:120.CrossRefGoogle Scholar
  26. 26.
    Rectenwald JE, Myers DD, Hawley AE, et al. D-dimer, P-selectin and microparticles: novel markers to predict deep venous thrombosis. Thromb Haemost. 2005;94:1312–7.CrossRefGoogle Scholar
  27. 27.
    Schaefer JK, Angelini DE, Hawley A, Blackburn SA, Lusk E, Braun TM, Wakefield TW, Sood SL. Biomarkers and clinical prediction rules in the diagnosis of suspected deep vein thrombosis: a comparison of cancer and non-cancer patients. Blood. 2016;128:3804.Google Scholar
  28. 28.
    Schaefer JK, Jacobs B, Wakefield TW, Sood SL. New biomarkers and imaging approaches for the diagnosis of deep venous thrombosis. Curr Opin Hematol. 2017;24(3):274–81.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Ajay K. Khanna
    • 1
  • Manbendra Vaidya
    • 2
  • Soumya Khanna
    • 2
  1. 1.Department of General SurgeryInstitute of Medical Sciences, Banaras Hindu UniversityVaranasiIndia
  2. 2.Institute of Medical Sciences, Banaras Hindu UniversityVaranasiIndia

Personalised recommendations